Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Adaptive Algorithm for Detecting Falls through Mobile Devices

  • Conference paper
Trends in Practical Applications of Agents and Multiagent Systems

Abstract

Most of elderly people suffer physical degeneration that makes them particularly vulnerable to falls. Falls cause injuries, time of hospitalization, re-habilitation which is particularly difficult for the elderly and disabled. This paper presents a new system with advanced capacities for learning and adaptation specifically designed to detect falls through mobile devices. The systems proposes a new adaptive algorithm able to learn, classify and identify falls from data obtained by mobile devices and user profile. The system is based on machine learning and data classification using decision trees. The main contribution of the proposed system is the use of posturographic data and medical patterns as a knowledge base, which notably improves the classification process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, D., Luke, R.H., et al.: others Modeling Human Activity From Voxel Person Using Fuzzy Logic. IEEE Transactions on Fuzzy Systems 17(1) (2009)

    Article  Google Scholar 

  2. Benocci, M., Tacconi, C., et al.: Accelerometer-based fall detection using optimized Zig Bee data streaming. Microelectronics Journal 41(11), 703–710 (2010)

    Article  Google Scholar 

  3. Bourke, A.K., van de Ven, P., et al.: Evaluation of waist-mounted triaxial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities. Journal of Biomechanics 43(15), 3051–3057 (2010)

    Article  Google Scholar 

  4. Carro García, T., Alfaro Hacha, A.: Caídas enel anciano. Residentes de Geriatria Hospital Virgen de Valle. Toledo

    Google Scholar 

  5. Liu, C.-L., Lee, C.-H., Lin, P.-M.: A fall detection system using k-nearest neighbor classifier. Expert Systems with Applications 37(10), 7174–7181 (2010)

    Article  Google Scholar 

  6. Gama, Z., Gómez, A., Sobral, M.: Epidemiología de caídas de ancianos en España: Una revisión sistemática. Rev. Esp. Salud Pública 82(1), 43–55 (2007) (online)

    Google Scholar 

  7. Lázaro-del Nogal, M., Latorre-González, G., González-Ramírez, A., Ribera-Casado, J.M.: Características de las caídas de causa neurológica en ancianos

    Google Scholar 

  8. Londei, S.T., Rousseau, J., et al.: An intelligent videomonitoring system for fall detection at home: perceptions of elderly people. Journal of Telemedicine and Telecare 15(8), 383–390 (2009)

    Article  Google Scholar 

  9. Lustrek, M., Kaluza, B.: Fall detection and activity recognition with machine learning. Slovenian Society Informatika (2009); report of May 2009

    Google Scholar 

  10. Nyan, M.N., Tay, F.E.H., Murugasu, E.: A wearable system for preimpact fall detection. Journal of Biomechanics 41(16), 3475–3481 (2008)

    Article  Google Scholar 

  11. Raîche, M., Hébert, R., et al.: Screening older adults at risk of falling with the Tinetti balance scale. The Lancet 356(9254), 1001–1002 (2000)

    Article  Google Scholar 

  12. de Jaime, C.R.E., et al.: Experiencia en la evaluación del riesgo de caídas. Comparación entre el test de Tinetti y el Timed Up & Go (Experience in evaluation of falling risk. Tinetti and Timed-Up tests comparision). Revista Española de Geriatría y Gerontología 42(6), 319–327 (2007)

    Article  Google Scholar 

  13. Rougier, C., Meunier, J.: Demo: Fall Detection Using 3D Head Trajectory Extracted From a Single Camera Video Sequence. Journal of Telemedicine and Telecare 11(4) (2005)

    Google Scholar 

  14. Suelves, J.M., Martínez, V., Medina, A.: Lesiones por caídas y factores asociados en personas mayores de Cataluña, España. Rev. Panam Salud. Publica. 27(1), 37–42 (2010)

    Article  Google Scholar 

  15. Visser, J.E., Carpenter, M.G., et al.: The clinical utility of posturography. Clinical Neurophysiology 119(11), 2424–2436 (2008)

    Article  Google Scholar 

  16. Whitney, S.L., Marchetti, G.F., Schade, A.I.: The Relationship Between Falls History and Computerized Dynamic Posturography in Persons With Balance and Vestibular Disorders. Archives of Physical Medicine and Rehabilitation 87(3), 402–407 (2006)

    Article  Google Scholar 

  17. Zigel, Y., Litvak, D., Gannot, I.: A Method for Automatic Fall Detection of Elderly People Using Floor Vibrations and Sound—Proof of Concept on Human Mimicking Doll Falls. IEEE Transactions on Biomedical Engineering 56(12), 2858–2867 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez, M. et al. (2011). A New Adaptive Algorithm for Detecting Falls through Mobile Devices. In: Corchado, J.M., Pérez, J.B., Hallenborg, K., Golinska, P., Corchuelo, R. (eds) Trends in Practical Applications of Agents and Multiagent Systems. Advances in Intelligent and Soft Computing, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19931-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19931-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19930-1

  • Online ISBN: 978-3-642-19931-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics