Nothing Special   »   [go: up one dir, main page]

Skip to main content

Privacy Aspects of Recommender Systems

  • Chapter
Recommender Systems Handbook

Abstract

The popularity of online recommender systems has soared; they are deployed in numerous websites and gather tremendous amounts of user data that are necessary for recommendation purposes. This data, however, may pose a severe threat to user privacy, if accessed by untrusted parties or used inappropriately. Hence, it is of paramount importance for recommender system designers and service providers to find a sweet spot, which allows them to generate accurate recommendations and guarantee the privacy of their users. In this chapter we overview the state of the art in privacy enhanced recommendations. We analyze the risks to user privacy imposed by recommender systems, survey the existing solutions, and discuss the privacy implications for the users of recommenders. We conclude that a considerable effort is still required to develop practical recommendation solutions that provide adequate privacy guarantees, while at the same time facilitating the delivery of high-quality recommendations to their users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://pages.ebay.com/help/policies/privacy-policy.html.

  2. 2.

    http://www.amazon.com/gp/help/customer/display.html?nodeId=468496.

  3. 3.

    http://www.google.com/intl/en/policies/privacy/.

  4. 4.

    http://www.mobcom.org.

References

  1. Ackerman, M.S., Cranor, L.F., Reagle, J.: Privacy in e-commerce: Examining user scenarios and privacy preferences. In: Proceedings of the 1st ACM Conference on Electronic Commerce, EC ’99, pp. 1–8. ACM, New York, NY, USA (1999). DOI 10.1145/336992.336995

  2. Acquisti, A.: Privacy in electronic commerce and the economics of immediate gratification. In: Proceedings of the 5th ACM conference on Electronic commerce, EC ’04, pp. 21–29. ACM, New York, NY (2004). DOI 10.1145/988772.988777

  3. Acquisti, A.: Nudging privacy: The behavioral economics of personal information. IEEE Security and Privacy 7, 82–85 (2009). DOI http://dx.doi.org/10.1109/MSP.2009.163

  4. Acquisti, A., Grossklags, J.: Privacy and rationality in individual decision making. IEEE Security & Privacy 3(1), 26–33 (2005). DOI 10.1109/MSP.2005.22

    Article  Google Scholar 

  5. Acquisti, A., Grossklags, J.: What can behavioral economics teach us about privacy? In: A. Acquisti, S. De Capitani di Vimercati, S. Gritzalis, C. Lambrinoudakis (eds.) Digital Privacy: Theory, Technologies, and Practices, pp. 363–377. Auerbach Publications (2008)

    Google Scholar 

  6. Acquisti, A., John, L.K., Loewenstein, G.: The impact of relative standards on the propensity to disclose. Journal of Marketing Research 49(2), 160–174 (2012). DOI 10.1509/jmr.09.0215

    Article  Google Scholar 

  7. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD Conference, pp. 439–450 (2000)

    Google Scholar 

  8. Aïmeur, E., Brassard, G., Fernandez, J.M., Mani Onana, F.S.: Alambic: A privacy-preserving recommender system for electronic commerce. International Journal of Information Security 7(5), 307–334 (2008). DOI 10.1007/s10207-007-0049-3

    Article  Google Scholar 

  9. Arlein, R.M., Jai, B., Jakobsson, M., Monrose, F., Reiter, M.K.: Privacy-preserving global customization. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, EC ’00, pp. 176–184. ACM, New York, NY, USA (2000). DOI 10.1145/352871.352891

  10. Awad, N.F., Krishnan, M.S.: The personalization privacy paradox: An empirical evaluation of information transparency and the willingness to be profiled online for personalization. MIS Quarterly 30(1), 13–28 (2006)

    Google Scholar 

  11. Bakos, Y., Marotta-Wurgler, F., Trossen, D.R.: Does anyone read the fine print? testing a law and economics approach toStandard form contracts (2009). URL http://archive.nyu.edu/handle/2451/29503

  12. Barbaro, M., Zeller Jr., T.: A face is exposed for AOL searcher no. 4417749. URL http://www.nytimes.com/2006/08/09/technology/09aol.html. [Online; accessed 22-January-2014]

  13. Basu, A., Kikuchi, H., Vaidya, J.: Privacy-preserving weighted Slope One predictor for Item-based Collaborative Filtering. In: Proceedings of the international workshop on Trust and Privacy in Distributed Information Processing, Copenhagen, Denmark (2011)

    Google Scholar 

  14. Basu, A., Vaidya, J., Kikuchi, H.: Perturbation based privacy preserving slope one predictors for collaborative filtering. In: IFIPTM, pp. 17–35 (2012)

    Google Scholar 

  15. Basu, A., Vaidya, J., Kikuchi, H., Dimitrakos, T.: Privacy-preserving collaborative filtering on the cloud and practical implementation experiences. In: IEEE CLOUD, pp. 406–413 (2013)

    Google Scholar 

  16. Beatty, P., Reay, I., Dick, S., Miller, J.: P3P adoption on e-commerce web sites: A survey and analysis. IEEE Internet Computing 11(2), 65–71 (2007). DOI 10.1109/MIC.2007.45

    Article  Google Scholar 

  17. Beckett, L.: Big data brokers: They know everything about you and sell it to the highest bidder (18 March 2013).

    Google Scholar 

  18. Bélanger, F., Crossler, R.E.: Privacy in the digital age: A review of information privacy research in information systems. MIS Quarterly 35(4), 1017–1042 (2011)

    Google Scholar 

  19. Benassi, P.: TRUSTe: an online privacy seal program. Commun. ACM 42(2), 56–59 (1999)

    Article  Google Scholar 

  20. Bennett, J., Lanning, S.: The netflix prize. In: KDD Cup (2007)

    Google Scholar 

  21. Berkovsky, S., Borisov, N., Eytani, Y., Kuflik, T., Ricci, F.: Examining users’ attitude towards privacy preserving collaborative filtering. Proceedings of DM. UM 7 (2007)

    Google Scholar 

  22. Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Hierarchical neighborhood topology for privacy enhanced collaborative filtering. Proceedings of PEP06, CHI 2006 Workshop on Privacy-Enhanced Personalization, Montreal, Canada pp. 6–13 (2006)

    Google Scholar 

  23. Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Enhancing privacy and preserving accuracy of a distributed collaborative filtering. In: RecSys, pp. 9–16 (2007)

    Google Scholar 

  24. Berkovsky, S., Kuflik, T., Ricci, F.: The impact of data obfuscation on the accuracy of collaborative filtering. Expert Syst. Appl. 39(5), 5033–5042 (2012)

    Article  Google Scholar 

  25. Besmer, A., Watson, J., Lipford, H.R.: The impact of social navigation on privacy policy configuration. In: Proceedings of the Sixth Symposium on Usable Privacy and Security, p. Article 7. Redmond, Washington (2010). DOI 10.1145/1837110.1837120

  26. Bojars, U., Passant, A., Breslin, J.G., Decker, S.: Social network and data portability using semantic web technologies. In: 2nd Workshop on Social Aspects of the Web (SAW 2008) at BIS2008, pp. 5–19 (2008)

    Google Scholar 

  27. Bonneau, J., Anderson, J., Danezis, G.: Prying data out of a social network. In: Social Network Analysis and Mining, 2009. ASONAM’09. International Conference on Advances in, pp. 249–254. IEEE (2009)

    Google Scholar 

  28. Brown, C.L., Krishna, A.: The skeptical shopper: A metacognitive account for the effects of default options on choice. Journal of Consumer Research 31(3), 529–539 (2004). DOI 10.1086/425087

    Article  Google Scholar 

  29. Buley, T.: Netflix settles privacy lawsuit, cancels prize sequel. Forbes (3 December 2010).

    Google Scholar 

  30. Bustos, L.: Best practice gone bad: 4 shocking A/B tests (2012). URL http://www.getelastic.com/best-practice-gone-bad-4-shocking-ab-tests/

  31. Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “you might also like:” privacy risks of collaborative filtering. In: IEEE Symposium on Security and Privacy, pp. 231–246 (2011)

    Google Scholar 

  32. Canny, J.F.: Collaborative filtering with privacy. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 45–57. IEEE Computer Society, Washington, DC, USA (2002)

    Google Scholar 

  33. Canny, J.F.: Collaborative filtering with privacy via factor analysis. In: SIGIR, pp. 238–245 (2002)

    Google Scholar 

  34. Cavoukian, A.: Privacy by design: The 7 foundational principles. Tech. rep., Information and Privacy Commissioner of Ontario, Canada, Ontario, Canada (2009).

    Google Scholar 

  35. Cavusoglu, H., Phan, T., Cavusoglu, H.: Privacy controls and content sharing patterns of online social network users: A natural experiment. ICIS 2013 Proceedings (2013)

    Google Scholar 

  36. Chaabane, A., Acs, G., Kaafar, M.A.: You Are What You Like! Information Leakage Through Users’ Interests. In: 19th Annual Network & Distributed System Security Symposium (2012)

    Google Scholar 

  37. Chellappa, R.K., Sin, R.G.: Personalization versus privacy: An empirical examination of the online consumer’s dilemma. Information Technology and Management 6(2), 181–202 (2005). DOI 10.1007/s10799-005-5879-y

    Article  Google Scholar 

  38. Chen, T., Boreli, R., Kaafar, D., Friedman, A.: On the effectiveness of obfuscation techniques in online social networks. In: The 14th Privacy Enhancing Technologies Symposium, pp. 42–62 (2014)

    Google Scholar 

  39. Cissée, R., Albayrak, S.: An agent-based approach for privacy-preserving recommender systems. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’07, pp. 182:1–182:8. ACM, New York, NY, USA (2007)

    Google Scholar 

  40. Compañó, R., Lusoli, W.: The policy maker’s anguish: Regulating personal data behavior between paradoxes and dilemmas. In: T. Moore, D. Pym, C. Ioannidis (eds.) Economics of Information Security and Privacy, pp. 169–185. Springer US, New York, NY (2010)

    Chapter  Google Scholar 

  41. Consolvo, S., Smith, I., Matthews, T., LaMarca, A., Tabert, J., Powledge, P.: Location disclosure to social relations: why, when, & what people want to share. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 81–90. Portland, OR (2005). DOI 10.1145/1054972.1054985

  42. Consumer Reports: Facebook & your privacy: Who sees the data you share on the biggest social network? (2012). URL http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-privacy

  43. Cranor, L.F.: Web Privacy with P3P. O’Reilly & Associates, Inc., Sebastopol, CA (2002)

    Google Scholar 

  44. Cranor, L.F.: ‘I didn’t buy it for myself’: privacy and ecommerce personalization. In: WPES, pp. 111–117 (2003)

    Google Scholar 

  45. Culnan, M.J., Bies, R.J.: Consumer privacy: Balancing economic and justice considerations. Journal of Social Issues 59(2), 323–342 (2003). DOI 10.1111/1540-4560.00067

    Article  Google Scholar 

  46. Dhar, V., Hsieh, J., Sundararajan, A.: Comments on ’Protecting consumer privacy in an era of rapid change: Aproposed framework for businesses and policymakers’. NYU Working Paper CEDER-11-04, New York University, New York, NY (2011)

    Google Scholar 

  47. Duhigg, C.: How companies learn your secrets. New York Times Magazine (16 February 2012). URL http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html. [Online; accessed 22-January-2014]

  48. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: TCC, pp. 265–284 (2006)

    Google Scholar 

  49. Dwork, C., Pitassi, T., Naor, M., Rothblum, G.N.: Differential privacy under continual observation. In: STOC, pp. 715–724 (2010)

    Google Scholar 

  50. Egelman, S., Tsai, J., Cranor, L.F., Acquisti, A.: Timing is everything?: the effects of timing and placement of online privacy indicators. In: Proceedings of the 27th international conference on Human factors in computing systems, CHI ’09, pp. 319–328. ACM (2009)

