Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast and Compact Oracles for Approximate Distances in Planar Graphs

  • Conference paper
Algorithms – ESA 2007 (ESA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4698))

Included in the following conference series:

Abstract

We present an experimental evaluation of an approximate distance oracle recently suggested by Thorup [1] for undirected planar graphs. The oracle uses the existence of graph separators for planar graphs, discovered by Lipton and Tarjan [2], in order to divide the graph into smaller subgraphs. For a planar graph with n nodes, the algorithmic variant considered uses O(n(log n)3/ε) preprocessing time and O(n(log n)2/ε) space to answer factor (1 + ε) distance queries in O(n(log n)2/ε) time. By performing experiments on randomly generated planar graphs and on planar graphs derived from real world road networks, we investigate some key characteristics of the oracle, such as preprocessing time, query time, precision, and characteristics related to the underlying data structure, including space consumption. For graphs with one million nodes, the average query time is less than 20μs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thorup, M.: Compact Oracles for Reachability and Approximate Distances in Planar Digraphs. Journal of the ACM 51, 993–1024 (2004)

    Article  Google Scholar 

  2. Lipton, R.J., Tarjan, R.E.: A Separator Theorem for Planar Graphs. SIAM Journal on Applied Mathematics 36, 177–189 (1979)

    Article  MATH  Google Scholar 

  3. Thorup, M., Zwick, U.: Approximate Distance Oracles. Journal of the ACM 52, 1–24 (2005)

    Article  Google Scholar 

  4. Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A * Meets Graph Theory. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165. ACM Press, New York (2005)

    Google Scholar 

  5. Gutman, R.: Reach-Based Routing: A New Approach to Shortest Path Algorithms Optimized for Road Networks. In: Proceedings 6th Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 100–111 (2004)

    Google Scholar 

  6. Goldberg, A.V., Kaplan, H., Werneck, R.: Reach for A *: Efficient Point-to-Point Shortest Path Algorithms. In: Workshop on Algorithm Engineering and Experiments (2006)

    Google Scholar 

  7. Sanders, P., Schultes, D.: Highway Hierachies Hasten Exact Shortest Path Queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Sanders, P., Schultes, D.: Engineering Highway Hierachies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with Transit Nodes. Science 316, 566 (2007)

    Article  Google Scholar 

  10. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant Time Shortest-Path Queries in Road Networks. In: Proc. 9th Workshop on Algorithm Engineering and Experimentation (ALENEX) (2007)

    Google Scholar 

  11. Fakcharoenphol, J., Rao, S.: Planar Graphs, Negative Weight Edges, Shortest Paths, and Near Linear Time. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer Science, pp. 232–241. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  12. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance Labeling in Graphs. Journal of Algorithms 53, 85–112 (2004)

    Article  MATH  Google Scholar 

  13. Klein, P.: Preprocessing an Undirected Planar Network to Enable Fast Approximate Distance Queries. In: Proceedings of the thirteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp. 820–827. ACM Press, New York (2002)

    Google Scholar 

  14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  15. Demetrescu, C., Goldberg, A.V., Johnson, D.: 9th DIMACS Implementation Challenge (2006), http://www.dis.uniroma1.it/~challenge9/

  16. GMBH, A.S.S.: LEDA 5.2 (2007), http://www.algorithmic-solutions.com/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Michael Hoffmann Emo Welzl

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muller, L.F., Zachariasen, M. (2007). Fast and Compact Oracles for Approximate Distances in Planar Graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds) Algorithms – ESA 2007. ESA 2007. Lecture Notes in Computer Science, vol 4698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75520-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75520-3_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75519-7

  • Online ISBN: 978-3-540-75520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics