Summary
The idea of collaborative BI is to extend the decision-making process beyond the company boundaries thanks to cooperation and data sharing with other companies and organizations. Unfortunately, traditional BI applications are aimed at serving individual companies, and they cannot operate over networks of companies characterized by an organizational, lexical, and semantic heterogeneity. In such distributed business scenarios, to maximize the effectiveness of monitoring and decision making processes there is a need for innovative approaches and architectures. Data warehouse integration is an enabling technique for collaborative BI, and has been investigated along three main directions: warehousing approaches, where the integrated data are physically materialized, federative approaches, where the integration is virtual and based on a global schema, and peer-to-peer approaches, that do not rely on a global schema to integrate the component data warehouses. In this paper we explore and compare these three directions by surveying the available work in the literature. Then we outline a new peer-to-peer framework, called Business Intelligence Network, where peers expose querying functionalities aimed at sharing business information for the decision-making process. The main features of this framework are decentralization, scalability, and full autonomy of peers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lachlan, J.: Top 13 business intelligence trends for (2011), http://www.japan.yellowfin.bi
Hoang, T.A.D., Nguyen, T.B.: State of the art and emerging rule-driven perspectives towards service-based business process interoperability. In: Proc. Int. Conf. on Comp, and Comm. Tech., Danang City, Vietnam, pp. 1–4 (2009)
Banek, M., Vrdoljak, B., Tjoa, A.M., Skocir, Z.: Automated integration of heterogeneous data warehouse schemas. IJDWM 4(4), 1–21 (2008)
Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. In: Proc. ICDT, pp. 207–224 (2003)
Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. PODS, pp. 233–246 (2002)
Halevy, A.Y.: Technical perspective - schema mappings: rules for mixing data. Commun. ACM 53(1) (2010)
Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The Piazza peer data management system. IEEE TKDE 16(7), 787–798 (2004)
Fuxman, A., Kolaitis, P.G., Miller, R.J., Tan, W.C.: Peer data exchange. In: Proc. PODS, pp. 160–171 (2005)
Tatarinov, I., Halevy, A.Y.: Efficient query reformulation in peer-data management systems. In: Proc. SIGMOD Conf., Paris, France, pp. 539–550 (2004)
Halevy, A.: Answering queries using views: A survey. VLDB Journal 10(4), 270–294 (2001)
ten Cate, B., Kolaitis, P.G.: Structural characterizations of schema-mapping languages. Commun. ACM 53(1), 101–110 (2010)
Cudré-Mauroux, P., Aberer, K., Feher, A.: Probabilistic message passing in peer data management systems. In: Proc. ICDE, Atlanta, USA, p. 41 (2006)
Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.: Corpus-based schema matching. In: Proc. ICDE, Tokyo, Japan, pp. 57–68 (2005)
Mecca, G., Papotti, P., Raunich, S.: Core schema mappings. In: Proc. SIGMOD, pp. 655–668 (2009)
Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans. Database Syst. 30(1), 174–210 (2005)
Chang, K.C., Garcia-Molina, H.: Mind your vocabulary: Query mapping across heterogeneous information sources. In: Proc. SIGMOD, pp. 335–346 (1999)
Papakonstantinou, Y., Abiteboul, S., Garcia-Molina, H.: Object fusion in mediator systems. In: Proc. VLDB, Bombay, India, pp. 413–424 (1996)
Torlone, R.: Two approaches to the integration of heterogeneous data warehouses. Distributed and Parallel Databases 23(1), 69–97 (2008)
Jiang, H., Gao, D., Li, W.S.: Exploiting correlation and parallelism of materialized-view recommendation for distributed data warehouses. In: Proc. ICDE, Istanbul, Turkey, pp. 276–285 (2007)
Berger, S., Schrefl, M.: From federated databases to a federated data warehouse system. In: Proc. HICSS, Waikoloa, Big Island of Hawaii, p. 394 (2008)
