Nothing Special   »   [go: up one dir, main page]

Skip to main content

Isomorphism of (mis)Labeled Graphs

  • Conference paper
Algorithms – ESA 2011 (ESA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Included in the following conference series:

Abstract

For similarity measures of labeled and unlabeled graphs, we study the complexity of the graph isomorphism problem for pairs of input graphs which are close with respect to the measure. More precisely, we show that for every fixed integer k we can decide in quadratic time whether a labeled graph G can be obtained from another labeled graph H by relabeling at most k vertices. We extend the algorithm solving this problem to an algorithm determining the number ℓ of vertices that must be deleted and the number k of vertices that must be relabeled in order to make the graphs equivalent. The algorithm is fixed-parameter tractable in k + ℓ.

Contrasting these tractability results, we also show that for those similarity measures that change only by finite amount d whenever one edge is relocated, the problem of deciding isomorphism of input pairs of bounded distance d is equivalent to solving graph isomorphism in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borgs, C., Chayes, J.T., Lovász, L., Sós, V.T., Szegedy, B., Vesztergombi, K.: Graph limits and parameter testing. In: STOC 2006, New York, pp. 261–270 (2006)

    Google Scholar 

  2. Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)

    Article  Google Scholar 

  3. Bunke, H.: Error correcting graph matching: on the influence of the underlying cost function. Pattern Analysis and Machine Intelligence 21(9), 917–922 (1999)

    Article  Google Scholar 

  4. Chartrand, G., Saba, F., Zou, H.-B.: Edge rotations and distance between graphs. Časopis Pěst. Mat. 110(1), 87–91 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Cvetković, D.M., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  7. Dénes, J.: The representation of a permutation as the product of a minimal number of transpositions, and its connection with the theory of graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 4, 63–71 (1959)

    MathSciNet  MATH  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, London (1998)

    MATH  Google Scholar 

  9. Evdokimov, S., Ponomarenko, I.N.: Isomorphism of coloured graphs with slowly increasing multiplicity of Jordan blocks. Combinatorica 19(3), 321–333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Filotti, I.S., Mayer, J.N.: A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus. In: STOC 1980, pp. 236–243 (1980)

    Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, London (2006)

    MATH  Google Scholar 

  12. Furst, M.L., Hopcroft, J.E., Luks, E.M.: Polynomial-time algorithms for permutation groups. In: FOCS 1980, Washington, USA, pp. 36–41 (1980)

    Google Scholar 

  13. Johnson, M.: An ordering of some metrics defined on the space of graphs. Czechoslovak Math. J. 37(112), 75–85 (1987)

    Google Scholar 

  14. Köbler, J., Schöning, U., Torán, J.: The graph isomorphism problem: its structural complexity. Birkhäuser Verlag, Basel (1993)

    Book  MATH  Google Scholar 

  15. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences 25(1), 42–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marcu, D.: Note on the edge rotation distance between trees. International Journal of Computer Mathematics 30(1), 13–15 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miller, G.L.: Isomorphism testing for graphs of bounded genus. In: STOC 1980, New York, pp. 225–235 (1980)

    Google Scholar 

  19. Schweitzer, P.: Problems of unknown complexity: graph isomorphism and Ramsey theoretic numbers. Phd thesis, Universität des Saarlandes, Saarbrücken (2009)

    Google Scholar 

  20. Wilson, R.C., Zhu, P.: A study of graph spectra for comparing graphs and trees. Pattern Recognition 41(9), 2833–2841 (2008)

    Article  MATH  Google Scholar 

  21. Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. Algorithmica 24(2), 105–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zelinka, B.: On a certain distance between isomorphism classes of graphs. Časopis Pěst. Mat. 100(4), 371–373 (1975)

    MathSciNet  MATH  Google Scholar 

  23. Zelinka, B.: Contraction distance between isomorphism classes of graphs. Časopis Pěst. Mat. 115(2), 211–216 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: Graph isomorphism problem. Journal of Mathematical Sciences 29(4), 1426–1481 (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schweitzer, P. (2011). Isomorphism of (mis)Labeled Graphs. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics