Abstract
Real-world decision making typically involves the three options of acceptance, rejection and non-commitment. Three-way decisions can be motivated, interpreted and implemented based on the notion of information granularity. With coarse-grained granules, it may only be possible to make a definite decision of acceptance or rejection for some objects. A lack of detailed information may make a definite decision impossible for some other objects, and hence the third non-commitment option is used. Objects with a non-commitment decision may be further investigated by using fine-grained granules. In this way, multiple levels of granularity lead naturally to sequential three-way decisions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bargiela, A., Pedrycz, W. (eds.): Human-Centric Information Processing Through Granular Modelling. Springer, Berlin (2009)
Ciucci, D., Dubois, D., Prade, H.: Oppositions in rough set theory. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 504–513. Springer, Heidelberg (2012)
Clark, P.G., Grzymala-Busse, J.W., Rzasa, W.: Generalizations of approximations. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 41–52. Springer, Heidelberg (2013)
Grzymala-Busse, J.W.: Generalized probabilistic approximations. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds.) Transactions on Rough Sets XVI. LNCS, vol. 7736, pp. 1–16. Springer, Heidelberg (2013)
Grzymala-Busse, J.W., Yao, Y.Y.: Probabilistic rule induction with the LERS data mining system. International Journal of Intelligent Systems 26, 518–539 (2011)
Jia, X.Y., Liao, W.H., Tang, Z.M., Shang, L.: Minimum cost attribute reduction in decision-theoretic rough set models. Information Sciences 219, 151–167 (2013)
Li, H.X., Zhou, X.Z., Huang, B., Liu, D.: Cost-sensitive three-way decision: A sequential strategy. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 325–337. Springer, Heidelberg (2013)
Li, H.X., Zhou, X.Z., Zhao, J.B., Huang, B.: Cost-sensitive classification based on decision-theoretic rough set model. In: Li, T.R., Nguyen, H.S., Wang, G.Y., Grzymala-Busse, J.W., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 379–388. Springer, Heidelberg (2012)
Liu, D., Li, T.R., Liang, D.C.: Three-way government decision analysis with decision-theoretic rough sets. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 20, 119–132 (2012)
Min, F., He, H.P., Qian, Y.H., Zhu, W.: Test-cost-sensitive attribute reduction. Information Sciences 181, 4928–4942 (2011)
Min, F., Liu, Q.H.: A hierarchical model for test-cost-sensitive decision systems. Information Sciences 179, 2442–2452 (2009)
Moret, B.M.E.: Decision trees and diagrams. Computing Surveys 14, 593–623 (1982)
Murthy, S.K.: Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining and Knowledge Discovery 2, 345–389 (1998)
Pauker, S.G., Kassirer, J.P.: The threshold approach to clinical decision making. The New England Journal of Medicine 302, 1109–1117 (1980)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Boston (1991)
Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of the 1998 IEEE International Conference on Fuzzy Systems, pp. 106–110 (1998)
Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. Wiley, New York (2008)
Sosnowski, L., Ślęzak, D.: How to design a network of comparators. In: BHI 2013 (2013)
Turney, P.D.: Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence Research 2, 369–409 (1995)
Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Statistics 16, 117–186 (1945)
Yao, J.T. (ed.): Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation. Information Science Reference, Herskey (2010)
Yao, J.T., Vasilakos, A.V., Pedrycz, W.: Granular computing: Perspectives and challenges. IEEE Transactions on Cybernetics (2013), doi:10.1109/TSMCC, 2236648
Yao, Y.Y.: Granular computing: Basic issues and possible solutions. In: Proceedings of the 5th Joint Conference on Information Sciences, vol. 1, pp. 186–189 (2000)
Yao, Y.Y.: Probabilistic approaches to rough sets. Expert Systems 20, 287–297 (2003)
Yao, Y.Y.: Probabilistic rough set approximations. International Journal of Approximation Reasoning 49, 255–271 (2008)
Yao, Y.Y.: Granular computing: Past, present, and future. In: Proceedings of the 2008 IEEE International Conference on Granular Computing, pp. 80–85 (2008)
Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Information Sciences 180, 341–353 (2010)
Yao, Y.Y.: The superiority of three-way decisions in probabilistic rough set models. Information Sciences 181, 1080–1096 (2011)
Yao, Y.Y.: An outline of a theory of three-way decisions. In: Yao, J., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 1–17. Springer, Heidelberg (2012)
Yao, Y.Y., Deng, X.F.: Sequential three-way decisions with probabilistic rough sets. In: Proceedings of the 10th IEEE International Conference on Cognitive Informatics and Cognitive Computing, pp. 120–125 (2011)
Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 19, 111–127 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yao, Y. (2013). Granular Computing and Sequential Three-Way Decisions. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds) Rough Sets and Knowledge Technology. RSKT 2013. Lecture Notes in Computer Science(), vol 8171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41299-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-41299-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41298-1
Online ISBN: 978-3-642-41299-8
eBook Packages: Computer ScienceComputer Science (R0)