Nothing Special   »   [go: up one dir, main page]

Skip to main content

Music Recommendation Systems: Techniques, Use Cases, and Challenges

  • Chapter
  • First Online:
Recommender Systems Handbook

Abstract

This chapter gives an introduction to music recommender systems, considering the unique characteristics of the music domain. We take a user-centric perspective, by organizing our discussion with respect to current use cases and challenges. More precisely, we categorize music recommendation tasks into three major types of use cases: basic music recommendation, lean-in exploration, and lean-back listening. Subsequently, we explain the main categories of music recommender systems from a technical perspective, including content-based filtering, sequential recommendation, and recent psychology-inspired approaches. To round off the chapter, we provide a discussion of challenges faced in music recommendation research and practice, and of approaches that address these challenges. Topics we address here include creating multi-faceted recommendation lists, considering intrinsic user characteristics, making fair recommendations, explaining recommendations, evaluation, dealing with missing and negative feedback, designing user interfaces, and providing open tools and data sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.spotify.com.

  2. 2.

    https://www.pandora.com.

  3. 3.

    https://www.apple.com/apple-music.

  4. 4.

    https://music.amazon.com.

  5. 5.

    https://www.youtube.com.

  6. 6.

    https://www.deezer.com.

  7. 7.

    https://www.kkbox.com.

  8. 8.

    https://www.melon.com.

  9. 9.

    https://www.boomplay.com.

  10. 10.

    https://www.superplayer.fm.

  11. 11.

    https://www.oktav.com.

  12. 12.

    https://www.chordify.net.

  13. 13.

    https://www.netflixprize.com.

  14. 14.

    To avoid confusion, we note that content has different connotations within the MIR and recommender systems communities. MIR makes an explicit distinction between (content-based) approaches that operate directly on audio signals and (metadata) approaches that derive item descriptors from external sources, e.g., web documents [90]. In recommender systems research, as in the remainder of this chapter, both types of approaches are described as “content-based”.

  15. 15.

    https://www.soundcloud.com.

  16. 16.

    https://www.last.fm.

  17. 17.

    https://www.apple.com/itunes.

  18. 18.

    https://www.amazon.com.

  19. 19.

    https://www.discogs.com.

  20. 20.

    https://www.rateyourmusic.com.

  21. 21.

    Note that explicit ratings can be estimated from implicit feedback such as play counts, as investigated by Parra and Amatriain [137].

  22. 22.

    https://www.kdd.org/kdd2011/kddcup.shtml.

  23. 23.

    http://music.yahoo.com.

  24. 24.

    http://labrosa.ee.columbia.edu/millionsong/challenge.

  25. 25.

    https://www.recsyschallenge.com/2018.

  26. 26.

    The Million Playlist Dataset is available from https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge.

  27. 27.

    https://www.crowdai.org/challenges/spotify-sequential-skip-prediction-challenge.

  28. 28.

    https://www.oktav.com.

  29. 29.

    https://www.chordify.net.

  30. 30.

    Note that perspective (2) most commonly also entails (1) since different recommendation techniques require different data to operate on.

  31. 31.

    https://wiki.dbpedia.org.

  32. 32.

    Note that we use the term “interaction data” in Sect. 4 to refer to data belonging to the latter kind of context.

  33. 33.

    https://www.music-ir.org/mirex/wiki.

  34. 34.

    This scenario is addressed in MRS that leverage cognitive models of frequency and recentness of exposure, discussed in Sect. 3.6.

  35. 35.

    Note that these ratings can also be binary (1 if the user interacted with the item; 0 otherwise).

  36. 36.

    The Melon Playlist Dataset is a notable exception, containing data from a South Korean music streaming service.

  37. 37.

    Notwithstanding, there also exist offline variants of A/B testing strategies, e.g. [63].

  38. 38.

    https://www.youtube.com.

  39. 39.

    https://www.douban.com.

  40. 40.

    https://making.lyst.com/lightfm/docs.

  41. 41.

    https://implicit.readthedocs.io.

  42. 42.

    http://surpriselib.com.

  43. 43.

    https://guoguibing.github.io/librec.

  44. 44.

    https://github.com/spotify/annoy.

  45. 45.

    https://github.com/nmslib/nmslib.

  46. 46.

    https://github.com/facebookresearch/faiss.

  47. 47.

    https://essentia.upf.edu.

  48. 48.

    https://librosa.org.

  49. 49.

    https://www.musicbrainz.org.

  50. 50.

    https://www.listenbrainz.org.

  51. 51.

    https://www.acousticbrainz.org.

  52. 52.

    https://www.discogs.com.

References

  1. M.H. Abdi, G.O. Okeyo, R.W. Mwangi, Matrix factorization techniques for context-aware collaborative filtering recommender systems: a survey. Comput. Inf. Sci. 11(2), 1–10 (2018)

    Google Scholar 

  2. H. Abdollahpouri, G. Adomavicius, R. Burke, I. Guy, D. Jannach, T. Kamishima, J. Krasnodebski, L. Pizzato, Beyond personalization: Research directions in multistakeholder recommendation (2019). arXiv:1905.01986

    Google Scholar 

  3. H. Abdollahpouri, R. Burke, B. Mobasher, Recommender systems as multistakeholder environments. in Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, UMAP ’17, New York, NY, 2017 (Association for Computing Machinery, New York, 2017), pp. 347–348

    Google Scholar 

  4. H. Abdollahpouri, S. Essinger, Multiple stakeholders in music recommender systems (2017). arXiv:1708.00120

    Google Scholar 

  5. H. Abdollahpouri, M. Mansoury, R. Burke, B. Mobasher, The unfairness of popularity bias in recommendation, in Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), Copenhagen, Denmark, September 20, 2019, ed. by R. Burke, H. Abdollahpouri, E.C. Malthouse, K.P. Thai, Y. Zhang. CEUR Workshop Proceedings, vol. 2440 (CEUR-WS.org, Amsterdam, 2019)

    Google Scholar 

  6. H. Abdollahpouri, M. Mansoury, R. Burke, B. Mobasher, The connection between popularity bias, calibration, and fairness in recommendation, in Fourteenth ACM Conference on Recommender Systems, RecSys ’20, New York, NY, 2020 (Association for Computing Machinery, New York, 2020), pp. 726–731

    Google Scholar 

  7. G. Adomavicius, A. Tuzhilin, Context-aware recommender systems, in Recommender Systems Handbook, ed. by F. Ricci, L. Rokach, B. Shapira (Springer, New York, 2015), pp. 191–226

    Chapter  Google Scholar 

  8. P. Alonso-Jiménez, D. Bogdanov, J. Pons, X. Serra, Tensorflow audio models in essentia, in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, New York, 2020), pp. 266–270

    Google Scholar 

  9. A. Anderson, L. Maystre, I. Anderson, R. Mehrotra, M. Lalmas, Algorithmic effects on the diversity of consumption on spotify, in WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20–24, 2020, ed. by Y. Huang, I. King, T. Liu, M. van Steen (ACM/IW3C2, New York, 2020), pp. 2155–2165

    Google Scholar 

  10. J.R. Anderson, M. Matessa, C. Lebiere, Act-r: a theory of higher level cognition and its relation to visual attention. Human-Computer Interact. 12(4), 439–462 (1997)

    Article  Google Scholar 

  11. I. Andjelkovic, D. Parra, J. O’Donovan, Moodplay: Interactive mood-based music discovery and recommendation, in Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization, UMAP ’16, New York, NY (ACM, New York, 2016), pp. 275–279

    Google Scholar 

  12. D. Ayata, Y. Yaslan, M.E. Kamasak, Emotion based music recommendation system using wearable physiological sensors. IEEE Trans. Consum. Electron. 64(2), 196–203 (2018)

    Article  Google Scholar 

  13. R. Baeza-Yates, B.A. Ribeiro-Neto, Modern Information Retrieval - The Concepts and Technology Behind Search, 2nd edn. (Pearson Education Ltd., Harlow, 2011)

    Google Scholar 

  14. L. Baltrunas, B. Ludwig, F. Ricci, Matrix factorization techniques for context aware recommendation, in Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, October 23–27, 2011, ed. by B. Mobasher, R.D. Burke, D. Jannach, G. Adomavicius, pp. 301–304 (ACM, New York, 2011)

    Google Scholar 

  15. L. Baltrunas, F. Ricci, Context-based splitting of item ratings in collaborative filtering, in Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009, New York, NY, October 23–25, 2009, ed. by L.D. Bergman, A. Tuzhilin, R.D. Burke, A. Felfernig, L. Schmidt-Thieme (ACM, New York, 2009), pp. 245–248

    Google Scholar 

  16. C. Bauer, A. Novotny, A consolidated view of context for intelligent systems. J. Ambient Intell. Smart Environ. 9(4), 377–393 (2017)

    Article  Google Scholar 

  17. C. Bauer, M. Schedl, Global and country-specific mainstreaminess measures: definitions, analysis, and usage for improving personalized music recommendation systems. PLoS One 14(6), 1–36 (2019)

    Article  Google Scholar 

  18. T. Bertin-Mahieux, D.P. Ellis, B. Whitman, P. Lamere, The million song dataset, in Proceedings of the 12th International Society for Music Information Retrieval Conference, Miami, October 24–28 2011, pp. 591–596

    Google Scholar 

  19. A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, E.H. Chi, Latent cross: Making use of context in recurrent recommender systems. In ed. by Y. Chang, C. Zhai, Y. Liu, Y. Maarek, Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5–9, 2018 (ACM, New York, 2018), pp. 46–54

    Google Scholar 

  20. D. Bogdanov, M. Haro, F. Fuhrmann, A. Xambó, E. Gómez, P. Herrera, Semantic audio content-based music recommendation and visualization based on user preference examples. Inf. Process. Manag. 49(1), 13–33 (2013)

    Article  Google Scholar 

  21. D. Bogdanov, P. Herrera, Taking advantage of editorial metadata to recommend music, in Int. Symp. on Computer Music Modeling and Retrieval (CMMR’12), 2012

    Google Scholar 

  22. D. Bogdanov, N. Wack, E. Gómez Gutiérrez, S. Gulati, H. Boyer, O. Mayor, G. Roma Trepat, J. Salamon, J. R. Zapata González, X. Serra, et al., Essentia: an audio analysis library for music information retrieval, in Britto A, Gouyon F, Dixon S, editors. 14th Conference of the International Society for Music Information Retrieval (ISMIR); 2013 Nov 4–8; Curitiba, Brazil.[place unknown]: ISMIR; 2013. p. 493–498. International Society for Music Information Retrieval (ISMIR), 2013.

    Google Scholar 

  23. B. Brost, R. Mehrotra, T. Jehan, The music streaming sessions dataset, in L. Liu, R.W. White, A. Mantrach, F. Silvestri, J.J. McAuley, R. Baeza-Yates, L. Zia, editors, The World Wide Web Conference, WWW 2019, San Francisco, CA, May 13–17, 2019 (ACM, New York, 2019), pp. 2594–2600

    Google Scholar 

  24. Burke, R., Multisided fairness for recommendation (2017). CoRR abs/1707.00093. arXiv

    Google Scholar 

  25. R.D. Burke, Hybrid recommender systems: Survey and experiments. User Model. User Adapt. Interact. 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  26. R.D. Burke, M. Mansoury, N. Sonboli, Experimentation with fairness-aware recommendation using librec-auto: Hands-on tutorial, in Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20, p. 700, New York, NY 2020. Association for Computing Machinery.

    Google Scholar 

  27. P. Castells, N.J. Hurley, S. Vargas, Novelty and diversity in recommender systems, in Recommender Systems Handbook (Springer, Boston, MA, 2015), pp. 881–918

    Book  Google Scholar 

  28. Ò. Celma, Music Recommendation and Discovery – The Long Tail, Long Fail, and Long Play in the Digital Music Space (Springer, Berlin, 2010)

    Google Scholar 

  29. O. Celma, The exploit-explore dilemma in music recommendation. In Proceedings of the 10th ACM Conference on Recommender Systems (2016), pp. 377–377

    Google Scholar 

  30. O. Celma, P. Herrera, A new approach to evaluating novel recommendations, in ACM Conference on Recommender Systems (RecSys’08) (2008), pp. 179–186

    Google Scholar 

  31. S. Chang, F.M. Harper, L.G. Terveen, Crowd-based personalized natural language explanations for recommendations, in Proc. ACM Conf. on Recommender Systems, RecSys ’16, pp. 175–182 (ACM, New York, 2016)

    Google Scholar 

  32. S. Chang, S. Lee, K. Lee, Sequential skip prediction with few-shot in streamed music contents. CoRR abs/1901.08203, 2019.

    Google Scholar 

  33. C.-W. Chen, P. Lamere, M. Schedl, and H. Zamani. Recsys challenge 2018: Automatic music playlist continuation. In Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18, page 527–528, New York, NY, USA, 2018. Association for Computing Machinery.

    Google Scholar 

  34. R. Chen, Q. Hua, Y. Chang, B. Wang, L. Zhang, X. Kong, A survey of collaborative filtering-based recommender systems: from traditional methods to hybrid methods based on social networks. IEEE Access 6, 64301–64320 (2018)

    Article  Google Scholar 

  35. Z. Cheng, J. Shen, On effective location-aware music recommendation. ACM Trans. Inf. Syst. (TOIS) 34(2), 1–32 (2016)

    Google Scholar 

  36. S.J. Cunningham, Interacting with personal music collections. in Information in Contemporary Society, 2019 (Springer International Publishing, Cham, 2019), pp. 526–536

    Google Scholar 

  37. S.J. Cunningham, D. Bainbridge, A. Bainbridge, Exploring personal music collection behavior, in ed. by S. Choemprayong, F. Crestani, S.J. Cunningham, Digital Libraries: Data, Information, and Knowledge for Digital Lives (Springer International Publishing, Cham, 2017), pp. 295–306

    Google Scholar 

  38. S.J. Cunningham, D. Bainbridge, A. Falconer, ‘More of an art than a science’: supporting the creation of playlists and mixes, in ISMIR 2006, 7th International Conference on Music Information Retrieval, Victoria, 8–12 October 2006, Proceedings (2006), pp 240–245.

    Google Scholar 

  39. S.J. Cunningham, D. Bainbridge, D. Mckay, Finding new music: a diary study of everyday encounters with novel songs, in Proceedings of the 8th International Conference on Music Information Retrieval, pp. 83–88, Vienna, September 23–27 (2007)

    Google Scholar 

  40. S.J. Cunningham, J.S. Downie, D. Bainbridge, The pain, the pain: modelling music information behavior and the songs we hate, in ISMIR 2005, 6th International Conference on Music Information Retrieval, London, 11–15 September 2005, Proceedings (2005), pp. 474–477

    Google Scholar 

  41. Y. Deldjoo, M. Schedl, P. Cremonesi, G. Pasi, Recommender systems leveraging multimedia content. ACM Computing Surv. 53(5) (2020)

    Google Scholar 

  42. Y. Deldjoo, M. Schedl, P. Knees, Content-driven music recommendation: evolution, state of the art, and challenges (2021). Preprint. arXiv

    Google Scholar 

  43. S. Deng, D. Wang, X. Li, G. Xu, Exploring user emotion in microblogs for music recommendation. Expert Syst. Appl. 42(23), 9284–9293 (2015)

    Article  Google Scholar 

  44. G. Dror, N. Koenigstein, Y. Koren, M. Weimer, The Yahoo! Music Dataset and KDD-Cup’11. J. Mach. Learn. Res. Proc. KDD-Cup 2011 Compet. 18, 3–18 (2012)

    Google Scholar 

  45. P.G. Dunn, B. de Ruyter, D.G. Bouwhuis, Toward a better understanding of the relation between music preference, listening behavior, and personality. Psychol. Music 40(4), 411–428 (2012)

    Article  Google Scholar 

  46. T. Eerola, J. Vuoskoski, A comparison of the discrete and dimensional models of emotion in music. Psychol. Music 39(1), 18–49 (2011)

    Article  Google Scholar 

  47. H. Eghbal-zadeh, B. Lehner, M. Schedl, G. Widmer, I-vectors for timbre-based music similarity and music artist classification, in Proceedings of the 16th International Society for Music Information Retrieval Conference, ISMIR 2015, Málaga, October 26–30, 2015, ed. by M. Müller, F. Wiering (2015), pp. 554–560

    Google Scholar 

  48. M.D. Ekstrand, M. Tian, I.M. Azpiazu, J.D. Ekstrand, O. Anuyah, D. McNeill, M.S. Pera, All the cool kids, how do they fit in?: Popularity and demographic biases in recommender evaluation and effectiveness, in Conference on Fairness, Accountability and Transparency, FAT 2018, 23–24 February 2018, New York, NY, ed. by S.A. Friedler, C. Wilson. Proceedings of Machine Learning Research, vol. 81 (PMLR, 2018), pp. 172–186

    Google Scholar 

  49. F. Fabbri, A theory of musical genres: two applications. Popul. Mus. Perspect. 1, 52–81 (1982)

    Google Scholar 

  50. I. Fernández-Tobías, M. Braunhofer, M. Elahi, F. Ricci, I. Cantador, Alleviating the new user problem in collaborative filtering by exploiting personality information. User Model. User-Adapt. Interact. 26(2–3), 221–255 (2016)

    Article  Google Scholar 

  51. A. Ferraro, D. Bogdanov, K. Choi, X. Serra, Using offline metrics and user behavior analysis to combine multiple systems for music recommendation. in Proceedings of the RecSys 2018 Workshop on Offline Evaluation of Recommender Systems (REVEAL) (2018), pp. 6

    Google Scholar 

  52. A. Ferraro, Y. Kim, S. Lee, B. Kim, N. Jo, S. Lim, S. Lim, J. Jang, S. Kim, X. Serra, et al., Melon playlist dataset: a public dataset for audio-based playlist generation and music tagging. in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, New York, 2021), pp. 536–540

    Google Scholar 

  53. B. Ferwerda, M. Graus, A. Vall, M. Tkalčič, M. Schedl, The influence of users’ personality traits on satisfaction and attractiveness of diversified recommendation lists. in 4th Workshop on Emotions and Personality in Personalized Systems (EMPIRE) 2016 (2016), p. 43

    Google Scholar 

  54. B. Ferwerda, M. Schedl, M. Tkalčič, Personality & emotional states: understanding users’ music listening needs, in Extended Proceedings of the 23rd International Conference on User Modeling, Adaptation and Personalization (UMAP), Dublin, June–July 2015

    Google Scholar 

  55. B. Ferwerda, M. Tkalčič, M. Schedl, Personality traits and music genre preferences: How music taste varies over age groups, in Proceedings of the 1st Workshop on Temporal Reasoning in Recommender Systems (RecTemp) at the 11th ACM Conference on Recommender Systems, Como, August 31, 2017, 2017

    Google Scholar 

  56. B. Ferwerda, M. Tkalcic, M. Schedl, Personality traits and music genres: What do people prefer to listen to? in Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, UMAP ’17, New York, NY, (ACM, New York, 2017), pp. 285–288

    Google Scholar 

  57. B. Ferwerda, E. Yang, M. Schedl, M. Tkalčič, Personality traits predict music taxonomy preferences, in Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (ACM, New York, 2015), pp. 2241–2246

    Google Scholar 

  58. B. Ferwerda, E. Yang, M. Schedl, M. Tkalcic, Personality and taxonomy preferences, and the influence of category choice on the user experience for music streaming services. Multim. Tools Appl. 78(14), 20157–20190 (2019)

    Article  Google Scholar 

  59. B. Fields, Contextualize your listening: the playlist as recommendation engine. PhD thesis, Department of Computing Goldsmiths, University of London, 2011

    Google Scholar 

  60. K.R. Fricke, D.M. Greenberg, P.J. Rentfrow, P.Y. Herzberg, Computer-based music feature analysis mirrors human perception and can be used to measure individual music preference. J. Res. Personal. 75, 94–102 (2018)

    Article  Google Scholar 

  61. G. Friedrich, M. Zanker, A taxonomy for generating explanations in recommender systems. AI Mag. 32(3), 90–98 (2011)

    Google Scholar 

  62. A. Gautam, P. Chaudhary, K. Sindhwani, P. Bedi, CBCARS: content boosted context-aware recommendations using tensor factorization, in 2016 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2016, Jaipur, September 21–24, 2016 (IEEE, New York, 2016), pp. 75–81

    Google Scholar 

  63. A. Gilotte, C. Calauzènes, T. Nedelec, A. Abraham, S. Dollé, Offline a/b testing for recommender systems, in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM ’18, New York, NY (Association for Computing Machinery, New York, 2018), pp. 198–206

    Google Scholar 

  64. M. Goto, R.B. Dannenberg, Music interfaces based on automatic music signal analysis: new ways to create and listen to music. IEEE Signal Process. Mag. 36(1), 74–81 (2019)

    Article  Google Scholar 

  65. M. Goto, K. Yoshii, H. Fujihara, M. Mauch, T. Nakano, Songle: a web service for active music listening improved by user contributions, in Proceedings of the 12th International Society for Music Information Retrieval Conference, pp. 311–316, Miami, October. 2011. ISMIR.

    Google Scholar 

  66. S.J. Green, P. Lamere, J. Alexander, F. Maillet, S. Kirk, J. Holt, J. Bourque, X. Mak, Generating transparent, steerable recommendations from textual descriptions of items, in Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009, New York, NY, October 23–25, 2009, ed. by L.D. Bergman, A. Tuzhilin, R.D. Burke, A. Felfernig, L. Schmidt-Thieme (ACM, New York, 2009), pp. 281–284

    Google Scholar 

  67. S.J. Green, P. Lamere, J. Alexander, F. Maillet, S. Kirk, J. Holt, J. Bourque, X.-W. Mak, Generating transparent, steerable recommendations from textual descriptions of items, in Proc. ACM Conf. on Recommender Systems, RecSys ’09 (ACM, New York, 2009), pp. 281–284

    Google Scholar 

  68. A. Gunawardana, G. Shani, Evaluating recommender systems, in Recommender Systems Handbook, ed. by F. Ricci, L. Rokach, B. Shapira (Springer, New York, 2015), pp. 265–308

    Chapter  Google Scholar 

  69. C. Hansen, C. Hansen, S. Alstrup, J.G. Simonsen, C. Lioma, Modelling sequential music track skips using a multi-rnn approach. CoRR abs/1903.08408, 2019

    Google Scholar 

  70. D. Hauger, M. Schedl, A. Košir, M. Tkalčič, The million musical tweets dataset: what can we learn from microblogs, in Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR 2013), Curitiba, November 2013

    Google Scholar 

  71. J.L. Herlocker, J.A. Konstan, L.G. Terveen, J.T. Riedl, Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  72. K. Hevner, Expression in music: a discussion of experimental studies and theories. Psychol. Rev. 42, 186–204 (1935)

    Article  Google Scholar 

  73. Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feedback datasets, in Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008), December 15–19, 2008, Pisa (IEEE Computer Society, Washington, 2008), pp. 263–272

    Google Scholar 

  74. Q. Huang, A. Jansen, L. Zhang, D.P.W. Ellis, R.A. Saurous, J.R. Anderson, Large-scale weakly-supervised content embeddings for music recommendation and tagging, in 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona, May 4–8, 2020 (IEEE, New York, 2020), pp. 8364–8368

    Google Scholar 

  75. D. Jannach, M. Zanker, A. Felfernig, G. Friedrich, Recommender Systems - An Introduction (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  76. Y. Jin, N.N. Htun, N. Tintarev, K. Verbert, Contextplay: Evaluating user control for context-aware music recommendation, in Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2019, Larnaca, Cyprus, June 9–12, 2019, ed. by G.A. Papadopoulos, G. Samaras, S. Weibelzahl, D. Jannach, O.C. Santos (ACM, New York, 2019)

    Google Scholar 

  77. T. Joachims, Optimizing search engines using clickthrough data, in Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2002), pp. 133–142

    Google Scholar 

  78. O.P. John, E.M. Donahue, R.L. Kentle, The big five inventory—versions 4a and 54 (1991)

    Google Scholar 

  79. P. Juslin, P. Laukka, Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. J. New Music Res. 33(2), 217–238 (2004)

    Article  Google Scholar 

  80. I. Kamehkhosh, G. Bonnin, D. Jannach, Effects of recommendations on the playlist creation behavior of users, in User Modeling and User-Adapted Interaction, 2019

    Google Scholar 

  81. I. Kamehkhosh, D. Jannach, G. Bonnin, How automated recommendations affect the playlist creation behavior of users, in Joint Proceedings of the ACM IUI 2018 Workshops co-located with the 23rd ACM Conference on Intelligent User Interfaces (ACM IUI 2018), Tokyo, March 11, 2018, ed. by A. Said, T. Komatsu. CEUR Workshop Proceedings, vol. 2068 (CEUR-WS.org, Amsterdam, 2018)

    Google Scholar 

  82. M. Kaminskas, D. Bridge, Diversity, serendipity, novelty, and coverage: a survey and empirical analysis of beyond-accuracy objectives in recommender systems. ACM Trans. Interact. Intell. Syst. 7(1), 2:1–2:42 (2017)

    Google Scholar 

  83. M. Kaminskas, F. Ricci, Contextual music information retrieval and recommendation: state of the art and challenges. Comput. Sci. Rev. 6, 89–119 (2012)

    Article  Google Scholar 

  84. M. Kaminskas, F. Ricci, M. Schedl, Location-aware music recommendation using auto-tagging and hybrid matching, in Proceedings of the 7th ACM Conference on Recommender Systems (RecSys 2013), Hong Kong, October 2013

    Google Scholar 

  85. A. Karatzoglou, X. Amatriain, L. Baltrunas, N. Oliver, Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering, in Proceedings of the 2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona, September 26–30, 2010, ed. by X. Amatriain, M. Torrens, P. Resnick, M. Zanker (eds.) (ACM, New York, 2010), pp. 79–86

    Google Scholar 

  86. E. Karydi, K.G. Margaritis, Parallel and distributed collaborative filtering: a survey. ACM Comput. Surv. 49(2), 37:1–37:41 (2016)

    Google Scholar 

  87. Y. Kjus, Musical exploration via streaming services: The norwegian experience. Popul. Commun. 14(3), 127–136 (2016)

    Article  Google Scholar 

  88. P. Knees, A proposal for a neutral music recommender system, in , Proceedings of the 1st Workshop on Designing Human-Centric Music Information Research Systems, ed. by M. Miron (2019), pp. 4–7

    Google Scholar 

  89. P. Knees, M. Hübler, Towards uncovering dataset biases: investigating record label diversity in music playlists, in Proceedings of the 1st Workshop on Designing Human-Centric Music Information Research Systems, ed. by M. Miron (2019), pp. 19–22

    Google Scholar 

  90. P. Knees, M. Schedl, A survey of music similarity and recommendation from music context data. ACM Trans. Multimedia Comput. Commun. Appl. 10(1), 2:1–2:21 (2013)

    Google Scholar 

  91. P. Knees, M. Schedl, Music Similarity and Retrieval - An Introduction to Audio- and Web-based Strategies, vol. 36. The Information Retrieval Series (Springer, New York, 2016)

    Google Scholar 

  92. P. Knees, M. Schedl, B. Ferwerda, A. Laplante, User awareness in music recommender systems, in Personalized Human-Computer Interaction, ed. by M. Augstein, E. Herder, W. Wörndl (DeGruyter, Berlin, Boston, 2019), pp. 223–252

    Chapter  Google Scholar 

  93. P. Knees, M. Schedl, M. Goto, Intelligent user interfaces for music discovery. Trans. Int. Soc. Music Inf. Retriev. 3, 165—179 (2020)

    Google Scholar 

  94. B.P. Knijnenburg, M.C. Willemsen, Z. Gantner, H. Soncu, C. Newell, Explaining the user experience of recommender systems. User Model. User Adapt. Interact. 22(4–5), 441–504 (2012)

    Article  Google Scholar 

  95. V.J. Konecni, Social interaction and musical preference, in The Psychology of Music (Academic, New York, 1982), pp. 497–516

    Google Scholar 

  96. Y. Koren, R.M. Bell, Advances in collaborative filtering, in Recommender Systems Handbook, ed. by F. Ricci, L. Rokach, B. Shapira (Springer, New York, 2015), pp. 77–118

    Chapter  Google Scholar 

  97. D. Kowald, E. Lex, M. Schedl, Utilizing human memory processes to model genre preferences for personalized music recommendations (2020). CoRR abs/2003.10699

    Google Scholar 

  98. D. Kowald, M. Schedl, E. Lex, The unfairness of popularity bias in music recommendation: a reproducibility study, in Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II, ed. by J.M. Jose, E. Yilmaz, J. Magalhães, P. Castells, N. Ferro, M. J. Silva, F. Martins. Lecture Notes in Computer Science, vol. 12036 (Springer, New York, 2020), pp. 35–42

    Google Scholar 

  99. W. Krichene, S. Rendle, On sampled metrics for item recommendation. in KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, August 23–27, 2020, ed. by R. Gupta, Y. Liu, J. Tang, B.A. Prakash (ACM, New York, 2020), pp. 1748–1757

    Chapter  Google Scholar 

  100. F.-F. Kuo, M.-K. Shan, S.-Y. Lee, Background music recommendation for video based on multimodal latent semantic analysis, in 2013 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, New York, 2013), pp. 1–6

    Google Scholar 

  101. A. Laplante, Everyday life music information-seeking behaviour of young adults: An exploratory study. Doctoral dissertation, 2008

    Google Scholar 

  102. A. Laplante, Improving music recommender systems: What we can learn from research on music tastes? in 15th International Society for Music Information Retrieval Conference, Taipei, Taiwan, October 2014

    Google Scholar 

  103. A. Laplante, J.S. Downie, Everyday life music information-seeking behaviour of young adults, in Proceedings of the 7th International Conference on Music Information Retrieval, Victoria (BC), October 8–12, 2006

    Google Scholar 

  104. J.H. Lee, How similar is too similar?: Exploring users’ perceptions of similarity in playlist evaluation, in Proceedings of the 12th International Society for Music Information Retrieval Conference, ISMIR 2011, Miami, FL, October 24–28, 2011, ed. by A. Klapuri, C. Leider (University of Miami, Miami, 2011), pp. 109–114

    Google Scholar 

  105. J.H. Lee, H. Cho, Y.-S. Kim, Users’ music information needs and behaviors: Design implications for music information retrieval systems. J. Assoc. Inf. Sci. Technol. 67(6), 1301–1330 (2016)

    Article  Google Scholar 

  106. J.H. Lee, R. Wishkoski, L. Aase, P. Meas, C. Hubbles, Understanding users of cloud music services: selection factors, management and access behavior, and perceptions. J. Assoc. Inf. Sci. Technol. 68(5), 1186–1200 (2017)

    Article  Google Scholar 

  107. J. Lehmann, M. Lalmas, E. Yom-Tov, G. Dupret, Models of user engagement, in User Modeling, Adaptation, and Personalization - 20th International Conference, UMAP 2012, Montreal, July 16–20, 2012. Proceedings, ed. by J. Masthoff, B. Mobasher, M.C. Desmarais, R. Nkambou. Lecture Notes in Computer Science, , vol. 7379, pp. 164–175 (Springer, New York, 2012)

    Google Scholar 

  108. E. Lex, D. Kowald, P. Seitlinger, T.N.T. Tran, A. Felfernig, M. Schedl, Psychology-informed recommender systems, in Foundations and Trends in Information Retrieval, 2021

    Google Scholar 

  109. Q. Lin, Y. Niu, Y. Zhu, H. Lu, K.Z. Mushonga, Z. Niu, Heterogeneous knowledge-based attentive neural networks for short-term music recommendations. IEEE Access 6, 58990–59000 (2018)

    Article  Google Scholar 

  110. Y.-T. Lin, T.-H. Tsai, M.-C. Hu, W.-H. Cheng, J.-L. Wu, Semantic based background music recommendation for home videos, in International Conference on Multimedia Modeling (Springer, New York, 2014), pp. 283–290

    Google Scholar 

  111. A.J. Lonsdale, A.C. North, Why do we listen to music? A uses and gratifications analysis. Br. J. Psychol. 102(1), 108–134 (2011)

    Google Scholar 

  112. C.-C. Lu, V.S. Tseng, A novel method for personalized music recommendation. Expert Syst. Appl. 36(6), 10035–10044 (2009)

    Article  Google Scholar 

  113. F. Lu, N. Tintarev, A diversity adjusting strategy with personality for music recommendation, in Proceedings of the 5th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems, co-located with ACM Conference on Recommender Systems (RecSys 2018), October 2018, pp. 7–14

    Google Scholar 

  114. B. McFee, L. Barrington, G. Lanckriet, Learning content similarity for music recommendation. IEEE Trans. Audio Speech Lang. Process. 20(8), 2207–2218 (2012)

    Article  Google Scholar 

  115. B. McFee, T. Bertin-Mahieux, D. Ellis, and G. Lanckriet. The million song dataset challenge. In Proc. of the 4th International Workshop on Advances in Music Information Research (AdMIRe), April 2012.

    Google Scholar 

  116. B. McFee, G. Lanckriet, The natural language of playlists, in Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR), Miami, FL, 2011

    Google Scholar 

  117. B. McFee, G. Lanckriet, Hypergraph models of playlist dialects, in Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR 2012), Porto, October 2012

    Google Scholar 

  118. B. McFee, G.R.G. Lanckriet, Learning multi-modal similarity. J. Mach. Learn. Res. 12, 491–523 (2011)

    MathSciNet  MATH  Google Scholar 

  119. B. McFee, C. Raffel, D. Liang, D.P. Ellis, M. McVicar, E. Battenberg, O. Nieto, librosa: audio and music signal analysis in python, in Proceedings of the 14th Python in Science Conference, vol. 8 (2015), pp. 18–25

    Google Scholar 

  120. J. McInerney, B. Lacker, S. Hansen, K. Higley, H. Bouchard, A. Gruson, R. Mehrotra, Explore, exploit, and explain: Personalizing explainable recommendations with bandits, in Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18, New York, NY, (Association for Computing Machinery, New York, 2018), pp. 31–39

    Google Scholar 

  121. S. McNee, J. Riedl, J. Konstan, Being accurate is not enough: how accuracy metrics have hurt recommender systems, in CHI’06 Extended Abstracts on Human Factors in Computing Systems (2006), p. 1101

    Google Scholar 

  122. R. Mehrotra, J. McInerney, H. Bouchard, M. Lalmas, F. Diaz, Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in recommendation systems, in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18 (Association for Computing Machinery, New York, NY, 2018), pp. 2243–2251

    Google Scholar 

  123. A.B. Melchiorre, M. Schedl, Personality correlates of music audio preferences for modelling music listeners, in Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, UMAP ’20 (Association for Computing Machinery, New York, NY, 2020), pp. 313–317

    Google Scholar 

  124. A.B. Melchiorre, E. Zangerle, M. Schedl, Personality bias of music recommendation algorithms, in Fourteenth ACM Conference on Recommender Systems, RecSys ’20 (Association for Computing Machinery, New York, NY, 2020), pp. 533–538

    Google Scholar 

  125. M. Millecamp, N.N. Htun, C. Conati, K. Verbert, To explain or not to explain: the effects of personal characteristics when explaining music recommendations, in Proceedings of the 24th International Conference on Intelligent User Interfaces, IUI 2019, Marina del Ray, CA, March 17–20, 2019, ed. by W. Fu, S. Pan, O. Brdiczka, P. Chau, G. Calvary (ACM, New York, 2019), pp. 397–407

    Google Scholar 

  126. M. Millecamp, N.N. Htun, Y. Jin, K. Verbert, Controlling spotify recommendations: Effects of personal characteristics on music recommender user interfaces, in Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, UMAP ’18 (Association for Computing Machinery, New York, NY, 2018), pp. 101–109

    Google Scholar 

  127. D. Moffat, D. Ronan, J.D. Reiss, An evaluation of audio feature extraction toolboxes, in 18th International Conference on Digital Audio Effects (DAFx-15) (2015), p. 7

    Google Scholar 

  128. M. Müller, Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications (Springer, New York, 2015)

    Book  Google Scholar 

  129. C. Musto, F. Narducci, P. Lops, M. De Gemmis, G. Semeraro, ExpLOD: a framework for explaining recommendations based on the LOD cloud, in Proc. ACM Conf. on Recommender Systems, RecSys ’16 (ACM, New York, 2016), pp. 151–154

    Google Scholar 

  130. T. Nakano, M. Goto, LyricListPlayer: a consecutive-query-by-playback interface for retrieving similar word sequences from different song lyrics, in Proceedings of the 13th Sound and Music Computing Conference (SMC2016), Hamburg, August 2016, Zenodo

    Google Scholar 

  131. A.C. North, D.J. Hargreaves, Subjective complexity, familiarity, and liking for popular music. Psychomusicol. Music Mind Brain 14(1–2), 77–93 (1995)

    Article  Google Scholar 

  132. A.C. North, D.J. Hargreaves, Situational influences on reported musical preference. Psychomusicol. J. Res. Music Cogn. 15(1–2), 30 (1996)

    Google Scholar 

  133. S. Oramas, O. Nieto, M. Sordo, X. Serra, A deep multimodal approach for cold-start music recommendation, in Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, DLRS@RecSys 2017, Como, August 27, 2017, ed. by B. Hidasi, A. Karatzoglou, O.S. Shalom, S. Dieleman, B. Shapira, D. Tikk (ACM, New York, 2017), pp. 32–37

    Google Scholar 

  134. S. Oramas, V.C. Ostuni, T.D. Noia, X. Serra, E.D. Sciascio, Sound and music recommendation with knowledge graphs. ACM Trans. Intell. Syst. Technol. 8(2), 1–2 (2016)

    Article  Google Scholar 

  135. E. Pampalk, M. Goto, Musicsun: a new approach to artist recommendation, in Proceedings of the 8th International Conference on Music Information Retrieval, ISMIR 2007, Vienna, September 23–27, 2007, ed. by S. Dixon, D. Bainbridge, R. Typke (Austrian Computer Society, Vienna, 2007), pp. 101–104

    Google Scholar 

  136. P. Papreja, H. Venkateswara, S. Panchanathan, Representation, exploration and recommendation of music playlists (2019). Preprint. arXiv:1907.01098

    Google Scholar 

  137. D. Parra, X. Amatriain, Walk the talk, in International Conference on User Modeling, Adaptation, and Personalization (Springer, New York, 2011), pp. 255–268

    Google Scholar 

  138. C.S. Pereira, J. Teixeira, P. Figueiredo, J. Xavier, S.L. Castro, E. Brattico, Music and emotions in the brain: familiarity matters. PLOS One 6(11), 1–9 (2011)

    Article  Google Scholar 

  139. M. Pichl, E. Zangerle, G. Specht, Towards a Context-Aware Music Recommendation Approach: What is Hidden in the Playlist Name? in 2015 IEEE International Conference on Data Mining Workshop (ICDMW), November 2015, Atlantic City, NJ (IEEE, New York, 2015), pp. 1360–1365

    Google Scholar 

  140. A. Poddar, E. Zangerle, Y.-H. Yang, #nowplaying-rs: A new benchmark dataset for building context-aware music recommender systems, in Proceedings of the 15th Sound & Music Computing Conference, Limassol, Cyprus, 2018. Code at https://github.com/asmitapoddar/nowplaying-RS-Music-Reco-FM

  141. A. Porter, D. Bogdanov, R. Kaye, R. Tsukanov, X. Serra, Acousticbrainz: a community platform for gathering music information obtained from audio, in International Society for Music Information Retrieval Conference (ISMIR’15), 2015

    Google Scholar 

  142. P. Pu, L. Chen, R. Hu, A user-centric evaluation framework for recommender systems, in Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, October 23–27, 2011, ed. by B. Mobasher, R.D. Burke, D. Jannach, G. Adomavicius (ACM, New York, 2011), pp. 157–164

    Google Scholar 

  143. M. Quadrana, P. Cremonesi, D. Jannach, Sequence-aware recommender systems. ACM Comput. Surv. 51(4), 66:1–66:36 (2018)

    Google Scholar 

  144. P.J. Rentfrow, S.D. Gosling, The do re mi’s of everyday life: The structure and personality correlates of music preferences. J. Personal. Soc. Psychol. 84(6), 1236–1256 (2003)

    Article  Google Scholar 

  145. P.J. Rentfrow, S.D. Gosling, The content and validity of music-genre stereotypes among college students. Psychol. Music 35(2), 306–326 (2007)

    Article  Google Scholar 

  146. M. T. Ribeiro, S. Singh, and C. Guestrin. “Why Should I Trust You?”. In Proc. Intl. Conf. on Knowledge Discovery and Data Mining (ACM, New York, 2016), pp. 1135–1144

    Google Scholar 

  147. K. Robinson, D. Brown, M. Schedl, User insights on diversity in music recommendation lists, in Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR 2020), Virtual, October 2020

    Google Scholar 

  148. N. Sachdeva, K. Gupta, V. Pudi, Attentive neural architecture incorporating song features for music recommendation, in Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October 2–7, 2018, ed. by S. Pera, M.D. Ekstrand, X. Amatriain, J. O’Donovan (ACM, New York, 2018), pp. 417–421

    Google Scholar 

  149. T. Schäfer, P. Sedlmeier, C. Städtler, D. Huron, The psychological functions of music listening. Front. Psychol. 4(511), 1–34 (2013)

    Google Scholar 

  150. M. Schedl, Leveraging microblogs for spatiotemporal music information retrieval, in Proceedings of the 35th European Conference on Information Retrieval (ECIR 2013), Moscow, March 24–27 (2013)

    Google Scholar 

  151. M. Schedl, The lfm-1b dataset for music retrieval and recommendation, in Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, ICMR 2016, New York, New York, June 6–9, 2016, ed. by J.R. Kender, J.R. Smith, J. Luo, S. Boll, W.H. Hsu (ACM, New York, 2016), pp. 103–110

    Google Scholar 

  152. M. Schedl, Deep learning in music recommendation systems. Front. Appl. Math. Stat. 5, 44 (2019)

    Article  Google Scholar 

  153. M. Schedl, C. Bauer, W. Reisinger, D. Kowald, E. Lex, Listener modeling and context-aware music recommendation based on country archetypes. Front. Artif. Intell. 3, 508725 (2020)

    Article  Google Scholar 

  154. M. Schedl, B. Ferwerda, Large-scale analysis of group-specific music genre taste from collaborative tags, in 19th IEEE International Symposium on Multimedia, ISM 2017, Taichung, December 11–13, 2017 (IEEE Computer Society, New York, 2017), pp. 479–482

    Google Scholar 

  155. M. Schedl, E. Gómez, E.S. Trent, M. Tkalcic, H. Eghbal-Zadeh, A. Martorell, On the interrelation between listener characteristics and the perception of emotions in classical orchestra music. IEEE Trans. Affect. Comput. 9(4), 507–525 (2018)

    Article  Google Scholar 

  156. M. Schedl, D. Hauger, Tailoring music recommendations to users by considering diversity, mainstreaminess, and novelty, in Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, August 9–13, 2015, ed. by R. Baeza-Yates, M. Lalmas, A. Moffat, B.A. Ribeiro-Neto (ACM, New York, 2015), pp. 947–950

    Google Scholar 

  157. M. Schedl, D. Hauger, K. Farrahi, M. Tkalcic, On the influence of user characteristics on music recommendation algorithms, in Advances in Information Retrieval - 37th European Conference on IR Research, ECIR 2015, , Vienna, Austria, March 29 - April 2, 2015. Proceedings, ed. by A. Hanbury, G. Kazai, A. Rauber, N. Fuhr. Lecture Notes in Computer Science, vol. 9022 (2015), pp. 339–345

    Google Scholar 

  158. M. Schedl, P. Knees, F. Gouyon, New paths in music recommender systems research, in Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys 2017, Como, August 27–31, 2017, ed. by P. Cremonesi, F. Ricci, S. Berkovsky, A. Tuzhilin (ACM, New York, 2017), pp. 392–393

    Google Scholar 

  159. M. Schedl, P. Knees, B. McFee, D. Bogdanov, M. Kaminskas, Music recommender systems, in Recommender Systems Handbook, 2nd edn., ed. by F. Ricci, L. Rokach, B. Shapira. (Springer, New York, 2015), pp. 453–492

    Chapter  Google Scholar 

  160. M. Schedl, M. Tkalcic, Genre-based analysis of social media data on music listening behavior: are fans of classical music really averse to social media? in Proceedings of the First International Workshop on Internet-Scale Multimedia Management, WISMM ’14, , Orlando, FL, November 7, 2014, ed. by R. Zimmermann, Y. Yu (ACM, New York, 2014), pp. 9–13

    Google Scholar 

  161. M. Schedl, H. Zamani, C. Chen, Y. Deldjoo, M. Elahi, Current challenges and visions in music recommender systems research. Int. J. Multim. Inf. Retr. 7(2), 95–116 (2018)

    Article  Google Scholar 

  162. G. Shani, A. Gunawardana, Evaluating recommender systems, in Recommender Systems Handbook (Springer, New York, 2009), pp. 257–298

    Google Scholar 

  163. G. Shani, D. Heckerman, R.I. Brafman, An MDP-based recommender system. J. Mach. Learn. Res. 6, 1265–1295 (2005)

    MathSciNet  MATH  Google Scholar 

  164. M. Slaney, K. Weinberger, W. White, Learning a metric for music similarity, in Int. Symp. on Music Information Retrieval (ISMIR’08) (2008), pp. 313–318

    Google Scholar 

  165. J. Smith, D. Weeks, M. Jacob, J. Freeman, B. Magerko, Towards a hybrid recommendation system for a sound library, in IUI Workshops (2019)

    Google Scholar 

  166. B. Smyth, P. McClave, Similarity vs. diversity, in Case-Based Reasoning Research and Development, 4th International Conference on Case-Based Reasoning, ICCBR 2001, Vancouver, BC, Canada, July 30 - August 2, 2001, Proceedings, ed. by D.W. Aha, I.D. Watson. Lecture Notes in Computer Science, vol. 2080 (Springer, New York, 2001), pp. 347–361

    Google Scholar 

  167. M. Sordo, O. Celma, M. Blech, E. Guaus, The quest for musical genres: Do the experts and the wisdom of crowds agree? in Int. Conf. of Music Information Retrieval (ISMIR’08) (2008), pp. 255–260

    Google Scholar 

  168. L. Spinelli, J. Lau, L. Pritchard, J.H. Lee, Influences on the social practices surrounding commercial music services: a model for rich interactions, in Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, 2018

    Google Scholar 

  169. H. Steck, Calibrated recommendations, in Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18 (Association for Computing Machinery, New York, NY, 2018), pp. 154–162

    Google Scholar 

  170. A. Swaminathan, T. Joachims, Counterfactual risk minimization: learning from logged bandit feedback, in International Conference on Machine Learning (2015), pp. 814–823

    Google Scholar 

  171. M. Tiemann, S. Pauws, Towards ensemble learning for hybrid music recommendation, in ACM Conf. on Recommender Systems (RecSys’07) (2007), pp. 177–178

    Google Scholar 

  172. N. Tintarev, M. Dennis, J. Masthoff, Adapting recommendation diversity to openness to experience: a study of human behaviour, in User Modeling, Adaptation, and Personalization, ed. by S. Carberry, S. Weibelzahl, A. Micarelli, G. Semeraro (Springer, Berlin, Heidelberg, 2012), pp. 190–202

    Google Scholar 

  173. N. Tintarev, J. Masthoff, Explaining recommendations: design and evaluation, in Recommender Systems Handbook (Springer, New York, 2015), pp. 353–382

    Book  Google Scholar 

  174. W. Trost, T. Ethofer, M. Zentner, P. Vuilleumier, Mapping aesthetic musical emotions in the brain. Cerebral Cortex 22(12), 2769–2783 (2012)

    Article  Google Scholar 

  175. D. Turnbull, L. Barrington, D. Torres, G. Lanckriet, Semantic annotation and retrieval of music and sound effects. Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)

    Article  Google Scholar 

  176. D. Turnbull, L. Waldner, Local music event recommendation with long tail artists (2018). Preprint. arXiv:1809.02277

    Google Scholar 

  177. A. Vall, M. Dorfer, H. Eghbal-zadeh, M. Schedl, K. Burjorjee, G. Widmer, Feature-combination hybrid recommender systems for automated music playlist continuation. User Model. User Adapt. Interact. 29(2), 527–572 (2019)

    Article  Google Scholar 

  178. A. van den Oord, S. Dieleman, B. Schrauwen, Deep content-based music recommendation, in Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5–8, 2013, Lake Tahoe, Nevada, United States, ed. by C.J.C. Burges, L. Bottou, Z. Ghahramani, K.Q. Weinberger (2013), pp. 2643–2651

    Google Scholar 

  179. S. Verma, J. Rubin, Fairness definitions explained, in Proceedings of the International Workshop on Software Fairness, FairWare ’18 (Association for Computing Machinery, New York, NY, 2018), pp. 1–7

    Google Scholar 

  180. G. Vigliensoni, I. Fujinaga, Automatic music recommendation systems: Do demographic, profiling, and contextual features improve their performance? in Proceedings of the 17th International Society for Music Information Retrieval Conference, ISMIR 2016, New York City, August 7–11, 2016, ed. by M.I. Mandel, J. Devaney, D. Turnbull, G. Tzanetakis (2016), pp. 94–100

    Google Scholar 

  181. G. Vigliensoni, I. Fujinaga, The music listening histories dataset, in Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, People’s Republic of China, 2017, pp. 96–102

    Google Scholar 

  182. D. Wang, S. Deng, X. Zhang, G. Xu, Learning to embed music and metadata for context-aware music recommendation. World Wide Web 21(5), 1399–1423 (2018)

    Article  Google Scholar 

  183. S. Wang, L. Hu, Y. Wang, L. Cao, Q.Z. Sheng, M.A. Orgun, Sequential recommender systems: Challenges, progress and prospects. CoRR abs/2001.04830 (2020)

    Google Scholar 

  184. M. Ward, J. Goodman, J. Irwin, The same old song: the power of familiarity in music choice. Market. Lett. 25, 1–11 (2013)

    Article  Google Scholar 

  185. D. Weigl, C. Guastavino, User Studies in the Music Information Retrieval Literature, in Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), Miami, FL, USA, October 2011

    Google Scholar 

  186. W. Wu, L. Chen, Y. Zhao, Personalizing recommendation diversity based on user personality. User Model. User-Adapt. Interact. 28(3), 237–276 (2018)

    Article  Google Scholar 

  187. S. Yao, B. Huang, Beyond parity: fairness objectives for collaborative filtering, in Advances in Neural Information Processing Systems 30, ed. by I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Curran Associates, Inc., Red Hook, 2017), pp. 2921–2930

    Google Scholar 

  188. H. Zamani, M. Schedl, P. Lamere, C. Chen, An analysis of approaches taken in the ACM recsys challenge 2018 for automatic music playlist continuation. ACM Trans. Intell. Syst. Technol. 10(5), 57:1–57:021 (2019)

    Google Scholar 

  189. E. Zangerle, M. Pichl, W. Gassler, G. Specht, #nowplaying music dataset: extracting listening behavior from twitter, in Proceedings of the First International Workshop on Internet-Scale Multimedia Management, WISMM ’14 (Association for Computing Machinery, New York, NY, 2014), pp. 21–26

    Google Scholar 

  190. M. Zenter, D. Grandjean, K. Scherer, Emotions evoked by the sound of music: characterization, classification, and measurement. Emotion 8, 494 (2008)

    Article  Google Scholar 

  191. Y.C. Zhang, D.O. Séaghdha, D. Quercia, T. Jambor, Auralist: Introducing serendipity into music recommendation, in Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ’12. (ACM,New York, NY, 2012), pp. 13–22

    Google Scholar 

  192. E. Zheleva, J. Guiver, E. Mendes Rodrigues, N. Milić-Frayling, Statistical models of music-listening sessions in social media. in Int. Conf. on World Wide Web (WWW’10) (2010), pp. 1019–1028

    Google Scholar 

  193. Y. Zheng, Context-aware mobile recommendation by A novel post-filtering approach, in Proceedings of the Thirty-First International Florida Artificial Intelligence Research Society Conference, FLAIRS, 2018, Melbourne, FL, May 21–23 2018, ed. by K. Brawner, V. Rus (AAAI Press, New york, 2018), pp. 482–485

    Google Scholar 

  194. Y. Zheng, R.D. Burke, B. Mobasher, Splitting approaches for context-aware recommendation: an empirical study, in Symposium on Applied Computing, SAC 2014, Gyeongju, Republic of Korea - March 24–28, 2014, ed. by Y. Cho, S.Y. Shin, S. Kim, C. Hung, J. Hong (ACM, New York, 2014), pp. 274–279

    Google Scholar 

  195. L. Zhu, Y. Chen, Session-based sequential skip prediction via recurrent neural networks. CoRR abs/1902.04743 (2019)

    Google Scholar 

  196. C. Ziegler, S.M. McNee, J.A. Konstan, G. Lausen, Improving recommendation lists through topic diversification, in Proceedings of the 14th international conference on World Wide Web, WWW 2005, Chiba, May 10–14, 2005, ed. by A. Ellis, T. Hagino (ACM, New York, 2005), pp. 22–32

    Google Scholar 

Download references

Acknowledgements

We would like to thank Marius Kaminskas for contributing to the previous version of this chapter, in the second edition of this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schedl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schedl, M., Knees, P., McFee, B., Bogdanov, D. (2022). Music Recommendation Systems: Techniques, Use Cases, and Challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2197-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2197-4_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-2196-7

  • Online ISBN: 978-1-0716-2197-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics