Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximability of Symmetric Bimatrix Games and Related Experiments

  • Conference paper
Experimental Algorithms (SEA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6630))

Included in the following conference series:

Abstract

In this work we present a simple quadratic formulation for the problem of computing Nash equilibria in symmetric bimatrix games, inspired by the well-known formulation of Mangasarian and Stone [26]. We exploit our formulation to shed light to the approximability of NE points. First we observe that any KKT point of this formulation (and indeed, any quadratic program) is also a stationary point, and vice versa. We then prove that any KKT point of the proposed formulation (is not necessarily itself, but) indicates a \(\left(<\frac{1}{3}\right)-\)NE point, which is polynomially tractable, given as input the KKT point. We continue by proposing an algorithm for constructing an \(\left(\frac{1}{3}+\delta\right)-\)NE point for any δ > 0, in time polynomial in the size of the game and quasi-linear in \(\frac{1}{\delta}\), exploiting Ye’s algorithm for approximating KKT points of QPs [34]. This is (to our knowledge) the first polynomial time algorithm that constructs ε −NE points for symmetric bimatrix games for any ε close to \(\frac{1}{3}\). We extend our main result to (asymmetric) win lose games, as well as to games with maximum aggregate payoff either at most 1, or at least \(\frac{5}{3}\). To achieve this, we use a generalization of the Brown & von Neumann symmetrization technique [6] to the case of non-zero-sum games, which we prove that is approximation preserving. Finally, we present our experimental analysis of the proposed approximation and other quite interesting approximations for NE points in symmetric bimatrix games.

This work has been partially supported by the ICT Programme of the EU under contract number 258885 (SPITFIRE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Addario-Berry, L., Olver, N., Vetta, A.: A polynomial time algorithm for finding nash equilibria in planar win-lose games. Journal of Graph Algorithms and Applications 11(1), 309–319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adsul, B., Garg, J., Mehta, R., Sohoni, M.: Rank-1 bimatrix games: A homeomorphism and a polynomial time algorithm. In: Proc. of 43rd ACM Symp. on Th. of Comp., STOC 2011 (2011)

    Google Scholar 

  3. Althöfer, I.: On sparse approximations to randomized strategies and convex combinations. Linear Algebra and Applications 199, 339–355 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (2003)

    MATH  Google Scholar 

  5. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate nash equilibria in bimatrix games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 17–29. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Brown, G.W., von Neumann, J.: Solutions of games by differential equations. Annals of Mathematical Studies 24, 73–79 (1950)

    MathSciNet  Google Scholar 

  7. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Mathematical Programming 120, 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Deng, X.: Settling the complexity of 2-player nash equilibrium. In: Proc. of 47th IEEE Symp. on Found. of Comp. Sci. (FOCS 2006), pp. 261–272. IEEE Comp. Soc. Press, Los Alamitos (2006)

    Google Scholar 

  9. Chen, X., Deng, X., Teng, S.H.: Computing nash equilibria: Approximation and smoothed complexity. In: Proc. of 47th IEEE Symp. on Found. of Comp. Sci. (FOCS 2006), pp. 603–612. IEEE Comp. Soc. Press, Los Alamitos (2006)

    Google Scholar 

  10. Codenotti, B., Leoncini, M., Resta, G.: Efficient computation of nash equilibria for very sparse win-lose bimatrix games. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 232–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Conitzer, V., Sandholm, T.: Complexity results about nash equilibria. In: Proc. of 18th Int. Joint Conf. on Art. Intel. (IJCAI 2003), pp. 765–771. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  12. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate nash equilibria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 297–306. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate nash equilibrium. In: Proc. of 8th ACM Conf. on El. Comm. (EC 2007), pp. 355–358 (2007)

    Google Scholar 

  15. Daskalakis, C., Papadimitriou, C.H.: Three player games are hard. Technical Report TR05-139, Electr. Coll. on Comp. Compl., ECCC (2005)

    Google Scholar 

  16. Gale, D., Kuhn, H.W., Tucker, A.W.: On symmetric games. Contributions to Game Theory 1, 81–87 (1950)

    MathSciNet  MATH  Google Scholar 

  17. Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games & Econ. Behavior 1, 80–93 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21 (February 2011), http://cvxr.com/cvx

  19. Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bimatrix games. Economic Theory 42, 157–173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kontogiannis, S., Panagopoulou, P., Spirakis, P.: Polynomial algorithms for approximating nash equilibria of bimatrix games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 286–296. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Kontogiannis, S., Spirakis, P.: Exploiting concavity in bimatrix games: New polynomially tractable subclasses. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010. LNCS, vol. 6302. Springer, Heidelberg (2010), http://www.cs.uoi.gr/~kontog/pubs/approx10paper-full.pdf

    Google Scholar 

  22. Kontogiannis, S., Spirakis, P.: Well supported approximate equilibria in bimatrix games. ALGORITHMICA 57, 653–667 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee, G.M., Tam, N.N., Yen, N.D.: Quadratic Programming and Affine Variational Inequalities – A Qualitative Study. Nonconvex Optimization and its Applications. Springer, Heidelberg (2005)

    Google Scholar 

  24. Lemke, C.E., Howson Jr., J.T.: Equilibrium points of bimatrix games. Journal of the Society for Industrial and Applied Mathematics 12, 413–423 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proc. of 4th ACM Conf. on El. Comm (EC 2003), pp. 36–41. ACM, New York (2003)

    Google Scholar 

  26. Mangasarian, O.L., Stone, H.: Two-person nonzero-sum games and quadratic programming. Journal of Mathematical Analysis and Applications 9(3), 348–355 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morgenstern, O., von Neumann, J.: The Theory of Games and Economic Behavior. Princeton University Press, Princeton (1947)

    MATH  Google Scholar 

  28. Moulin, H., Vial, J.P.: Strategically zero-sum games: The class of games whose completely mixed equilibria cannot be improved upon. Int. Journal of Game Theory 7(3/4), 201–221 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Savani, R., von Stengel, B.: Exponentially many steps for finding a nash equilibrium in a bimatrix game. In: Proc. of 45th IEEE Symp. on Found. of Comp. Sci. (FOCS 2004), pp. 258–267 (2004)

    Google Scholar 

  30. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  31. Sturm, J.F.: Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones. Optimization Methods and Software 11-12, 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tsaknakis, H., Spirakis, P.: An optimization approach for approximate nash equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 42–56. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Tsaknakis, H., Spirakis, P.: A graph spectral approach for computing approximate nash equilibria. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 378–390. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  34. Ye, Y.: On the complexity of approximating a kkt point of quadratic programming. Mathematical Programming 80, 195–211 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kontogiannis, S., Spirakis, P. (2011). Approximability of Symmetric Bimatrix Games and Related Experiments. In: Pardalos, P.M., Rebennack, S. (eds) Experimental Algorithms. SEA 2011. Lecture Notes in Computer Science, vol 6630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20662-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20662-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20661-0

  • Online ISBN: 978-3-642-20662-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics