Nothing Special   »   [go: up one dir, main page]

Skip to main content

Knowledge Extraction from Structured Sources

  • Chapter
Search Computing

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7538))

Abstract

This chapter surveys knowledge extraction approaches from structured sources such as relational databases, XML and CSV. A general definition of knowledge extraction is devised that covers structured as well as unstructured sources. We summarize current progress on conversion of structured data to RDF and OWL. As an example, we provide a formalization and description of SparqlMap, which implements the relational database to RDF mapping language R2RML currently being standardized by the W3C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bizer, C., Cyganiak, R.: D2r server publishing relational databases on the semantic web. Poster at the 5th International Semantic Web Conference, ISWC 2006 (2006)

    Google Scholar 

  2. Bizer, C., Schultz, A.: The berlin SPARQL benchmark. Int. J. Semantic Web Inf. Syst. 5(2), 1–24 (2009)

    Article  Google Scholar 

  3. Cerbah, F.: Learning Highly Structured Semantic Repositories from Relational Databases: In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 777–781. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. Journal of Artificial Intelligence Research 24, 305–339 (2005)

    MATH  Google Scholar 

  5. Cyganiak, R.: A relational algebra for SPARQL. Technical report, Digital Media Systems Laboratory, HP Laboratories Bristol (2005)

    Google Scholar 

  6. Ghawi, R., Cullot, N.: Database-to-Ontology Mapping Generation for Semantic Interoperability. In: Third International Workshop on Database Interoperability, InterDB 2007 (2007)

    Google Scholar 

  7. Hellmann, S., Unbehauen, J., Zaveri, A., Lehmann, J., Auer, S., Tramp, S., Williams, H., Erling, O., Thibodeau Jr., T., Idehen, K., Blumauer, A., Nagy, H.: Report on knowledge extraction from structured sources. Technical Report LOD2 D3.1.1 (2011), http://lod2.eu/Deliverable/D3.1.1.html

  8. Konstantinou, N., Spanos, D.-E., Mitrou, N.: Ontology and database mapping: A survey of current implementations and future directions. J. Web Eng. 7(1), 1–24 (2008)

    Google Scholar 

  9. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. ACM Trans. Database Syst. 34(3):16:1–16:45 (2009)

    Google Scholar 

  10. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S., Sequeda, J., Ezzat, A.: A survey of current approaches for mapping of relational databases to rdf, 01 (2009)

    Google Scholar 

  11. Schmidt, M., Meier, M., Lausen, G.: Foundations of sparql query optimization. In: Proceedings of the 13th International Conference on Database Theory, ICDT 2010, pp. 4–33. ACM, New York (2010)

    Chapter  Google Scholar 

  12. Spanos, D.-E., Stavrou, P., Mitrou, N.: Bringing relational databases into the semantic web: A survey. Semantic Web 3(2), 169–209 (2012)

    Google Scholar 

  13. Völker, J., Hitzler, P., Cimiano, P.: Acquisition of OWL DL Axioms from Lexical Resources. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 670–685. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Unbehauen, J., Hellmann, S., Auer, S., Stadler, C. (2012). Knowledge Extraction from Structured Sources. In: Ceri, S., Brambilla, M. (eds) Search Computing. Lecture Notes in Computer Science, vol 7538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34213-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34213-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34212-7

  • Online ISBN: 978-3-642-34213-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics