Abstract
Recommendation algorithms and multi-class classifiers can support users of social bookmarking systems in assigning tags to their bookmarks. Content based recommenders are the usual approach for facing the cold start problem, i.e., when a bookmark is uploaded for the first time and no information from other users can be exploited. In this paper, we evaluate several recommendation algorithms in a cold-start scenario on a large real-world dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basile, P., Gendarmi, D., Lanubile, F., Semeraro, G.: Recommending smart tags in a social bookmarking system. In: Bridging the Gap between Semantic Web and Web 2.0 (SemNet 2007), pp. 22–29 (2007)
Benz, D., Tso, K., Schmidt-Thieme, L.: Automatic bookmark classification: A collaborative approach. In: Proceedings of the Second Workshop on Innovations in Web Infrastructure (IWI 2006), Edinburgh, Scotland (2006)
Burke, R.: Hybrid recommender systems, survey and experiments. User Modeling and User Adapted Interaction 12(4), 331–370 (2002)
Byde, A., Wan, H., Cayzer, S.: Personalized tag recommendations via tagging and content-based similarity metrics. In: Proceedings of the International Conference on Weblogs and Social Media, Boulder, Colorado, USA (March 2007)
Cattuto, C., Loreto, V., Pietronero, L.: Collaborative tagging and semiotic dynamics (May 2006), http://arxiv.org/abs/cs/0605015
Cavnar, W.B., Trenkle, J.M.: N-gram-based text categorization. In: Proceedings of SDAIR 1994, 3rd Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, US, pp. 161–175 (1994)
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags over time. In: Proc. of the 15th International WWW Conference, Edinburgh, Scotland (2006)
Firan, C.S., Nejdl, W., Paiu, R.: The benefit of using tag-based profiles. In: 5th Latin American Web Congress, Santiago de Chile, 31 October - 2 November (2007)
Halpin, H., Robu, V., Shepard, H.: The dynamics and semantics of collaborative tagging. In: Proceedings of the 1st Semantic Authoring and Annotation Workshop (SAAW 2006), Atlanta, Georgia, USA (2006)
Hammond, T., Hannay, T., Lund, B., Scott, J.: Social Bookmarking Tools (I): A General Review. D-Lib Magazine 11(4) (April 2005)
Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folksonomies: Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)
Illig, J.: Machine learnability analysis of textclassifications in a social bookmarking folksonomy. Bachelor thesis. University of Kassel, Kassel (2008)
Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in social bookmarking systems. AI Communications 21(4), 231–247 (2008)
Kim, S., Rim, H., Yook, D., Lim, H.: Effective methods for improving naive bayes text classifiers (2002)
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)
Li, S., Momoi, K.: A composite approach to language/encoding detection. In: 19th International Unicode Conference, San Jose, California, USA (2001)
Lund, B., Hammond, T., Flack, M., Hannay, T.: Social Bookmarking Tools (II): A Case Study - Connotea. D-Lib Magazine 11(4) (April 2005)
Mathes, A.: Folksonomies – Cooperative Classification and Communication Through Shared Metadata (December 2004), http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)
Mishne, G.: Autotag: a collaborative approach to automated tag assignment for weblog posts. In: WWW 2006: Proceedings of the 15th International Conference on World Wide Web, pp. 953–954. ACM Press, New York (2006)
Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-based approach - a case study in intensive care monitoring. In: Bratko, I., Dzeroski, S. (eds.) Proceedings of the 16th International Conference on Machine Learning (ICML 1999), Bled, Slovenia, June 27-30, pp. 268–277. Morgan-Kaufman Publishers, San Francisco (1999)
Schmitz, C., Hotho, A., Jäschke, R., Stumme, G.: Mining association rules in folksonomies. In: Batagelj, V., Bock, H.-H., Ferligoj, A., Žiberna, A. (eds.) Data Science and Classification: Proc. of the 10th IFCS Conf., Studies in Classification, Data Analysis, and Knowledge Organization, pp. 261–270. Springer, Heidelberg (2006)
Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)
Song, Y., Zhang, L., Lee Giles, C.: A sparse gaussian processes classification framework for fast tag suggestions. In: CIKM 2008: Proceeding of the 17th ACM Conference on Information and Knowledge Mining, pp. 93–102. ACM, New York (2008)
Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W.-C., Lee Giles, C.: Real-time automatic tag recommendation. In: SIGIR 2008: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 515–522. ACM, New York (2008)
Tso-Sutter, K., Marinho, L.B., Schmidt-Thieme, L.: Tag-aware recommender systems by fusion of collaborative filtering algorithms. In: Proceedings of 23rd Annual ACM Symposium on Applied Computing (SAC 2008), Edinburgh, Scotland (2007)
Xu, Y., Zhang, L., Liu, W.: Cubic analysis of social bookmarking for personalized recommendation. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 733–738. Springer, Heidelberg (2006)
Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: Collaborative tag suggestions. In: Proceedings of the Collaborative Web Tagging Workshop at the WWW 2006, Edinburgh, Scotland (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Illig, J., Hotho, A., Jäschke, R., Stumme, G. (2011). A Comparison of Content-Based Tag Recommendations in Folksonomy Systems. In: Wolff, K.E., Palchunov, D.E., Zagoruiko, N.G., Andelfinger, U. (eds) Knowledge Processing and Data Analysis. KPP KONT 2007 2007. Lecture Notes in Computer Science(), vol 6581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22140-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-22140-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22139-2
Online ISBN: 978-3-642-22140-8
eBook Packages: Computer ScienceComputer Science (R0)