Abstract
Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. Specifically, we make three main contributions: (i) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; (ii) we introduce Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions; and (iii) we show that replacing local histogramming with a local distance transform based similarity metric further improves the performance of LBP/LTP based face recognition. The resulting method gives state-of-the-art performance on three popular datasets chosen to test recognition under difficult illumination conditions: Face Recognition Grand Challenge version 1 experiment 4, Extended Yale-B, and CMU PIE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE TPAMI 28(12) (2006)
Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE TPAMI 25(2), 218–233 (2003)
Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE TPAMI 19(7), 711–720 (1997)
Belhumeur, P., Kriegman, D.: What is the set of images of an object under all possible illumination conditions. IJCV 28(3), 245–260 (1998)
Borgefors, G.: Distance transformations in digital images. Comput. Vision Graph. Image Process. 34(3), 344–371 (1986)
Chen, H., Belhumeur, P., Jacobs, D.: In search of illumination invariants. In: Proc. CVPR 2000, pp. I: 254–261 (2000)
Chen, T., Yin, W., Zhou, X., Comaniciu, D., Huang, T.: Total variation models for variable lighting face recognition. IEEE TPAMI 28(9), 1519–1524 (2006)
Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE TPAMI 23(6), 643–660 (2001)
Gross, R., Brajovic, V.: An image preprocessing algorithm for illumination invariant face recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 10–18. Springer, Heidelberg (2003)
Guodail, F., Lange, E., Iwamoto, T.: Face recognition system using local autocorrelations and multiscale integration. IEEE TPAMI 18(10), 1024–1028 (1996)
Heusch, G., Rodriguez, Y., Marcel, S.: Local binary patterns as an image preprocessing for face authentication. In: Proc. FGR 2006, USA, pp. 9–14 (2006)
Jobson, D., Rahman, Z., Woodell, G.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE TIP 6(7), 965–976 (1997)
Lee, K., Ho, J., Kriegman, D.: Nine points of light: Acquiring subspaces for face recognition under variable lighting. In: Proc. CVPR 2001, pp. I: 519–526 (2001)
Lee, K., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE TPAMI 27(5), 684–698 (2005)
Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE TPAMI 28(5), 725–737 (2006)
Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29 (1996)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invarianat texture classification with local binary patterns. IEEE TPAMI 24(7), 971–987 (2002)
Phillips, P.J., Flynn, P.J., Scruggs, W.T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.J.: Overview of the face recognition grand challenge. In: Proc. CVPR 2005, San Diego, CA, pp. 947–954 (2005)
Rodriguez, Y., Marcel, S.: Face authentication using adapted local binary pattern histograms. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 321–332. Springer, Heidelberg (2006)
Short, J., Kittler, J., Messer, K.: A comparison of photometric normalization algorithms for face verification. In: Proc. AFGR 2004, pp. 254–259 (2004)
Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie) database of human faces. Technical Report CMU-RI-TR-01-02, Robotics Institute, Carnegie Mellon University (January 2001)
Wang, H., Li, S., Wang, Y.: Face recognition under varying lighting conditions using self quotient image. In: Proc. AFGR 2004 (2004)
Wang, L., He, D.: Texture classification using texture spectrum. Pattern Recognition 23, 905–910 (1990)
Zhang, L., Samaras, D.: Face recognition under variable lighting using harmonic image exemplars. In: Proc. CVPR 2003, pp. I: 19–25 (2003)
Zhang, W., Shan, S., Gao, W., Zhang, H.: Local Gabor Binary Pattern Histogram Sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In: Proc. ICCV 2005, Beijing, China, pp. 786–791 (2005)
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Survey 34(4), 399–485 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tan, X., Triggs, B. (2007). Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds) Analysis and Modeling of Faces and Gestures. AMFG 2007. Lecture Notes in Computer Science, vol 4778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75690-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-75690-3_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75689-7
Online ISBN: 978-3-540-75690-3
eBook Packages: Computer ScienceComputer Science (R0)