Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions

  • Conference paper
Analysis and Modeling of Faces and Gestures (AMFG 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4778))

Included in the following conference series:

Abstract

Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. Specifically, we make three main contributions: (i) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; (ii) we introduce Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions; and (iii) we show that replacing local histogramming with a local distance transform based similarity metric further improves the performance of LBP/LTP based face recognition. The resulting method gives state-of-the-art performance on three popular datasets chosen to test recognition under difficult illumination conditions: Face Recognition Grand Challenge version 1 experiment 4, Extended Yale-B, and CMU PIE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)

    Google Scholar 

  2. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE TPAMI 28(12) (2006)

    Google Scholar 

  3. Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE TPAMI 25(2), 218–233 (2003)

    Google Scholar 

  4. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE TPAMI 19(7), 711–720 (1997)

    Google Scholar 

  5. Belhumeur, P., Kriegman, D.: What is the set of images of an object under all possible illumination conditions. IJCV 28(3), 245–260 (1998)

    Article  Google Scholar 

  6. Borgefors, G.: Distance transformations in digital images. Comput. Vision Graph. Image Process. 34(3), 344–371 (1986)

    Article  Google Scholar 

  7. Chen, H., Belhumeur, P., Jacobs, D.: In search of illumination invariants. In: Proc. CVPR 2000, pp. I: 254–261 (2000)

    Google Scholar 

  8. Chen, T., Yin, W., Zhou, X., Comaniciu, D., Huang, T.: Total variation models for variable lighting face recognition. IEEE TPAMI 28(9), 1519–1524 (2006)

    Google Scholar 

  9. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE TPAMI 23(6), 643–660 (2001)

    Google Scholar 

  10. Gross, R., Brajovic, V.: An image preprocessing algorithm for illumination invariant face recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 10–18. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Guodail, F., Lange, E., Iwamoto, T.: Face recognition system using local autocorrelations and multiscale integration. IEEE TPAMI 18(10), 1024–1028 (1996)

    Google Scholar 

  12. Heusch, G., Rodriguez, Y., Marcel, S.: Local binary patterns as an image preprocessing for face authentication. In: Proc. FGR 2006, USA, pp. 9–14 (2006)

    Google Scholar 

  13. Jobson, D., Rahman, Z., Woodell, G.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE TIP 6(7), 965–976 (1997)

    Google Scholar 

  14. Lee, K., Ho, J., Kriegman, D.: Nine points of light: Acquiring subspaces for face recognition under variable lighting. In: Proc. CVPR 2001, pp. I: 519–526 (2001)

    Google Scholar 

  15. Lee, K., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE TPAMI 27(5), 684–698 (2005)

    Google Scholar 

  16. Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE TPAMI 28(5), 725–737 (2006)

    Google Scholar 

  17. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29 (1996)

    Google Scholar 

  18. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invarianat texture classification with local binary patterns. IEEE TPAMI 24(7), 971–987 (2002)

    Google Scholar 

  19. Phillips, P.J., Flynn, P.J., Scruggs, W.T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.J.: Overview of the face recognition grand challenge. In: Proc. CVPR 2005, San Diego, CA, pp. 947–954 (2005)

    Google Scholar 

  20. Rodriguez, Y., Marcel, S.: Face authentication using adapted local binary pattern histograms. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 321–332. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Short, J., Kittler, J., Messer, K.: A comparison of photometric normalization algorithms for face verification. In: Proc. AFGR 2004, pp. 254–259 (2004)

    Google Scholar 

  22. Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie) database of human faces. Technical Report CMU-RI-TR-01-02, Robotics Institute, Carnegie Mellon University (January 2001)

    Google Scholar 

  23. Wang, H., Li, S., Wang, Y.: Face recognition under varying lighting conditions using self quotient image. In: Proc. AFGR 2004 (2004)

    Google Scholar 

  24. Wang, L., He, D.: Texture classification using texture spectrum. Pattern Recognition 23, 905–910 (1990)

    Article  Google Scholar 

  25. Zhang, L., Samaras, D.: Face recognition under variable lighting using harmonic image exemplars. In: Proc. CVPR 2003, pp. I: 19–25 (2003)

    Google Scholar 

  26. Zhang, W., Shan, S., Gao, W., Zhang, H.: Local Gabor Binary Pattern Histogram Sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In: Proc. ICCV 2005, Beijing, China, pp. 786–791 (2005)

    Google Scholar 

  27. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Survey 34(4), 399–485 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S. Kevin Zhou Wenyi Zhao Xiaoou Tang Shaogang Gong

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, X., Triggs, B. (2007). Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds) Analysis and Modeling of Faces and Gestures. AMFG 2007. Lecture Notes in Computer Science, vol 4778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75690-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75690-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75689-7

  • Online ISBN: 978-3-540-75690-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics