Nothing Special   »   [go: up one dir, main page]

Skip to main content

Free Energy Minimization to Predict RNA Secondary Structures and Computational RNA Design

  • Protocol
  • First Online:
RNA Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1269))

Abstract

Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brion P, Westhof E (1997) Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct 26:113–137

    Article  CAS  PubMed  Google Scholar 

  2. Tinoco I, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281

    Article  CAS  PubMed  Google Scholar 

  3. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31:439–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nussinov R, Pieczenik G, Grigg JR, Kleitman DJ (1978) Algorithms for loop matchings. SIAM J Appl Math 35:68–82

    Article  Google Scholar 

  5. Waterman MS, Smith TF (1978) RNA secondary structure: a complete mathematical analysis. Math Biosci 42:257–266

    Article  CAS  Google Scholar 

  6. Nussinov R, Jacobson AB (1980) Fast algorithm for predicting the secondary structure of single stranded RNA. Proc Natl Acad Sci U S A 77(11):6309–6313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zuker M, Sankoff D (1984) RNA secondary structures and their prediction. Bull Math Biol 46:591–621

    Article  CAS  Google Scholar 

  9. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188

    Article  CAS  Google Scholar 

  11. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  13. Shapiro BA, Wu J-C, Bengali D, Potts MJ (2001) The massively parallel genetic algorithm for RNA folding: MIMD implementation and population variation. Bioinformatics 17:137–148

    Article  CAS  PubMed  Google Scholar 

  14. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1105–1119

    Article  CAS  PubMed  Google Scholar 

  15. Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244:48–52

    Article  CAS  PubMed  Google Scholar 

  16. Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49:145–165

    Article  CAS  PubMed  Google Scholar 

  17. Steffen B, Voss B, Rehmsmeier M, Reeder J, Giegerich R (2006) RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics 22(4):500–503

    Article  CAS  PubMed  Google Scholar 

  18. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007) Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3(4):e65

    Article  PubMed Central  PubMed  Google Scholar 

  19. Gorodkin J, Hofacker IL, Torarinsson E, Yao Z, Havgaard JH, Ruzzo WL (2010) De novo prediction of structures RNAs from genomic sequences. Trends Biotechnol 28(1):9–20

    Article  CAS  PubMed  Google Scholar 

  20. Markham NR, Zuker M (2008) Software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31

    Article  CAS  PubMed  Google Scholar 

  21. Lorenz R, Lorenz R, Bernhart SH, Höner zu Siederdissen C, Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA package 2.0. algorithms. Mol Biol 6:26

    Google Scholar 

  22. You S, Stump DD, Branch AD, Rice CM (2004) A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis c virus RNA replication. J Virol 78(3):1352–1366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Krol J, Sobczak K, Wilczynska U, Drath M, Janiska A, Kaczynska D, Krzyzosiak WJ (2004) Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J Biol Chem 279:42230–42239

    Article  CAS  PubMed  Google Scholar 

  24. Barash D, Churkin A (2011) Mutational analysis in RNAs: comparing programs for RN deleterious mutation prediction. Brief Bioinform 12(2):104–114

    Article  CAS  PubMed  Google Scholar 

  25. Churkin A, Barash D (2008) An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions. BMC Bioinformatics 9:222

    Article  PubMed Central  PubMed  Google Scholar 

  26. Waldispühl J, Devadas S, Berger B, Clote P (2008) Efficient algorithms for probing the RNA mutational landscape. PLoS Comput Biol 4:e1000124

    Article  PubMed Central  PubMed  Google Scholar 

  27. Churkin A, Gabdank I, Barash D (2011) The RNAmute web server for the mutational analysis of RNA secondary structures. Nucleic Acids Res 39:W92–W99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Levin A, Lis M, Ponty Y, O’Donnell CW, Devadas S, Berger B, Waldispühl J (2012) A global sampling approach to designing and reengineering RNA secondary structures. Nucleic Acids Res 40(20):10041–10052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Shapiro BA (1988) An algorithm for comparing RNA secondary structures. Comput Appl Biosci 4:387–393

    CAS  PubMed  Google Scholar 

  30. Avihoo A, Churkin A, Barash D (2011) RNAexinv: an extended inverse RNA folding from shape and physical attributes to sequences. BMC Bioinformatics 12(319):24

    Google Scholar 

  31. Weinbrand L, Avihoo A, Barash D (2013) RNAfbinv: an interactive Java application for fragment-based design of RNA sequences. Bioinformatics 29(22):2938–2940

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Idan Gabdank and Assaf Avihoo for their assistance in this study. This work was partially supported by the Kreitman Foundation at Ben-Gurion University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Barash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Churkin, A., Weinbrand, L., Barash, D. (2015). Free Energy Minimization to Predict RNA Secondary Structures and Computational RNA Design. In: Picardi, E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 1269. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2291-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2291-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2290-1

  • Online ISBN: 978-1-4939-2291-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics