Nothing Special   »   [go: up one dir, main page]

Skip to main content

Validation of DRAMMS among 12 Popular Methods in Cross-Subject Cardiac MRI Registration

  • Conference paper
Biomedical Image Registration (WBIR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7359))

Included in the following conference series:

Abstract

Cross-subject image registration is the building block for many cardiac studies. In the literature, it is often handled by voxel-wise registration methods. However, studies are lacking to show which methods are more accurate and stable in this context. Aiming at answering this question, this paper evaluates 12 popular registration methods and validates a recently developed method DRAMMS [16] in the context of cross-subject cardiac registration. Our dataset consists of short-axis end-diastole cardiac MR images from 24 subjects, in which non-cardiac structures are removed. Each registration method was applied to all 552 image pairs. Registration accuracy is approximated by Jaccard overlap between deformed expert annotation of source image and the corresponding expert annotation of target image. This accuracy surrogate is further correlated with deformation aggressiveness, which is reflected by minimum, maximum and range of Jacobian determinants. Our study shows that DRAMMS [16] scores high in accuracy and well balances accuracy and aggressiveness in this dataset, followed by ANTs [13], MI-FFD [14], Demons [15], and ART [12]. Our findings in cross-subject cardiac registrations echo those findings in brain image registrations [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chandrashekara, R., Rao, A., Sanchez-Ortiz, G.I., Mohiaddin, R.H., Rueckert, D.: Construction of a Statistical Model for Cardiac Motion Analysis Using Nonrigid Image Registration. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 599–610. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Isola, A., Grass, M., Niessen, W.J.: Fully automatic nonrigid registration-based local motion estimation for motion-corrected iterative cardiac CT reconstruction. Med. Phy., 1093–1109 (2010)

    Google Scholar 

  3. Perperidis, D., Mohiaddin, R., Rueckert, D.: Spatio-temporal free-form registration of cardiac MR image sequences. MedIA 9, 441–456 (2005)

    Google Scholar 

  4. Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI. TMI, 1612–1625 (2010)

    Google Scholar 

  5. Ye, D.H., Litt, H., Davatzikos, C., Pohl, K.M.: Morphological Classification: Application to Cardiac MRI of Tetralogy of Fallot. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 180–187. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Makela, T., Clarysse, P., Sipila, O., Pauna, N., Pham, Q., Katila, T., Magnin, I.E., Axis, L.L.: A review of cardiac image registration methods. TMI 21, 1011–1021 (2002)

    Google Scholar 

  7. Klein, A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46, 786–802 (2009)

    Article  Google Scholar 

  8. Murphy, K., van Ginneken, B., Reinhardt, J.M., et al.: Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge. TMI 30, 1901–1920 (2011)

    Google Scholar 

  9. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. MedIA 5(2), 143–156 (2001)

    Google Scholar 

  10. Andersson, J., Smith, S., Jenkinson, M.: FNIRT–FMRIB’s non-linear image registration tool. Human Brain Mapping (2008)

    Google Scholar 

  11. Woods, R., Grafton, S., Holmes, C., Cherry, S., Mazziotta, J.: Automated image registration: I. general methods and intrasubject intramodality validation. JCAT, 139–152 (1998)

    Google Scholar 

  12. Ardekani, B., Guckemus, S., Bachman, A., Hoptman, M.J., Wojtaszek, M., Nierenberg, J.: Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J. Neu. Methods. 142, 67–76 (2005)

    Article  Google Scholar 

  13. Avants, B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. MedIA 12, 26–41 (2008)

    Google Scholar 

  14. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. TMI 18, 712–721 (1999)

    Google Scholar 

  15. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient nonparametric image registration. NeuroImage 45(1), 61–72 (2009)

    Article  Google Scholar 

  16. Ou, Y., Sotiras, A., Paragios, N., Davatzikos, C.: DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting. MedIA, 622–639 (2011)

    Google Scholar 

  17. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. MedIA, 731–741 (2008)

    Google Scholar 

  18. Heiberg, E., Sjogren, J., Ugander, M., Carlsson, M., Engblom, H., Arheden, H.: Design and Validation of Segment - a Freely Available Software for Cardiovascular Image Analysis. BMC Medical Imaging 10, 1 (2010)

    Article  Google Scholar 

  19. Zhang, H., Wahle, A., Johnson, R., Scholz, T., Sonka, M.: 4D Cardiac MR Image Analysis: Left and Right Ventricular Morphology and Function. TMI, 350–364 (2010)

    Google Scholar 

  20. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. TMI 17(1), 87–97 (1998)

    Google Scholar 

  21. Christensen, G.E., Geng, X., Kuhl, J.G., Bruss, J., Grabowski, T.J., Pirwani, I.A., Vannier, M.W., Allen, J.S., Damasio, H.: Introduction to the Non-rigid Image Registration Evaluation Project (NIREP). In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 128–135. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ou, Y., Ye, D.H., Pohl, K.M., Davatzikos, C. (2012). Validation of DRAMMS among 12 Popular Methods in Cross-Subject Cardiac MRI Registration. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds) Biomedical Image Registration. WBIR 2012. Lecture Notes in Computer Science, vol 7359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31340-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31340-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31339-4

  • Online ISBN: 978-3-642-31340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics