Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimizing ORAM and Using It Efficiently for Secure Computation

  • Conference paper
Privacy Enhancing Technologies (PETS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7981))

Included in the following conference series:

Abstract

Oblivious RAM (ORAM) allows a client to access her data on a remote server while hiding the access pattern (which locations she is accessing) from the server. Beyond its immediate utility in allowing private computation over a client’s outsourced data, ORAM also allows mutually distrustful parties to run secure-computations over their joint data with sublinear on-line complexity. In this work we revisit the tree-based ORAM of Shi et al. [20] and show how to optimize its performance as a stand-alone scheme, as well as its performance within higher level constructions. More specifically, we make several contributions:

  • We describe two optimizations to the tree-based ORAM protocol of Shi et al., one reducing the storage overhead of that protocol by an O(k) multiplicative factor, and another reducing its time complexity by an O(logk) multiplicative factor, where k is the security parameter. Our scheme also enjoys a much simpler and tighter analysis than the original protocol.

  • We describe a protocol for binary search over this ORAM construction, where the entire binary search operation is done in the same complexity as a single ORAM access (as opposed to logn accesses for the naive protocol). We then describe simple uses of this binary-search protocol for things like range queries and keyword search.

  • We show how the ORAM protocol itself and our binary-search protocol can be implemented efficiently as secure computation, using somewhat-homomorphic encryption.

Since memory accesses by address (ORAM access) or by value (binary search) are basic and prevalent operations, we believe that these optimizations can be used to significantly speed-up many higher-level protocols for secure computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.: The Probabilistic Method. John Wiley (1992)

    Google Scholar 

  2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapsvp. In: Safavi-Naini, Canetti (eds.) [19], pp. 868–886

    Google Scholar 

  3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM (2012)

    Google Scholar 

  4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully fomomorphic encryption from (standard) lwe. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. IEEE (2011)

    Google Scholar 

  5. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)

    Google Scholar 

  7. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In: Safavi-Naini, Canetti (eds.) [19], pp. 850–867

    Google Scholar 

  9. Goldreich, O.: Towards a theory of software protection and simulation by oblivious rams. In: Aho, A.V. (ed.) STOC, pp. 182–194. ACM (1987)

    Google Scholar 

  10. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

    Google Scholar 

  11. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM 43(3), 431–473 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goodrich, M.T., Mitzenmacher, M.: Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-preserving group data access via stateless oblivious RAM simulation. In: Rabani, Y. (ed.) SODA, pp. 157–167. SIAM (2012)

    Google Scholar 

  14. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis, Y.: Secure two-party computation in sublinear (amortized) time. In: CCS (2012)

    Google Scholar 

  15. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications to round-efficient secure computation. In: FOCS, pp. 294–304. IEEE Computer Society (2000)

    Google Scholar 

  16. Ostrovsky, R.: Efficient computation on oblivious rams. In: Ortiz, H. (ed.) STOC, pp. 514–523. ACM (1990)

    Google Scholar 

  17. Ostrovsky, R., Shoup, V.: Private information storage. In: STOC (1997)

    Google Scholar 

  18. Pinkas, B., Reinman, T.: Oblivious RAM Revisited. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Safavi-Naini, R., Canetti, R. (eds.): CRYPTO 2012. LNCS, vol. 7417. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  20. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3) worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D. (2013). Optimizing ORAM and Using It Efficiently for Secure Computation. In: De Cristofaro, E., Wright, M. (eds) Privacy Enhancing Technologies. PETS 2013. Lecture Notes in Computer Science, vol 7981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39077-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39077-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39076-0

  • Online ISBN: 978-3-642-39077-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics