Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4349))

Abstract

Several verification methods involve reasoning about multi-valued systems, in which an atomic proposition is interpreted at a state as a lattice element, rather than a Boolean value. The automata-theoretic approach for reasoning about Boolean-valued systems has proven to be very useful and powerful. We develop an automata-theoretic framework for reasoning about multi-valued objects, and describe its application. The basis to our framework are lattice automata on finite and infinite words, which assign to each input word a lattice element. We study the expressive power of lattice automata, their closure properties, the blow-up involved in related constructions, and decision problems for them. Our framework and results are different and stronger then those known for semi-ring and weighted automata. Lattice automata exhibit interesting features from a theoretical point of view. In particular, we study the complexity of constructions and decision problems for lattice automata in terms of the size of both the automaton and the underlying lattice. For example, we show that while determinization of lattice automata involves a blow up that depends on the size of the lattice, such a blow up can be avoided when we complement lattice automata. Thus, complementation is easier than determinization. In addition to studying the theoretical aspects of lattice automata, we describe how they can be used for an efficient reasoning about a multi-valued extension of LTL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Bruns, G., Godefroid, P.: Temporal logic query checking. In: Proc. 16th LICS, pp. 409–420 (2001)

    Google Scholar 

  3. Bruns, G., Godefroid, P.: Model checking with 3-valued temporal logics. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 281–293. Springer, Heidelberg (2004)

    Google Scholar 

  4. Chechik, M., Devereux, B., Gurfinkel, A.: Model-checking infinite state-space systems with fine-grained abstractions using SPIN. In: Dwyer, M.B. (ed.) Model Checking Software. LNCS, vol. 2057, pp. 16–36. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Choueka, Y.: Theories of automata on ω-tapes: A simplified approach. Journal of Computer and System Sciences 8, 117–141 (1974)

    MATH  MathSciNet  Google Scholar 

  7. Easterbrook, S., Chechik, M.: A framework for multi-valued reasoning over inconsistent viewpoints. In: Proc. 23rd ICSE, pp. 411–420 (2001)

    Google Scholar 

  8. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

    Google Scholar 

  9. Hussain, A., Huth, M.: On model checking multiple hybrid views. Technical Report TR-2004-6, University of Cyprus (2004)

    Google Scholar 

  10. IEEE standard multivalue logic system for VHDL model interoperability (std_logic_1164) (1993)

    Google Scholar 

  11. Immerman, N.: Nondeterministic space is closed under complement. SIAM Journal on Computing 17, 935–938 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. In: EATCS Monographs on Theoretical Computer Science, Springer, Heidelberg (1986)

    Google Scholar 

  13. Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton University Press, Princeton (1994)

    Google Scholar 

  14. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM TOCL 2(2), 408–429 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. Journal of the ACM 47(2), 312–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Science 32, 321–330 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mohri, M.: Finite-state transducers in language and speech processing. Computational Linguistics 23(2), 269–311 (1997)

    MathSciNet  Google Scholar 

  18. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3, 115–125 (1959)

    Article  MathSciNet  Google Scholar 

  19. Safra, S.: On the complexity of ω-automata. In: Proc. 29th FOCS, pages 319–327 (1988)

    Google Scholar 

  20. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115(1), 1–37 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Byron Cook Andreas Podelski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kupferman, O., Lustig, Y. (2007). Lattice Automata. In: Cook, B., Podelski, A. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2007. Lecture Notes in Computer Science, vol 4349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69738-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69738-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69735-0

  • Online ISBN: 978-3-540-69738-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics