Nothing Special   »   [go: up one dir, main page]

Skip to main content

Finite Horizon Analysis of Stochastic Systems with the Murφ Verifier

  • Conference paper
Theoretical Computer Science (ICTCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2841))

Included in the following conference series:

Abstract

Many reactive systems are actually Stochastic Processes. Automatic analysis of such systems is usually very difficult thus typically one simplifies the analysis task by using simulation or by working on a simplified model (e.g. a Markov Chain).

We present a Finite Horizon Probabilistic Model Checking approachwhich essentially can handle the same class of stochastic processes of a typical simulator. This yields easy modeling of the system to be analysed together with formal verification capabilities. Our approach is based on a suitable disk based extension of the Murφ verifier.

Moreover we present experimental results showing effectiveness of our approach.

This research has been partially supported by MURST projects: MEFISTO and SAHARA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apt, K.R., Olderog, E.-R.: Verification of Sequential and Concurrent Programs. Text and Monographs in Computer Science. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  2. Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M., Ryan, M.: Symbolic model checking for probabilistic processes. Automata, Languages and Programming, 430–440 (1997)

    Google Scholar 

  3. Behrends, E.: Introduction to Markov Chains. Vieweg (2000)

    Google Scholar 

  4. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)

    Google Scholar 

  5. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98 (1992)

    Google Scholar 

  6. Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-state probabilistic programs. In: Proc. of FOCS 1988, pp. 338–345. IEEE CS Press, Los Alamitos (1988)

    Google Scholar 

  7. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. de Alfaro, L.: Formal verification of performance and reliability of real-time systems. Technical report, Stanford University (1996)

    Google Scholar 

  9. Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a hardware design aid. In: IEEE International Conference on Computer Design: VLSI in Computers and Processors, pp. 522–525 (1992)

    Google Scholar 

  10. Hermanns, H., Infante Lopez, G.G., Katoen, J.: Beyond memoryless distribution: Model checking semi-markov chains. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 57–70. Springer, Heidelberg (2001)

    Google Scholar 

  11. Hansson, H.: Time and Probability in Formal Design of Distributed Systems. Elsevier, Amsterdam (1994)

    Google Scholar 

  12. Hansson, H., Jonsson, B.: A logic for reasoning about time and probability. Formal Aspects of Computing 6, 512–535 (1994)

    Article  MATH  Google Scholar 

  13. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall, New Jersey (1991)

    Google Scholar 

  14. Holzmann, G.J.: The spin model checker. IEEE Trans. on Software Engineering 23(5), 279–295 (1997)

    Article  MathSciNet  Google Scholar 

  15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Kemper, P. (ed.) Proc. Tools Session of Aachen 2001 International Multiconference on Measurement, Modelling and Evaluation of Computer-Communication Systems, September 2001, pp. 7–12 (2001); Available as Technical Report 760/2001, University of Dortmund.

    Google Scholar 

  16. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with prism: A hybrid approach. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 52. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94, 1–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. http://sprout.stanford.edu/dill/murphi.html

  19. Nelson, B.L.: Stochastic Modeling: Analysis And Simulation. Dover Publications, New York (1995)

    MATH  Google Scholar 

  20. Papoulis, A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill Series in System Sciences (1965)

    Google Scholar 

  21. Della Penna, G., Intrigila, B., Melatti, I., Minichino, M., Ciancamerla, E., Parisse, A., Tronci, E., Zilli, M.V.: Automatic verification of a turbogas control system with the murphi verifier. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 141–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Finite horizon analysis of markov chains with the murphi verifier (2003) (submitted for publication)

    Google Scholar 

  23. Pnueli, A., Zuck, L.: Probabilistic verification. Information and Computation 103, 1–29 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. http://www.cs.bham.ac.uk/~dxp/prism/

  25. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 381–496. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  26. http://netlib.bell-labs.com/netlib/spin/whatispin.html

  27. http://www.sti.uniurb.it/bernardo/twotowers/

  28. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Proc. of FOCS 1985, pp. 327–338. IEEE CS Press, Los Alamitos (1985)

    Google Scholar 

  29. http://www.di.univaq.it/melatti/ICTCS03/

  30. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the Future in Systems Theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V. (2003). Finite Horizon Analysis of Stochastic Systems with the Murφ Verifier. In: Blundo, C., Laneve, C. (eds) Theoretical Computer Science. ICTCS 2003. Lecture Notes in Computer Science, vol 2841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45208-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45208-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20216-5

  • Online ISBN: 978-3-540-45208-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics