Nothing Special   »   [go: up one dir, main page]

Skip to main content

Global Sensitivity Analysis for a Chronic Myelogenous Leukemia Model

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11189))

Included in the following conference series:

  • 1077 Accesses

Abstract

The goal of this paper is to carry out a global sensitivity analysis applied to a mathematical model for chronic myelogenous leukemia (CML) dynamics with T cell interaction. The interaction mechanism between naïve T cells, effector T cells, and CML cancer cells in the body is modeled by a system of ordinary differential equations which defines rates of variation for the three cell populations. We explain how to globally analyse the sensitivity of this complex system by means of two graphical objects: the sensitivity heat map and the parameter sensitivity spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afenya, E., Calderón, C.: Diverse ideas on the growth kinetics of disseminated cancer cells. Bull. Math. Biol. 62, 527–542 (2000)

    Article  Google Scholar 

  2. Daescu, D.N., Navon, I.M.: Sensitivity analysis in nonlinear variational data assimilation: theoretical aspects and applications. In: Farago, I., Zlatev, Z. (eds.) Advanced Numerical Methods for Complex Environmental Models: Needs and Availability, pp. 1–16. Bentham Science Publishers (2013)

    Google Scholar 

  3. Dimitriu, G.: Determination of the optimal inputs for an identification problem using sensitivity analysis. In: Proceedings of the Second International Symposium on Sensitivity Analysis of Model Output (SAMO), Venice, 19–22 April 1998, pp. 99–102 (1998)

    Google Scholar 

  4. Dimitriu, G.: Numerical approximation of the optimal inputs for an identification problem. Intern. J. Comput. Math. 70, 197–209 (1998)

    Article  MathSciNet  Google Scholar 

  5. Dimitriu, G.: Convergence rate for a convection parameter identified using Tikhonov regularization. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds.) NAA 2000. LNCS, vol. 1988, pp. 246–252. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45262-1_30

    Chapter  Google Scholar 

  6. Dimitriu, G.: Identifiability and Sensitivity Analyses for a Chronic Myelogenous Meukemia Model with \(T\) Cell Interaction. In: Proceedings of the IEEE International Conference ICSTCC, Sinaia, 19–21 October 2017, pp. 704–710 (2017)

    Google Scholar 

  7. Dimitriu, G., Boiculese, V.L.: Sensitivity study for a SEIT epidemic model. In: Proceedings of the 5th IEEE International Conference on e-Health and Bioengineering, Iaşi, 19–21 November 2015

    Google Scholar 

  8. Dimitriu, G., Moscalu, M., Boiculese, V.L.: A local sensitivity study for an activated \(T\)-cell model. In: Proceedings of the International Conference on e-Health and Bioengineering, Sinaia, 22–24 June 2017

    Google Scholar 

  9. Dimitriu, G., Lorenzi, T., Ştefănescu, R.: Evolutionary dynamics of cancer cell populations under immune selection pressure and optimal control of chemotherapy. Math. Model. Nat. Phenom. 9(04), 88–104 (2014)

    Article  MathSciNet  Google Scholar 

  10. Domijan, M., Brown, P., Shulgin, B., Rand, D.: Using PeTTSy, Perturbation Theory Toolbox for Systems. Warwick Systems Biology Centre

    Google Scholar 

  11. Georgescu, P., Hsieh, Y.-H.: Global stability for a virus dynamics model with nonlinear incidence of infection and removal. SIAM J. Appl. Math. 67(2), 337–353 (2006)

    Article  MathSciNet  Google Scholar 

  12. Kalaba, R., Spingarn, K.: Control, Identification, and Input Optimization. Plenum Press, New York (1982)

    Book  Google Scholar 

  13. Kirschner, D., Panetta, J.C.: Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37, 235–252 (1998)

    Article  Google Scholar 

  14. Li, Z.: Sensitivity analysis approaches applied to systems biology models. IET Syst. Biol. 5(6), 336–346 (2011)

    Article  Google Scholar 

  15. Moore, H., Li, N.K.: A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol. 227, 513–523 (2004)

    Article  MathSciNet  Google Scholar 

  16. Pannell, D.J.: Sensitivity analysis of normative economic models: theoretical framework and practical strategies. Agric. Econ. 16(2), 139–152 (1997)

    Article  Google Scholar 

  17. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2004). https://doi.org/10.1007/978-1-4757-4145-2

    Book  MATH  Google Scholar 

  18. Saltelli, A., Campolongo, F., Cariboni, J., et al.: Global Sensitivity Analysis: The Primer. Wiley-Interscience, Chichester (2008)

    MATH  Google Scholar 

  19. Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis for chemical models. Chem. Rev. 105(7), 2811–2827 (2005)

    Article  Google Scholar 

  20. Sellier, J.M., Dimov, I.: A sensitivity study of the Wigner Monte Carlo method. J. Comput. Appl. Math. 277, 87–93 (2015)

    Article  MathSciNet  Google Scholar 

  21. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

    Article  MathSciNet  Google Scholar 

  22. Steel, G.G.: Growth of Kinetic Tumors. Oxford University Press, Oxford (1977)

    Google Scholar 

  23. Zhang, H., Xia, J., Georgescu, P.: Stability analyses of deterministic and stochastic SEIRI epidemic models with nonlinear incidence rates and distributed delay. Nonlinear Anal. Model. Control 22(1), 64–83 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Dimitriu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dimitriu, G. (2019). Global Sensitivity Analysis for a Chronic Myelogenous Leukemia Model. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science(), vol 11189. Springer, Cham. https://doi.org/10.1007/978-3-030-10692-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10692-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10691-1

  • Online ISBN: 978-3-030-10692-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics