Abstract
The increasing use of deep neural networks in a variety of applications, including some safety-critical ones, has brought renewed interest in the topic of verification of neural networks. However, verification is most meaningful when performed with high-quality formal specifications. In this paper, we survey the landscape of formal specification for deep neural networks, and discuss the opportunities and challenges for formal methods for this domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An early version of this paper appeared in [51].
References
Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.: Fairness as a program property (2016), arXiv:1610.06067
Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: Fairsquare: probabilistic verification of program fairness. In: Proceedings of the ACM on Programming Languages (2017)
Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015)
Amodei, D., Olah, C., Steinhardt, J., Christiano, P.F., Schulman, J., Mané, D.: Concrete problems in AI safety. ArXiV e-prints abs/1606.06565 (2016)
Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.: Measuring neural net robustness with constraints. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems (NIPS), vol. 29, pp. 2613–2621. MIT Press, Cambridge (2016)
Binns, R.: Fairness in machine learning: lessons from political philosophy (2017), arXiv:1712.03586
Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016)
Cai, J., Shin, R., Song, D.: Making neural programming architectures generalize via recursion. arXiv preprint arXiv:1704.06611 (2017)
Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy (SP) (2017)
Carpenter, B., et al.: Stan: a probabilistic programming language. J. Stat. Softw. 76(1), 1–32 (2017)
Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_18
Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–1210 (2010)
Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random projections and neural networks. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 3422–3426. IEEE (2013)
Dai, J., et al.: Deformable convolutional networks. In: IEEE International Conference on Computer Vision (2017)
Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical systems with machine learning components. In: NASA Formal Methods Symposium (2017)
Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical systems with machine learning components. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_26
Dreossi, T., Ghosh, S., Yue, X., Keutzer, K., Sangiovanni-Vincentelli, A., Seshia, S.A.: Counterexample-guided data augmentation. In: 27th International Joint Conference on Artificial Intelligence (IJCAI) (2018)
Dreossi, T., Jha, S., Seshia, S.A.: Semantic adversarial deep learning. In: 30th International Conference on Computer Aided Verification (CAV) (2018)
Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for deep neural networks (2017), arXiv:1709.09130
Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach to scalable verification of deep networks (2018), arXiv:1803.06567
Fawzi, A., Frossard, P.: Manitest: Are classifiers really invariant? (2017), arXiv:1507.06535
Fremont, D., Yue, X., Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Scenic: Language-based scene generation. Technical report UCB/EECS-2018-8. EECS Department, University of California, Berkeley, April 2018. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-8.html
Friedler, S.A., Scheidegger, C., Venkatasubramanian, S.: On the (im) possibility of fairness (2016), arXiv:1609.07236
Friedler, S.A., Scheidegger, C., Venkatasubramanian, S., Choudhary, S., Hamilton, E.P., Roth, D.: A comparative study of fairness-enhancing interventions in machine learning (2018), arXiv:1802.04422
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://goodfeli.github.io/dlbook/
Goodfellow, I., Lee, H., Le, Q.V., Saxe, A., Ng, A.Y.: Measuring invariances in deep networks. In: Advances in Neural Information Processing Systems (2009)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2014), arXiv:1412.6572
Goodman, N.D., Mansinghka, V.K., Roy, D., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, pp. 220–229. UAI’08 (2008)
Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In: FOSE 2014, pp. 167–181. ACM (2014)
Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint arXiv:1410.5401 (2014)
Hardt, M., Price, E., Srebro, N., et al.: Equality of opportunity in supervised learning. In: Advances in Neural Information Processing Systems (2016)
Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)
Kanbak, C., Moosavi-Dezfooli, S.M., Frossard, P.: Geometric robustness of deep networks: analysis and improvement (2017), arXiv:1711.09115
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Advances in Neural Information Processing Systems (2017)
Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE International Conference on Computer Vision (1999)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks (2017), arXiv:1706.06083
Milch, B., Marthi, B., Russell, S.: Blog: Relational modeling with unknown objects. In: ICML 2004 Workshop on Statistical Relational Learning and its Connections to Other Fields, pp. 67–73 (2004)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)
NVIDIA: Nvidia tegra drive px: Self-driving car computer (2015), http://www.nvidia.com/object/drive-px.html
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: Proceedings of the 1st IEEE European Symposium on Security and Privacy. arXiv preprint arXiv:1511.07528 (2016)
Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. arXiv preprint arXiv:1511.04508 (2015)
Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: automated whitebox testing of deep learning systems. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 1–18. ACM (2017)
Pfeffer, A.: Figaro: an object-oriented probabilistic programming language. Technical report, Charles River Analytics (2009)
Rodrigues, P., Costa, J.F., Siegelmann, H.T.: Verifying properties of neural networks. In: Mira, J., Prieto, A. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 158–165. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45720-8_19
Russell, S., et al.: Letter to the editor: research priorities for robust and beneficial artif icial intelligence: an open letter. AI Mag. 36(4), 3–4 (2015)
Sadigh, D., Kim, E.S., Coogan, S., Sastry, S., Seshia, S.A.: A learning based approach to control synthesis of markov decision processes for linear temporal logic specifications. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC), pp. 1091–1096, December 2014
Selsam, D., Liang, P., Dill, D.L.: Developing bug-free machine learning systems with formal mathematics. In: International Conference on Machine Learning, pp. 3047–3056 (2017)
Seshia, S.A.: Compositional verification without compositional specification for learning-based systems. Technical report UCB/EECS-2017-164. EECS Department, University of California, Berkeley, November 2017. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-164.html
Seshia, S.A., et al.: Formal specification for deep neural networks. Technical report UCB/EECS-2018-25. EECS Department, University of California, Berkeley, May 2018. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-25.html
Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards Verified Artificial Intelligence. ArXiv e-prints, July 2016
Shin, E.C.R., Song, D., Moazzezi, R.: Recognizing functions in binaries with neural networks. In: 24th USENIX Security Symposium (USENIX Security 15), pp. 611–626 (2015)
Szegedy, C., et al.: Intriguing properties of neural networks (2013), arXiv:1312.6199
Taylor, B.J., Darrah, M.A.: Rule extraction as a formal method for the verification and validation of neural networks. In: IEEE International Joint Conference on Neural Networks (IJCNN), vol. 5, pp. 2915–2920. IEEE (2005)
Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg (2005). https://doi.org/10.1007/11547662_24
Wen, M., Ehlers, R., Topcu, U.: Correct-by-synthesis reinforcement learning with temporal logic constraints. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4983–4990 (2015)
Weng, T.W., et al.: Evaluating the robustness of neural networks: an extreme value theory approach (2018), arXiv:1801.10578
You, S., Ding, D., Canini, K., Pfeifer, J., Gupta, M.: Deep lattice networks and partial monotonic functions. In: Advances in Neural Information Processing Systems (2017)
Acknowledgments
The work of the authors on this paper was funded in part by the NSF VeHICaL project (#1545126), NSF projects #1646208 and #1739816, NSF Graduate Research Fellowships, DARPA under agreement number FA8750-16-C0043, the DARPA Assured Autonomy program, Berkeley Deep Drive, and by Toyota under the iCyPhy center. This paper was the outcome of discussions amongst the co-authors in early 2018. It has additionally benefited from conversations with Somesh Jha, Susmit Jha, Pushmeet Kohli, Aditya Nori, Jerry Zhu, and several participants in Dagstuhl Seminar 18121.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Seshia, S.A. et al. (2018). Formal Specification for Deep Neural Networks. In: Lahiri, S., Wang, C. (eds) Automated Technology for Verification and Analysis. ATVA 2018. Lecture Notes in Computer Science(), vol 11138. Springer, Cham. https://doi.org/10.1007/978-3-030-01090-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-01090-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01089-8
Online ISBN: 978-3-030-01090-4
eBook Packages: Computer ScienceComputer Science (R0)