Nothing Special   »   [go: up one dir, main page]

Skip to main content

Low Bit-Rate Video Coding with 3D Lower Trees (3D-LTW)

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6077))

Included in the following conference series:

Abstract

The 3D-DWT is a mathematical tool of increasing importance in those applications that require an efficient processing of volumetric info. However, the huge memory requirement of the algorithms that compute it is one of the main drawbacks in practical implementations. In this paper, we introduce a fast frame-based 3D-DWT video encoder with low memory usage, based on lower-trees. In this scheme, there is no need to divide the input video sequence into group of pictures (GOP), and it can be applied in a continuous manner, so that no boundary effects between GOPs appear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schelkens, P., Munteanu, A., Barbariend, J., Galca, M., Giro-Nieto, X., Cornelis, J.: Wavelet coding of volumetric medical datasets. IEEE Transactions on Medical Imaging 22(3), 441–458 (2003)

    Article  Google Scholar 

  2. Dragotti, P., Poggi, G.: Compression of multispectral images by three-dimensional SPITH algorithm. IEEE Transactions on Geoscience and Remote Sensing 38(1), 416–428 (2000)

    Article  Google Scholar 

  3. Aviles, M., Moran, F., Garcia, N.: Progressive lower trees of wavelet coefficients: Efficient spatial and SNR scalable coding of 3D models. In: Ho, Y.-S., Kim, H.-J. (eds.) PCM 2005. LNCS, vol. 3767, pp. 61–72. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Kim, B., Xiong, Z., Pearlman, W.: Low bit-rate scalable video coding with 3D set partitioning in hierarchical trees (3D SPIHT). IEEE Transactions on Circuits and Systems for Video Technology 10, 1374–1387 (2000)

    Article  Google Scholar 

  5. Chen, Y., Pearlman, W.A.: Three-dimensional subband coding of video using the zero-tree method. In: Visual Communications and Image Processing, Proc. SPIE, March 1996, vol. 2727, pp. 1302–1309 (1996)

    Google Scholar 

  6. Luo, J., Wang, X., Chen, C., Parker, K.: Volumetric medical image compression with three-dimensional wavelet transform and octave zerotree coding. In: Visual Communications and Image Processing, Proc. SPIE, March 1996, vol. 2727, pp. 579–590 (1996)

    Google Scholar 

  7. Secker, A., Taubman, D.: Motion-compensated highly scalable video compression using an adaptive 3D wavelet transform based on lifting. In: IEEE Internantional Conference on Image Processing, October 2001, pp. 1029–1032 (2001)

    Google Scholar 

  8. Chrysafis, C., Ortega, A.: Line-based, reduced memory, wavelet image compression. IEEE Transactions on Image Processing 9(3), 378–389 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Oliver, J., Lopez, O., Martinez-Rach, M., Malumbres, M.: A general frame-by-frame wavelet transform algorithm for a three-dimensional analysis with reduced memory usage. In: IEEE International Conference on Image Processing, October 2007, pp. 469–472 (2007)

    Google Scholar 

  10. Oliver, J., Malumbres, M.P.: Low-complexity multiresolution image compression using wavelet lower trees. IEEE Transactions on Circuits and Systems for Video Technology 16(11), 1437–1444 (2006)

    Article  Google Scholar 

  11. Lopez, O., Martinez-Rach, M., Piñol, P., Malumbres, M., Oliver, J.: M-LTW: A fast and efficient intra video codec. Signal Processing: Image Communication (23), 637–648 (2008)

    Google Scholar 

  12. Kim, B.J., Xiong, Z., Pearlman, W.: Very low bit-rate embedded video coding with 3D set partitioning in hierarchical trees (3D SPIHT) (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López, O., Martínez-Rach, M., Piñol, P., Malumbres, M.P., Oliver, J. (2010). Low Bit-Rate Video Coding with 3D Lower Trees (3D-LTW). In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13803-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13803-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13802-7

  • Online ISBN: 978-3-642-13803-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics