Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

In the standard scale space approach one obtains a scale space representation u:ℝ of an image \(f \in \mathbb{L}_{2}(\mathbb{R}^d)\) by means of an evolution equation on the additive group (ℝd, + ). However, it is common to apply a wavelet transform (constructed via a representation \(\mathcal{U}\) of a Lie-group G and admissible wavelet ψ) to an image which provides a detailed overview of the group structure in an image. The result of such a wavelet transform provides a function \(g \mapsto (\mathcal{U}_{g}\psi,f)_{\mathbb{L}_{2}(\mathbb{R}^2)}\) on a group G (rather than (ℝd, + )), which we call a score. Since the wavelet transform is unitary we have stable reconstruction by its adjoint. This allows us to link operators on images to operators on scores in a robust way. To ensure \(\mathcal{U}\)-invariance of the corresponding operator on the image the operator on the wavelet transform must be left-invariant. Therefore we focus on left-invariant evolution equations (and their resolvents) on the Lie-group G generated by a quadratic form Q on left invariant vector fields. These evolution equations correspond to stochastic processes on G and their solution is given by a group convolution with the corresponding Green’s function, for which we present an explicit derivation in two particular image analysis applications. In this article we describe a general approach how the concept of scale space can be extended by replacing the additive group ℝd by a Lie-group with more structure.

The Dutch Organization for Scientific Research is gratefully acknowledged for financial support

This article provides the theory and general framework we applied in [9],[5],[8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ali, S.T., Antoine, J.P., Gazeau, J.P.: Coherent States, Wavelets and Their Generalizations. Springer, Heidelberg (1999)

    Google Scholar 

  2. Bukhvalov, A.V., Arendt, W.: Integral representation of resolvent and semigroups. Forum Math. 6(1), 111–137 (1994)

    MATH  MathSciNet  Google Scholar 

  3. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. Preprint, pp. 1–27 (2004), available on the web http://amsacta.cib.unibo.it/archive/00000822

  4. Duits, R.: Perceptual Organization in Image Analysis. PhD thesis, Eindhoven University of Technology, Dep. of Biomedical Engineering, The Netherlands (2005)

    Google Scholar 

  5. Duits, R., et al.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the euclidean motion group. IJCV 72(1), 79–102 (2007)

    Google Scholar 

  6. Duits, R., et al.: On the axioms of scale space theory. Journal of Math. Imaging and Vision 20, 267–298 (2004)

    Article  Google Scholar 

  7. Duits, R., van Almsick, M.A.: The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2d-euclidean motion group. Accepted for publication in Quarterly of Applied Mathematics, AMS (2007)

    Google Scholar 

  8. Duits, R., van Almsick, M.A.: Invertible orientation scores as an application of generalized wavelet theory. Image Processing, Analysis, Recognition and Understanding 17(1), 42–75 (2007)

    Article  Google Scholar 

  9. ter Haar Romeny, B.M., Duits, R., Franken, E.: Nonlinear Diffusion on the 2D Euclidean Motion Group. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 461–472. Springer, Heidelberg (2007)

    Google Scholar 

  10. Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents. Acta mathematica 139, 96–153 (1977)

    Article  MathSciNet  Google Scholar 

  11. Hebisch, W.: Estimates on the semigroups generated by left invariant operators on lie groups. Journal fuer die reine und angewandte Mathematik 423, 1–45 (1992)

    Article  MathSciNet  Google Scholar 

  12. Hormander, L.: Hypoellptic second order differential equations. Acta Mathematica 119, 147–171 (1968)

    Article  MathSciNet  Google Scholar 

  13. Lévy, P.: Wiener random functions and other laplacian random functions. In: Proc. of the 2nd Berkely Symposium, USA, pp. 171–187. California Press, Berkeley (1950)

    Google Scholar 

  14. Mumford, D.: Elastica and computer vision. In: Algebraic Geometry and Its Applications, pp. 491–506. Springer, Heidelberg (1994)

    Google Scholar 

  15. Sagiv, C., Sochen, N.A., Zeevi, Y.Y.: Scale space generation via uncertainty principles. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 351–362. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Duits, R., Burgeth, B. (2007). Scale Spaces on Lie Groups. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics