Nothing Special   »   [go: up one dir, main page]

Skip to main content

Relentful Strategic Reasoning in Alternating-Time Temporal Logic

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6355))

Abstract

Temporal logics are a well investigated formalism for the specification, verification, and synthesis of reactive systems. Within this family, alternating temporal logic, Atl *, has been introduced as a useful generalization of classical linear- and branching-time temporal logics by allowing temporal operators to be indexed by coalitions of agents. Classically, temporal logics are memoryless: once a path in the computation tree is quantified at a given node, the computation that has led to that node is forgotten. Recently, mCtl * has been defined as a memoryful variant of Ctl *, where path quantification is memoryful. In the context of multi-agent planning, memoryful quantification enables agents to “relent” and change their goals and strategies depending on their past history. In this paper, we define mAtl *, a memoryful extension of Atl *, in which a formula is satisfied at a certain node of a path by taking into account both the future and the past. We study the expressive power of mAtl *, its succinctness, as well as related decision problems. We also investigate the relationship between memoryful quantification and past modalities and show their equivalence. We show that both the memoryful and the past extensions come without any computational price; indeed, we prove that both the satisfiability and the model-checking problems are 2ExpTime-Complete, as they are for Atl *.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-Time Temporal Logic. JACM 49(5), 672–713 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Daniele, M., Traverso, P., Vardi, M.Y.: Strong Cyclic Planning Revisited. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 35–48. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” Revisited: On Branching Versus Linear Time. JACM 33(1), 151–178 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  5. Gabbay, D.M.: The Declarative Past and Imperative Future: Executable Temporal Logic for Interactive Systems. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 409–448. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  6. Jamroga, W.: Strategic Planning Through Model Checking of ATL Formulae. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 879–884. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Janin, D., Walukiewicz, I.: Automata for the Modal μ-Calculus and Related Results. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  8. Kupferman, O., Pnueli, A.: Once and For All. In: LICS 1995, pp. 25–35. IEEE Computer Society, Los Alamitos (1995)

    Google Scholar 

  9. Kupferman, O., Vardi, M.Y.: Memoryful Branching-Time Logic. In: LICS 2006, pp. 265–274. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  10. Kupferman, O., Vardi, M.Y., Wolper, P.: An Automata Theoretic Approach to Branching-Time Model Checking. JACM 47(2), 312–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal Logic with Forgettable Past. In: LICS 2002, pp. 383–392. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  12. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The Glory of the Past. In: LP 1985, pp. 196–218 (1985)

    Google Scholar 

  13. Muller, D.E., Schupp, P.E.: Alternating Automata on Infinite Trees. TCS 54(2-3), 267–276 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Muller, D.E., Schupp, P.E.: Simulating Alternating Tree Automata by Nondeterministic Automata: New Results and New Proofs of Theorems of Rabin, McNaughton and Safra. TCS 141, 69–107 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Niebert, P., Peled, D., Pnueli, A.: Discriminative Model Checking. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 504–516. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Osborne, M.J., Rubinstein, A.: A course in game theory. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  17. Pistore, M., Vardi, M.Y.: The Planning Spectrum - One, Two, Three, Infinity. In: JAIR 2007, vol. 30, pp. 101–132 (2007)

    Google Scholar 

  18. Schewe, S.: ATL* Satisfiability is 2ExpTime-Complete. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 373–385. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Schewe, S., Finkbeiner, B.: Satisfiability and Finite Model Property for the Alternating-Time μ-Calculus. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 591–605. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Vardi, M.Y.: A Temporal Fixpoint Calculus. In: POPL 1988, pp. 250–259 (1988)

    Google Scholar 

  21. van der Hoek, W., Wooldridge, M.: Tractable multiagent planning for epistemic goals. In: AAMAS 2002, pp. 1167–1174 (2002)

    Google Scholar 

  22. Vardi, M.Y., Wolper, P.: Automata-Theoretic Techniques for Modal Logics of Programs. JCSS 32(2), 183–221 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Woolridge, M.J.: Introduction to Multiagent Systems. John Wiley & Sons, Chichester (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mogavero, F., Murano, A., Vardi, M.Y. (2010). Relentful Strategic Reasoning in Alternating-Time Temporal Logic. In: Clarke, E.M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science(), vol 6355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17511-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17511-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17510-7

  • Online ISBN: 978-3-642-17511-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics