Nothing Special   »   [go: up one dir, main page]

Skip to main content

Incremental Hyperproperty Model Checking via Games

  • Conference paper
Secure IT Systems (NordSec 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8208))

Included in the following conference series:

Abstract

Hyperproperties were proposed as an abstract formalization of security policies, but unfortunately they lack a generic verification methodology. In an attempt to remedy this, we introduced the notion of incremental hyperproperties (IHPs), motivated by the observation that they have a clearer and more feasible verification methodology. To show that verification is indeed feasible, a decidable IHP verification methodology via games is presented and evaluated. The main advantage of the approach is that the games in combination with winning strategy evidence give valuable intuition about the security of a system and are very helpful when analyzing systems w.r.t. policy specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersen, H.R.: A Polyadic Modal μ-Calculus. Technical Report 1994-145, Technical University of Denmark, DTU (1994)

    Google Scholar 

  2. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic, pp. 721–756. Elsevier (2007)

    Google Scholar 

  3. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security 18, 1157–1210 (2010)

    Google Scholar 

  4. Friedmann, O.: An exponential lower bound for the latest deterministic strategy iteration algorithms. Logical Methods in Computer Science 7(3) (2011)

    Google Scholar 

  5. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Friedmann, O., Lange, M.: A Solver for Modal Fixpoint Logics. Electron. Notes Theor. Comput. Sci. 262, 99–111 (2010)

    Article  MathSciNet  Google Scholar 

  7. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.: The Formal Specification Language mCRL2. In: Brinksma, E., Harel, D., Mader, A., Stevens, P., Wieringa, R. (eds.) Methods for Modelling Software Systems (MMOSS). Dagstuhl Seminar Proceedings, vol. 06351, Dagstuhl, Germany (2007)

    Google Scholar 

  8. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pp. 117–123. ACM/SIAM (2006)

    Google Scholar 

  9. Kalai, G.: Linear programming, the simplex algorithm and simple polytopes. Mathematical Programming 79, 217–233 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Mantel, H.: A Uniform Framework for the Formal Specification and Verification of Information Flow Security. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany (July 2003)

    Google Scholar 

  11. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. In: Proceedings of the Eighth Annual Symposium on Computational Geometry, SCG 1992, pp. 1–8. ACM, New York (1992)

    Chapter  Google Scholar 

  12. McCullough, D.: Specifications for multi-level security and a hook-up. In: Proceedings of the 1987 IEEE Symposium on Security and Privacy, pp. 161–166. IEEE Computer Society, Los Alamitos (1987)

    Google Scholar 

  13. Milushev, D.: Reasoning about Hyperproperties. PhD thesis, KU Leuven, Heverlee, Belgium (June 2013)

    Google Scholar 

  14. Milushev, D., Clarke, D.: Coinductive unwinding of security-relevant hyperproperties. In: Jøsang, A., Carlsson, B. (eds.) NordSec 2012. LNCS, vol. 7617, pp. 121–136. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Milushev, D., Clarke, D.: Towards Incrementalization of Holistic Hyperproperties. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 329–348. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Rutten, J.J.M.M.: Automata and Coinduction (An Exercise in Coalgebra). In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 369–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Stirling, C.: Modal and temporal properties of processes. Springer, New York (2001)

    Book  Google Scholar 

  19. Stevens, P., Stirling, C.: Practical model-checking using games. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 85–101. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Vöge, J., Jurdziński, M.: A Discrete Strategy Improvement Algorithm for Solving Parity Games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Zakinthinos, A., Lee, E.S.: A general theory of security properties. In: Proceedings of the IEEE Symposium on Security and Privacy, SP 1997, pp. 94–102. IEEE Computer Society, Washington, DC (1997)

    Google Scholar 

  22. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science 200(1-2), 135–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Milushev, D., Clarke, D. (2013). Incremental Hyperproperty Model Checking via Games. In: Riis Nielson, H., Gollmann, D. (eds) Secure IT Systems. NordSec 2013. Lecture Notes in Computer Science, vol 8208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41488-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41488-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41487-9

  • Online ISBN: 978-3-642-41488-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics