Abstract
Most of elderly people suffer physical degeneration that makes them particularly vulnerable to falls. Falls cause injuries, time of hospitalization, re-habilitation which is particularly difficult for the elderly and disabled. This paper presents a new system with advanced capacities for learning and adaptation specifically designed to detect falls through mobile devices. The systems proposes a new adaptive algorithm able to learn, classify and identify falls from data obtained by mobile devices and user profile. The system is based on machine learning and data classification using decision trees. The main contribution of the proposed system is the use of posturographic data and medical patterns as a knowledge base, which notably improves the classification process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, D., Luke, R.H., et al.: others Modeling Human Activity From Voxel Person Using Fuzzy Logic. IEEE Transactions on Fuzzy Systems 17(1) (2009)
Benocci, M., Tacconi, C., et al.: Accelerometer-based fall detection using optimized Zig Bee data streaming. Microelectronics Journal 41(11), 703–710 (2010)
Bourke, A.K., van de Ven, P., et al.: Evaluation of waist-mounted triaxial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities. Journal of Biomechanics 43(15), 3051–3057 (2010)
Carro García, T., Alfaro Hacha, A.: Caídas enel anciano. Residentes de Geriatria Hospital Virgen de Valle. Toledo
Liu, C.-L., Lee, C.-H., Lin, P.-M.: A fall detection system using k-nearest neighbor classifier. Expert Systems with Applications 37(10), 7174–7181 (2010)
Gama, Z., Gómez, A., Sobral, M.: Epidemiología de caídas de ancianos en España: Una revisión sistemática. Rev. Esp. Salud Pública 82(1), 43–55 (2007) (online)
Lázaro-del Nogal, M., Latorre-González, G., González-Ramírez, A., Ribera-Casado, J.M.: Características de las caídas de causa neurológica en ancianos
Londei, S.T., Rousseau, J., et al.: An intelligent videomonitoring system for fall detection at home: perceptions of elderly people. Journal of Telemedicine and Telecare 15(8), 383–390 (2009)
Lustrek, M., Kaluza, B.: Fall detection and activity recognition with machine learning. Slovenian Society Informatika (2009); report of May 2009
Nyan, M.N., Tay, F.E.H., Murugasu, E.: A wearable system for preimpact fall detection. Journal of Biomechanics 41(16), 3475–3481 (2008)
Raîche, M., Hébert, R., et al.: Screening older adults at risk of falling with the Tinetti balance scale. The Lancet 356(9254), 1001–1002 (2000)
de Jaime, C.R.E., et al.: Experiencia en la evaluación del riesgo de caídas. Comparación entre el test de Tinetti y el Timed Up & Go (Experience in evaluation of falling risk. Tinetti and Timed-Up tests comparision). Revista Española de Geriatría y Gerontología 42(6), 319–327 (2007)
Rougier, C., Meunier, J.: Demo: Fall Detection Using 3D Head Trajectory Extracted From a Single Camera Video Sequence. Journal of Telemedicine and Telecare 11(4) (2005)
Suelves, J.M., Martínez, V., Medina, A.: Lesiones por caídas y factores asociados en personas mayores de Cataluña, España. Rev. Panam Salud. Publica. 27(1), 37–42 (2010)
Visser, J.E., Carpenter, M.G., et al.: The clinical utility of posturography. Clinical Neurophysiology 119(11), 2424–2436 (2008)
Whitney, S.L., Marchetti, G.F., Schade, A.I.: The Relationship Between Falls History and Computerized Dynamic Posturography in Persons With Balance and Vestibular Disorders. Archives of Physical Medicine and Rehabilitation 87(3), 402–407 (2006)
Zigel, Y., Litvak, D., Gannot, I.: A Method for Automatic Fall Detection of Elderly People Using Floor Vibrations and Sound—Proof of Concept on Human Mimicking Doll Falls. IEEE Transactions on Biomedical Engineering 56(12), 2858–2867 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sánchez, M. et al. (2011). A New Adaptive Algorithm for Detecting Falls through Mobile Devices. In: Corchado, J.M., Pérez, J.B., Hallenborg, K., Golinska, P., Corchuelo, R. (eds) Trends in Practical Applications of Agents and Multiagent Systems. Advances in Intelligent and Soft Computing, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19931-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-19931-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19930-1
Online ISBN: 978-3-642-19931-8
eBook Packages: EngineeringEngineering (R0)