Nothing Special   »   [go: up one dir, main page]

Skip to main content

Elkan’s k-Means Algorithm for Graphs

  • Conference paper
Advances in Soft Computing (MICAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6438))

Included in the following conference series:

Abstract

This paper proposes a fast k-means algorithm for graphs based on Elkan’s k-means for vectors. To accelerate the k-means algorithm for graphs without trading computational time against solution quality, we avoid unnecessary graph distance calculations by exploiting the triangle inequality of the underlying distance metric. In experiments we show that the accelerated k-means for graphs is faster than k-means for graphs provided there is a cluster structure in the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jiang, X., Munger, A., Bunke, H.: On Median Graphs:Properties, Algorithms, and Applications. IEEE Trans. PAMI 23(10), 1144–1151 (2001)

    Google Scholar 

  2. Dosch, P., Valveny, E.: Report on the second symbol recognition contest. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 381–397. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Elkan, C.: Using the triangle inequality to accelerate k-means. In: ICML 2003 Conference Proceedings, pp. 147–153 (2003)

    Google Scholar 

  4. Ferrer, M.: Theory and algorithms on the median graph. application to graph-based classification and clustering, PhD Thesis, Univ. Autònoma de Barcelona (2007)

    Google Scholar 

  5. Gold, S., Rangarajan, A.: Graduated Assignment Algorithm for Graph Matching. IEEE Trans. PAMI 18, 377–388 (1996)

    Google Scholar 

  6. Hochbaum, D., Shmoys, D.: A best possible heuristic for the k-center problem. Mathematics of Operations Research 10(2), 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Indyk, P., Amir, A., Efrat, A., Samet, H.: Efficient algorithms and regular data structures for dilation, location and proximity problems. In: FOCS 1999 Conference Proceedings, pp. 160–170 (1999)

    Google Scholar 

  8. Jain, B., Wysotzki, F.: Central Clustering of Attributed Graphs. Machine Learning 56, 169–207 (2004)

    Article  MATH  Google Scholar 

  9. Jain, B., Obermayer, K.: On the sample mean of graphs. In: IJCNN 2008 Conference Proceedings, pp. 993–1000 (2008)

    Google Scholar 

  10. Jain, B., Obermayer, K.: Algorithms for the sample mean of graphs. In: Jiang, X., Petkov, N. (eds.) CAIP 2002. LNCS, vol. 5702, pp. 351–359. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Jain, B., Obermayer, K.: Structure Spaces. Journal of Machine Learning Research 10 (2009)

    Google Scholar 

  12. Jain, B., Obermayer, K.: Graph Quantization. arXiv:1001.0921v[1cs.AI] (2010)

    Google Scholar 

  13. Kazius, J., McGuire, R., Bursi, R.: Derivation and validation of toxicophores for mutagenicity prediction. Journal of Medicinal Chemistry 48(1), 312–320 (2005)

    Article  Google Scholar 

  14. Moore, A.: The anchors hierarchy: Using the triangle inequality to survive high dimensional data. In: UAI 2000 Conference Proceedings, pp. 397–405 (2000)

    Google Scholar 

  15. Riesen, K., Bunke, H.: IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning. In: SSPR 2008 Conference Proceedings, pp. 287–297 (2008)

    Google Scholar 

  16. Schenker, A., Last, M., Bunke, H., Kandel, A.: Clustering of web documents using a graph model. In: Web Document Analysis: Challenges and Opportunities, pp. 1–16 (2003)

    Google Scholar 

  17. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Elsevier, Amsterdam (2009)

    MATH  Google Scholar 

  18. Watson, C., Wilson, C.: NIST Special Database 4, Fingerprint Database, National Institute of Standards and Technology (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jain, B.J., Obermayer, K. (2010). Elkan’s k-Means Algorithm for Graphs. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds) Advances in Soft Computing. MICAI 2010. Lecture Notes in Computer Science(), vol 6438. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16773-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16773-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16772-0

  • Online ISBN: 978-3-642-16773-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics