Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unsupervised Rhyme Scheme Identification in Hip Hop Lyrics Using Hidden Markov Models

  • Conference paper
Statistical Language and Speech Processing (SLSP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7978))

Included in the following conference series:

Abstract

We attack a woefully under-explored language genre—lyrics in music—introducing a novel hidden Markov model based method for completely unsupervised identifica-tion of rhyme schemes in hip hop lyrics, which to the best of our knowledge, is the first such effort. Unlike previous approaches that use supervised or semi-supervised approaches for the task of rhyme scheme identification, our model does not assume any prior phonetic or labeling information whatsoever. Also, unlike previous work on rhyme scheme identification, we attack the difficult task of hip hop lyrics in which the data is more highly unstructured and noisy. A novel feature of our approach comes from the fact that we do not manually segment the verses in lyrics according to any pre-specified rhyme scheme, but instead use a number of hidden states of varying rhyme scheme lengths to automatically impose a soft segmentation. In spite of the level of difficulty of the challenge, we nevertheless were able to obtain a surprisingly high precision of 35.81% and recall of 57.25% on the task of identifying the rhyming words, giving a total f-score of 44.06%. These encouraging results were obtained in the face of highly noisy data, lack of clear stanza segmentation, and a very wide variety of rhyme schemes used in hip hop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mitchell, K.: Hip-hop rhyming dictionary. Alfred Publishing Company, Incorporated (2003)

    Google Scholar 

  2. Greene, E., Bodrumlu, T., Knight, K.: Automatic analysis of rhythmic poetry with applications to generation and translation. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 524–533. Association for Computational Linguistics (2010)

    Google Scholar 

  3. Reddy, S., Knight, K.: Unsupervised discovery of rhyme schemes. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers, vol. 2, pp. 77–82. Association for Computational Linguistics (2011)

    Google Scholar 

  4. Genzel, D., Uszkoreit, J., Och, F.: Poetic statistical machine translation: rhyme and meter. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 158–166. Association for Computational Linguistics (2010)

    Google Scholar 

  5. Jiang, L., Zhou, M.: Generating chinese couplets using a statistical mt approach. In: Proceedings of the 22nd International Conference on Computational Linguistics, COLING 2008, vol. 1, pp. 377–384. Association for Computational Linguistics, Stroudsburg (2008)

    Chapter  Google Scholar 

  6. Sonderegger, M.: Applications of graph theory to an english rhyming corpus. Computer Speech & Language 25(3), 655–678 (2011)

    Article  Google Scholar 

  7. Ramakrishnan A, A., Kuppan, S., Devi, S.L.: Automatic generation of tamil lyrics for melodies. In: Proceedings of the Workshop on Computational Approaches to Linguistic Creativity, pp. 40–46. Association for Computational Linguistics (2009)

    Google Scholar 

  8. Forney Jr., G.: The viterbi algorithm. Proceedings of the IEEE 61(3), 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  9. Manning, C., Schütze, H.: Foundations of statistical natural language processing. MIT press (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Addanki, K., Wu, D. (2013). Unsupervised Rhyme Scheme Identification in Hip Hop Lyrics Using Hidden Markov Models. In: Dediu, AH., Martín-Vide, C., Mitkov, R., Truthe, B. (eds) Statistical Language and Speech Processing. SLSP 2013. Lecture Notes in Computer Science(), vol 7978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39593-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39593-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39592-5

  • Online ISBN: 978-3-642-39593-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics