Abstract
The open problem of the generalization of mathematical morphology to vector images is handled in this paper using the paradigm of depth functions. Statistical depth functions provide from the “deepest” point a “center-outward ordering” of a multidimensional data distribution and they can be therefore used to construct morphological operators. The fundamental assumption of this data-driven approach is the existence of “background/foreground” image representation. Examples in real color and hyperspectral images illustrate the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Al-Otum, H.M.: Morphological operators for color image processing based on mahalanobis distance. Optical Engineering 42(9), 2595–2606 (2003)
Angulo, J.: Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis. Comput. Vis. Image Underst. 107(1-2), 56–73 (2007)
Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognition 40(11), 2914–2929 (2007)
Barnett, V.: The ordering of multivariate data (with discussion). Journal of the Royal Statistical Society Series A 139(3), 318–354 (1976)
Cuesta-Albertos, J.A., Nieto-Reyes, A.: The random tukey depth. Computational Statistics and Data Analysis 52, 4979–4988 (2008)
Donoho, D.L., Gasko, M.: Breakdown properties of location estimates based on halfspace depth and projected outlyingness. The Annals of Statistics 20(4), 1803–1827 (1992)
Garcia, A., Vachier, C., Vallée, J.P.: Multivariate mathematical morphology and bayesian classifier application to colour and medical images. In: Image Processing: Algorithms and Systems, p. 681203. SPIE, San Jose (2008)
Goutsias, J., Heijmans, H.J.A.M., Sivakumar, K.: Morphological operators for image sequences. Comput. Vis. Image Underst. 62(3), 326–346 (1995)
Lezoray, O., Elmoataz, A., Meurie, C.: Mathematical morphology in any color space. In: ICIAPW 2007: Proceedings of the 14th International Conference of Image Analysis and Processing - Workshops, pp. 183–187 (2007)
Liu, R.Y.: On a notion of data depth based on random simplices. Annals of Statistics 18, 405–414 (1990)
Mosler, K., Hoberg, R.: Data analysis and classification with the zonoid depth. DIMACS Series, pp. 49–59 (2006)
Najman, L., Talbot, H.: Mathematical morphology: from theory to applications. ISTE-Wiley (June 2010)
Pitas, I., Tsakalides, P.: Multivariate ordering in color image processing. IEEE Transactions on Circuits Systems Video Technology 1(3), 247–256 (1991)
Plaza, A., Martinez, P., Perez, R., Plaza, J.: A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles. Pattern Recognition 37(6), 1097–1116 (2004)
Serfling, R.: A depth function and a scale curve based on spatial quantiles. Statistical Data Analysis Based on the L 1 norm and Related Methods, 25–38 (2002)
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando (1983)
Serra, J.: The “False colour” problem. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 13–23. Springer, Heidelberg (2009)
Soille, P.: Morphological Image Analysis. Springer, Heidelberg (1999), http://web.ukonline.co.uk/soille
Tukey, J.W.: Mathematics and picturing data. In: Proceeding of the International Congress on Mathematics, pp. 523–531 (1975)
Velasco-Forero, S., Angulo, J.: Hit-or-miss transform in multivariate images. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part I. LNCS, vol. 6474, pp. 452–462. Springer, Heidelberg (2010)
Velasco, S., Angulo, J.: Morphological processing of hyperspectral images using kriging-based supervised ordering. In: 17th IEEE International Conference on Image Processing (ICIP), pp. 1409–1412 (2010)
Vardi, Y., Zhang, C.H.: The multivariate l 1 median and associated data depth. Proceeding of the Nacional Academy of Sciences 97(4), 1423–1436 (2000)
Zuo, Y., Serfling, R.: General notions of statistical depth function. Annals of Statistics 28(2), 461–482 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Velasco-Forero, S., Angulo, J. (2011). Mathematical Morphology for Vector Images Using Statistical Depth. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-21569-8_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21568-1
Online ISBN: 978-3-642-21569-8
eBook Packages: Computer ScienceComputer Science (R0)