Jindal, R., Acharya, A.: Federated data warehouse architecture (2004), http://www.wipro.com/
Albrecht, J., Lehner, W.: On-line analytical processing in distributed data warehouses. In: Proc. IDEAS, pp. 78–85 (1998)
Akinde, M.O., Böhlen, M.H., Johnson, T., Lakshmanan, L.V.S., Srivastava, D.: Efficient OLAP query processing in distributed data warehouses. Inf. Syst. 28(1-2), 111–135 (2003)
Banek, M., Tjoa, A.M., Stolba, N.: Integrating Different Grain Levels in a Medical Data Warehouse Federation. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 185–194. Springer, Heidelberg (2006)
Schneider, M.: Integrated vision of federated data warehouses. In: Proc. DISWEB, Luxemburg (2006)
Berger, S., Schrefl, M.: Analysing Multi-Dimensional Data across Autonomous Data Warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 120–133. Springer, Heidelberg (2006)
Mangisengi, O., Huber, J., Hawel, C., Eßmayr, W.: A Framework for Supporting Interoperability of Data Warehouse Islands using XML. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 328–338. Springer, Heidelberg (2001)
Tseng, F.S.C., Chen, C.W.: Integrating heterogeneous data warehouses using XML technologies. J. Information Science 31(3), 209–229 (2005)
Bruckner, R.M., Ling, T.W., Mangisengi, O., Tjoa, A.M.: A framework for a multidimensional OLAP model using topic maps. In: Proc. WISE (2), pp. 109–118 (2001)
Zhou, S., Zhou, A., Tao, X., Hu, Y.: Hierarchically distributed data warehouse. In: Proc. HPC, Washington, DC, pp. 848–853 (2000)
Abiteboul, S.: Managing an XML Warehouse in a P2P Context. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 4–13. Springer, Heidelberg (2003)
Abiteboul, S., Manolescu, I., Preda, N.: Constructing and querying peer-to-peer warehouses of XML resources. In: Proc. SWDB, Toronto, Canada, pp. 219–225 (2004)
Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, L.V.S., Pottinger, R., Chung, Y.: Schema mapping and query translation in heterogeneous P2P XML databases. VLDB J 19(2), 231–256 (2010)
Espil, M.M., Vaisman, A.A.: Aggregate queries in peer-to-peer OLAP. In: DOLAP, Washington, DC, USA, pp. 102–111 (2004)
Vaisman, A., Espil, M.M., Paradela, M.: P2P OLAP: Data model, implementation and case study. Information Systems 34(2), 231–257 (2009)
Kehlenbeck, M., Breitner, M.H.: Ontology-Based Exchange and Immediate Application of Business Calculation Definitions for Online Analytical Processing. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 298–311. Springer, Heidelberg (2009)
Kalnis, P., Ng, W.S., Ooi, B.C., Papadias, D., Tan, K.L.: An adaptive peer-to-peer network for distributed caching of OLAP results. In: Proc. SIGMOD, Madison, Wisconsin, pp. 25–36 (2002)
Dubois, D., Prade, H.: On the use of aggregation operations in information fusion processes. Fuzzy Sets and Systems 142(1) (2004)
Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: Towards OLAP query reformulation in peer-to-peer data warehousing. In: Proc. DOLAP, pp. 37–44 (2010)
Golfarelli, M., Rizzi, S.: Data Warehouse design: Modern principles and methodologies. McGraw-Hill (2009)
Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: OLAP query reformulation in peer-to-peer data warehousing. Information Systems (to appear, 2011)
Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: BIN: Business intelligence networks. In: Business Intelligence Applications and the Web: Models, Systems and Technologies. IGI Global (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Rizzi, S. (2012). Collaborative Business Intelligence. In: Aufaure, MA., Zimányi, E. (eds) Business Intelligence. eBISS 2011. Lecture Notes in Business Information Processing, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27358-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-27358-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27357-5
Online ISBN: 978-3-642-27358-2
eBook Packages: Computer ScienceComputer Science (R0)