Abstract
Similarity search in time series data is used in diverse domains. The most prominent work has focused on similarity search considering either complete time series or certain subsequences of time series. Often, time series like temperature measurements consist of periodic patterns, i.e. patterns that repeatedly occur in defined periods over time. For example, the behavior of the temperature within one day is commonly correlated to that of the next day. Analysis of changes within the patterns and over consecutive patterns could be very valuable for many application domains, in particular finance, medicine, meteorology and ecology. In this paper, we present a framework that provides similarity search in time series databases regarding specific periodic patterns. In particular, an efficient threshold-based similarity search method is applied that is invariant against small distortions in time. Experiments on real-world data show that our novel similarity measure is more meaningful than established measures for many applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)
Albu, A.B., Bergevin, R., Quirion, S.: Generic temporal segmentation of cyclic human motion. Pattern Recognition 41(1), 6–21 (2008)
Aßfalg, J., Kriegel, H.-P., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Similarity search on time series based on threshold queries. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 276–294. Springer, Heidelberg (2006)
Aßfalg, J., Kriegel, H.-P., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Threshold similarity queries in large time series databases. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, Atlanta, GA, USA, April 3-8, 2006, p. 149 (2006)
Aßfalg, J., Kriegel, H.-P., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Similarity search in multimedia time series data using amplitude-level features. In: Satoh, S., Nack, F., Etoh, M. (eds.) MMM 2008. LNCS, vol. 4903, pp. 123–133. Springer, Heidelberg (2008)
Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An efficient and robust access method for points and rectangles. In: Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, May 23-25, 1990, pp. 322–331 (1990)
Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, pp. 359–370 (1994)
Böhm, F.K.C.: The k-nearest neighbor join: Turbo charging the kdd process. Knowledge and Information Systems (KAIS) 6(6) (2004)
Cai, Y., Ng, R.T.: Indexing spatio-temporal trajectories with chebyshev polynomials. In: SIGMOD Conference, pp. 599–610 (2004)
Deng, K., Moore, A., Nechyba, M.: Learning to recognize time series: Combining arma models with memory-based learning. In: IEEE Int. Symp. on Computational Intelligence in Robotics and Automation, vol. 1, pp. 246–250 (1997)
Eiter, T., Mannila, H.: Distance measures for point sets and their computation. Acta Informatica 34(2), 109–133 (1997)
Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. In: Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, Minneapolis, Minnesota, May 24-27, 1994, pp. 419–429 (1994)
Ge, X., Smyth, P.: Deformable markov model templates for time-series pattern matching. In: KDD, pp. 81–90 (2000)
Keogh, E.J., Chakrabarti, K., Mehrotra, S., Pazzani, M.J.: Locally adaptive dimensionality reduction for indexing large time series databases. In: SIGMOD Conference, pp. 151–162 (2001)
Keogh, E.J., Chakrabarti, K., Pazzani, M.J., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases (2000)
Korn, F., Jagadish, H.V., Faloutsos, C.: Efficiently supporting ad hoc queries in large datasets of time sequences. In: SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data, Tucson, Arizona, USA, May 13-15, 1997, pp. 289–300 (1997)
Morinaka, Y., Yoshikawa, M., Amagasa, T., Uemura, S.: The L-index: An indexing structure for efficient subsequence matching in time sequence databases. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS, vol. 2035. Springer, Heidelberg (2001)
Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-based classification of time-series data. Information processing and technology, pp. 49–61 (2001) ISBN 1-59033-116-8
Nanopoulos, A., Manolopoulos, Y.: Indexing time-series databases for inverse queries. In: Quirchmayr, G., Bench-Capon, T.J.M., Schweighofer, E. (eds.) DEXA 1998. LNCS, vol. 1460, pp. 551–560. Springer, Heidelberg (1998)
Chan, K.-p., Fu, A.W.-C.: Efficient time series matching by wavelets. In: Proceedings of the 15th International Conference on Data Engineering, Sydney, Austrialia, March 23-26, 1999, pp. 126–133 (1999)
Ratanamahatana, C.A., Keogh, E.J., Bagnall, A.J., Lonardi, S.: A novel bit level time series representation with implication of similarity search and clustering. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS, vol. 3518, pp. 771–777. Springer, Heidelberg (2005)
Wang, X., Smith, K.A., Hyndman, R.J.: Characteristic-based clustering for time series data. Data Min. Knowl. Discov. 13(3), 335–364 (2006)
Yi, B.-K., Faloutsos, C.: Fast time sequence indexing for arbitrary lp norms. In: VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases, Cairo, Egypt, September 10-14, 2000, pp. 385–394 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Assfalg, J., Bernecker, T., Kriegel, HP., Kröger, P., Renz, M. (2009). Periodic Pattern Analysis in Time Series Databases. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds) Database Systems for Advanced Applications. DASFAA 2009. Lecture Notes in Computer Science, vol 5463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00887-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-00887-0_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00886-3
Online ISBN: 978-3-642-00887-0
eBook Packages: Computer ScienceComputer Science (R0)