Nothing Special   »   [go: up one dir, main page]

Skip to main content

Limits to List Decoding Random Codes

  • Conference paper
Computing and Combinatorics (COCOON 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5609))

Included in the following conference series:

Abstract

It has been known since [Zyablov and Pinsker 1982] that a random q-ary code of rate 1 − H q (ρ) − ε (where 0 < ρ< 1 − 1/q, ε> 0 and H q (·) is the q-ary entropy function) with high probability is a (ρ,1/ε)-list decodable code. (That is, every Hamming ball of radius at most ρn has at most 1/ε codewords in it.) In this paper we prove the “converse” result. In particular, we prove that for every 0 < ρ< 1 − 1/q, a random code of rate 1 − H q (ρ) − ε, with high probability, is not a (ρ,L)-list decodable code for any, where c is a constant that depends only on ρ and q. We also prove a similar lower bound for random linear codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blinovsky, V.M.: Bounds for codes in the case of list decoding of finite volume. Problems of Information Transmission 22(1), 7–19 (1986)

    Google Scholar 

  2. Elias, P.: List decoding for noisy channels. Technical Report 335, Research Laboratory of Electronics, MIT (1957)

    Google Scholar 

  3. Gilbert, E.N.: A comparison of signalling alphabets. Bell System Technical Journal 31, 504–522 (1952)

    Article  Google Scholar 

  4. Guruswami, V.: List Decoding of Error-Correcting Codes. LNCS, vol. 3282. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  5. Guruswami, V.: Algorithmic Results in List Decoding. Foundations and Trends in Theoretical Computer Science (FnT-TCS), NOW publishers 2(2) (2007)

    Google Scholar 

  6. Guruswami, V., Vadhan, S.P.: A lower bound on list size for list decoding. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 318–329. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Hamming, R.W.: Error Detecting and Error Correcting Codes. Bell System Technical Journal 29, 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  8. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier/North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  9. Rudra, A.: List Decoding and Property Testing of Error Correcting Codes. PhD thesis, University of Washington (2007)

    Google Scholar 

  10. Rudra, A.: Limits to list decoding random codes. Electronic Colloquium on Computational Complexity (ECCC) 16(013) (2009)

    Google Scholar 

  11. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sudan, M.: List decoding: Algorithms and applications. SIGACT News 31, 16–27 (2000)

    Article  MATH  Google Scholar 

  13. Varshamov, R.R.: Estimate of the number of signals in error correcting codes. Doklady Akadamii Nauk 117, 739–741 (1957)

    MATH  Google Scholar 

  14. Wozencraft, J.M.: List Decoding. Quarterly Progress Report, Research Laboratory of Electronics, MIT 48, 90–95 (1958)

    Google Scholar 

  15. Zyablov, V.V., Pinsker, M.S.: List cascade decoding. Problems of Information Transmission 17(4), 29–34 (1981) (in Russian); 236–240 (1982) (in English)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rudra, A. (2009). Limits to List Decoding Random Codes. In: Ngo, H.Q. (eds) Computing and Combinatorics. COCOON 2009. Lecture Notes in Computer Science, vol 5609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02882-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02882-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02881-6

  • Online ISBN: 978-3-642-02882-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics