Nothing Special   »   [go: up one dir, main page]

Skip to main content

Collaborative Business Intelligence

  • Chapter
Business Intelligence (eBISS 2011)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 96))

Included in the following conference series:

Summary

The idea of collaborative BI is to extend the decision-making process beyond the company boundaries thanks to cooperation and data sharing with other companies and organizations. Unfortunately, traditional BI applications are aimed at serving individual companies, and they cannot operate over networks of companies characterized by an organizational, lexical, and semantic heterogeneity. In such distributed business scenarios, to maximize the effectiveness of monitoring and decision making processes there is a need for innovative approaches and architectures. Data warehouse integration is an enabling technique for collaborative BI, and has been investigated along three main directions: warehousing approaches, where the integrated data are physically materialized, federative approaches, where the integration is virtual and based on a global schema, and peer-to-peer approaches, that do not rely on a global schema to integrate the component data warehouses. In this paper we explore and compare these three directions by surveying the available work in the literature. Then we outline a new peer-to-peer framework, called Business Intelligence Network, where peers expose querying functionalities aimed at sharing business information for the decision-making process. The main features of this framework are decentralization, scalability, and full autonomy of peers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lachlan, J.: Top 13 business intelligence trends for (2011), http://www.japan.yellowfin.bi

  2. Hoang, T.A.D., Nguyen, T.B.: State of the art and emerging rule-driven perspectives towards service-based business process interoperability. In: Proc. Int. Conf. on Comp, and Comm. Tech., Danang City, Vietnam, pp. 1–4 (2009)

    Google Scholar 

  3. Banek, M., Vrdoljak, B., Tjoa, A.M., Skocir, Z.: Automated integration of heterogeneous data warehouse schemas. IJDWM 4(4), 1–21 (2008)

    Google Scholar 

  4. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. In: Proc. ICDT, pp. 207–224 (2003)

    Google Scholar 

  5. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. PODS, pp. 233–246 (2002)

    Google Scholar 

  6. Halevy, A.Y.: Technical perspective - schema mappings: rules for mixing data. Commun. ACM 53(1) (2010)

    Google Scholar 

  7. Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The Piazza peer data management system. IEEE TKDE 16(7), 787–798 (2004)

    Google Scholar 

  8. Fuxman, A., Kolaitis, P.G., Miller, R.J., Tan, W.C.: Peer data exchange. In: Proc. PODS, pp. 160–171 (2005)

    Google Scholar 

  9. Tatarinov, I., Halevy, A.Y.: Efficient query reformulation in peer-data management systems. In: Proc. SIGMOD Conf., Paris, France, pp. 539–550 (2004)

    Google Scholar 

  10. Halevy, A.: Answering queries using views: A survey. VLDB Journal 10(4), 270–294 (2001)

    Article  Google Scholar 

  11. ten Cate, B., Kolaitis, P.G.: Structural characterizations of schema-mapping languages. Commun. ACM 53(1), 101–110 (2010)

    Article  Google Scholar 

  12. Cudré-Mauroux, P., Aberer, K., Feher, A.: Probabilistic message passing in peer data management systems. In: Proc. ICDE, Atlanta, USA, p. 41 (2006)

    Google Scholar 

  13. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.: Corpus-based schema matching. In: Proc. ICDE, Tokyo, Japan, pp. 57–68 (2005)

    Google Scholar 

  14. Mecca, G., Papotti, P., Raunich, S.: Core schema mappings. In: Proc. SIGMOD, pp. 655–668 (2009)

    Google Scholar 

  15. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans. Database Syst. 30(1), 174–210 (2005)

    Article  Google Scholar 

  16. Chang, K.C., Garcia-Molina, H.: Mind your vocabulary: Query mapping across heterogeneous information sources. In: Proc. SIGMOD, pp. 335–346 (1999)

    Google Scholar 

  17. Papakonstantinou, Y., Abiteboul, S., Garcia-Molina, H.: Object fusion in mediator systems. In: Proc. VLDB, Bombay, India, pp. 413–424 (1996)

    Google Scholar 

  18. Torlone, R.: Two approaches to the integration of heterogeneous data warehouses. Distributed and Parallel Databases 23(1), 69–97 (2008)

    Article  Google Scholar 

  19. Jiang, H., Gao, D., Li, W.S.: Exploiting correlation and parallelism of materialized-view recommendation for distributed data warehouses. In: Proc. ICDE, Istanbul, Turkey, pp. 276–285 (2007)

    Google Scholar 

  20. Berger, S., Schrefl, M.: From federated databases to a federated data warehouse system. In: Proc. HICSS, Waikoloa, Big Island of Hawaii, p. 394 (2008)

    Google Scholar 

  21. Jindal, R., Acharya, A.: Federated data warehouse architecture (2004), http://www.wipro.com/

  22. Albrecht, J., Lehner, W.: On-line analytical processing in distributed data warehouses. In: Proc. IDEAS, pp. 78–85 (1998)

    Google Scholar 

  23. Akinde, M.O., Böhlen, M.H., Johnson, T., Lakshmanan, L.V.S., Srivastava, D.: Efficient OLAP query processing in distributed data warehouses. Inf. Syst. 28(1-2), 111–135 (2003)

    Article  Google Scholar 

  24. Banek, M., Tjoa, A.M., Stolba, N.: Integrating Different Grain Levels in a Medical Data Warehouse Federation. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 185–194. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Schneider, M.: Integrated vision of federated data warehouses. In: Proc. DISWEB, Luxemburg (2006)

    Google Scholar 

  26. Berger, S., Schrefl, M.: Analysing Multi-Dimensional Data across Autonomous Data Warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 120–133. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Mangisengi, O., Huber, J., Hawel, C., Eßmayr, W.: A Framework for Supporting Interoperability of Data Warehouse Islands using XML. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 328–338. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  28. Tseng, F.S.C., Chen, C.W.: Integrating heterogeneous data warehouses using XML technologies. J. Information Science 31(3), 209–229 (2005)

    Article  Google Scholar 

  29. Bruckner, R.M., Ling, T.W., Mangisengi, O., Tjoa, A.M.: A framework for a multidimensional OLAP model using topic maps. In: Proc. WISE (2), pp. 109–118 (2001)

    Google Scholar 

  30. Zhou, S., Zhou, A., Tao, X., Hu, Y.: Hierarchically distributed data warehouse. In: Proc. HPC, Washington, DC, pp. 848–853 (2000)

    Google Scholar 

  31. Abiteboul, S.: Managing an XML Warehouse in a P2P Context. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 4–13. Springer, Heidelberg (2003)

    Google Scholar 

  32. Abiteboul, S., Manolescu, I., Preda, N.: Constructing and querying peer-to-peer warehouses of XML resources. In: Proc. SWDB, Toronto, Canada, pp. 219–225 (2004)

    Google Scholar 

  33. Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, L.V.S., Pottinger, R., Chung, Y.: Schema mapping and query translation in heterogeneous P2P XML databases. VLDB J 19(2), 231–256 (2010)

    Article  Google Scholar 

  34. Espil, M.M., Vaisman, A.A.: Aggregate queries in peer-to-peer OLAP. In: DOLAP, Washington, DC, USA, pp. 102–111 (2004)

    Google Scholar 

  35. Vaisman, A., Espil, M.M., Paradela, M.: P2P OLAP: Data model, implementation and case study. Information Systems 34(2), 231–257 (2009)

    Article  Google Scholar 

  36. Kehlenbeck, M., Breitner, M.H.: Ontology-Based Exchange and Immediate Application of Business Calculation Definitions for Online Analytical Processing. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 298–311. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  37. Kalnis, P., Ng, W.S., Ooi, B.C., Papadias, D., Tan, K.L.: An adaptive peer-to-peer network for distributed caching of OLAP results. In: Proc. SIGMOD, Madison, Wisconsin, pp. 25–36 (2002)

    Google Scholar 

  38. Dubois, D., Prade, H.: On the use of aggregation operations in information fusion processes. Fuzzy Sets and Systems 142(1) (2004)

    Google Scholar 

  39. Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: Towards OLAP query reformulation in peer-to-peer data warehousing. In: Proc. DOLAP, pp. 37–44 (2010)

    Google Scholar 

  40. Golfarelli, M., Rizzi, S.: Data Warehouse design: Modern principles and methodologies. McGraw-Hill (2009)

    Google Scholar 

  41. Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: OLAP query reformulation in peer-to-peer data warehousing. Information Systems (to appear, 2011)

    Google Scholar 

  42. Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: BIN: Business intelligence networks. In: Business Intelligence Applications and the Web: Models, Systems and Technologies. IGI Global (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rizzi, S. (2012). Collaborative Business Intelligence. In: Aufaure, MA., Zimányi, E. (eds) Business Intelligence. eBISS 2011. Lecture Notes in Business Information Processing, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27358-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27358-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27357-5

  • Online ISBN: 978-3-642-27358-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics