Abstract
The goal of this paper is to carry out a global sensitivity analysis applied to a mathematical model for chronic myelogenous leukemia (CML) dynamics with T cell interaction. The interaction mechanism between naïve T cells, effector T cells, and CML cancer cells in the body is modeled by a system of ordinary differential equations which defines rates of variation for the three cell populations. We explain how to globally analyse the sensitivity of this complex system by means of two graphical objects: the sensitivity heat map and the parameter sensitivity spectrum.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afenya, E., Calderón, C.: Diverse ideas on the growth kinetics of disseminated cancer cells. Bull. Math. Biol. 62, 527–542 (2000)
Daescu, D.N., Navon, I.M.: Sensitivity analysis in nonlinear variational data assimilation: theoretical aspects and applications. In: Farago, I., Zlatev, Z. (eds.) Advanced Numerical Methods for Complex Environmental Models: Needs and Availability, pp. 1–16. Bentham Science Publishers (2013)
Dimitriu, G.: Determination of the optimal inputs for an identification problem using sensitivity analysis. In: Proceedings of the Second International Symposium on Sensitivity Analysis of Model Output (SAMO), Venice, 19–22 April 1998, pp. 99–102 (1998)
Dimitriu, G.: Numerical approximation of the optimal inputs for an identification problem. Intern. J. Comput. Math. 70, 197–209 (1998)
Dimitriu, G.: Convergence rate for a convection parameter identified using Tikhonov regularization. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds.) NAA 2000. LNCS, vol. 1988, pp. 246–252. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45262-1_30
Dimitriu, G.: Identifiability and Sensitivity Analyses for a Chronic Myelogenous Meukemia Model with \(T\) Cell Interaction. In: Proceedings of the IEEE International Conference ICSTCC, Sinaia, 19–21 October 2017, pp. 704–710 (2017)
Dimitriu, G., Boiculese, V.L.: Sensitivity study for a SEIT epidemic model. In: Proceedings of the 5th IEEE International Conference on e-Health and Bioengineering, Iaşi, 19–21 November 2015
Dimitriu, G., Moscalu, M., Boiculese, V.L.: A local sensitivity study for an activated \(T\)-cell model. In: Proceedings of the International Conference on e-Health and Bioengineering, Sinaia, 22–24 June 2017
Dimitriu, G., Lorenzi, T., Ştefănescu, R.: Evolutionary dynamics of cancer cell populations under immune selection pressure and optimal control of chemotherapy. Math. Model. Nat. Phenom. 9(04), 88–104 (2014)
Domijan, M., Brown, P., Shulgin, B., Rand, D.: Using PeTTSy, Perturbation Theory Toolbox for Systems. Warwick Systems Biology Centre
Georgescu, P., Hsieh, Y.-H.: Global stability for a virus dynamics model with nonlinear incidence of infection and removal. SIAM J. Appl. Math. 67(2), 337–353 (2006)
Kalaba, R., Spingarn, K.: Control, Identification, and Input Optimization. Plenum Press, New York (1982)
Kirschner, D., Panetta, J.C.: Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37, 235–252 (1998)
Li, Z.: Sensitivity analysis approaches applied to systems biology models. IET Syst. Biol. 5(6), 336–346 (2011)
Moore, H., Li, N.K.: A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol. 227, 513–523 (2004)
Pannell, D.J.: Sensitivity analysis of normative economic models: theoretical framework and practical strategies. Agric. Econ. 16(2), 139–152 (1997)
Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2004). https://doi.org/10.1007/978-1-4757-4145-2
Saltelli, A., Campolongo, F., Cariboni, J., et al.: Global Sensitivity Analysis: The Primer. Wiley-Interscience, Chichester (2008)
Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis for chemical models. Chem. Rev. 105(7), 2811–2827 (2005)
Sellier, J.M., Dimov, I.: A sensitivity study of the Wigner Monte Carlo method. J. Comput. Appl. Math. 277, 87–93 (2015)
Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)
Steel, G.G.: Growth of Kinetic Tumors. Oxford University Press, Oxford (1977)
Zhang, H., Xia, J., Georgescu, P.: Stability analyses of deterministic and stochastic SEIRI epidemic models with nonlinear incidence rates and distributed delay. Nonlinear Anal. Model. Control 22(1), 64–83 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Dimitriu, G. (2019). Global Sensitivity Analysis for a Chronic Myelogenous Leukemia Model. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science(), vol 11189. Springer, Cham. https://doi.org/10.1007/978-3-030-10692-8_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-10692-8_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-10691-1
Online ISBN: 978-3-030-10692-8
eBook Packages: Computer ScienceComputer Science (R0)