    Google Scholar 

  51. Erkin, Z., Beye, M., Veugen, T., Lagendijk, R.L.: Privacy enhanced recommender system. Thirty-first Symposium on Information Theory in the Benelux pp. 35–42 (2010)

    Google Scholar 

  52. Erkin, Z., Veugen, T., Lagendijk, R.L.: Generating private recommendations in a social trust network. In: CASoN, pp. 82–87 (2011)

    Google Scholar 

  53. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommendations efficiently using homomorphic encryption and data packing. IEEE Transactions on Information Forensics and Security 7(3), 1053–1066 (2012)

    Article  Google Scholar 

  54. EU: Directive 2002/58/EC of the european parliament and of the council concerning the processing of personal data and the protection of privacy in the electronic communications sector. Tech. rep., European Commission (2002)

    Google Scholar 

  55. EU: Proposal for a directive of the european parliament and of the council on the protection of individuals with regard to the processing of personal data by competent authorities for the purposes of prevention, investigation, detection or prosecution of criminal offences or the execution of criminal penalties, and the free movement of such data. Tech. Rep. 2012/0010 (COD), European Commission (2012)

    Google Scholar 

  56. Felten, E.W.: Understanding trusted computing: Will its benefits outweigh its drawbacks? IEEE Security & Privacy 1(3), 60–62 (2003)

    Article  Google Scholar 

  57. Friedman, A., Sharfman, I., Keren, D., Schuster, A.: Privacy-preserving distributed stream monitoring. In: Proceedings of the 21st Annual Network & Distributed System Security Symposium, NDSS ’14. Internet Society (2014)

    Google Scholar 

  58. van de Garde-Perik, E., Markopoulos, P., de Ruyter, B., Eggen, B., Ijsselsteijn, W.: Investigating privacy attitudes and behavior in relation to personalization. Social Science Computer Review 26(1), 20–43 (2008). DOI 10.1177/0894439307307682

    Article  Google Scholar 

  59. Gardner, J.: 12 surprising A/B test results to stop you making assumptions (2012). URL http://unbounce.com/a-b-testing/shocking-results/

  60. Goldfarb, A., Tucker, C.E.: Privacy regulation and online advertising. Management Science 57(1), 57–71 (2011). DOI 10.1287/mnsc.1100.1246

    Article  Google Scholar 

  61. Hancock, J.T., Thom-Santelli, J., Ritchie, T.: Deception and design: the impact of communication technology on lying behavior. In: Proceedings of the SIGCHI conference on Human factors in computing systems, CHI ’04, pp. 129–134. ACM, New York, NY, USA (2004)

    Google Scholar 

  62. Hann, I.H., Hui, K.L., Lee, S.Y., Png, I.: Overcoming online information privacy concerns: An information-processing theory approach. Journal of Management Information Systems 24(2), 13–42 (2007). DOI 10.2753/MIS0742-1222240202

    Article  Google Scholar 

  63. Harris, L., Westin, A.F., associates: Consumer privacy attitudes: A major shift since 2000 and why. Tech. Rep. 10, Harris Interactive, Inc. (2003)

    Google Scholar 

  64. Heitmann, B., Kim, J.G., Passant, A., Hayes, C., Kim, H.G.: An architecture for privacy-enabled user profile portability on the web of data. In: Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec ’10, pp. 16–23. ACM, New York, NY, USA (2010). DOI 10.1145/1869446.1869449

  65. Hoens, T.R., Blanton, M., Chawla, N.V.: A private and reliable recommendation system for social networks. In: Proceedings of the 2010 IEEE Second International Conference on Social Computing, SOCIALCOM ’10, pp. 816–825. IEEE Computer Society, Washington, DC, USA (2010). DOI 10.1109/SocialCom.2010.124

  66. Hollenbach, J., Presbrey, J., Berners-Lee, T.: Using rdf metadata to enable access control on the social semantic web. In: Proceedings of the Workshop on Collaborative Construction, Management and Linking of Structured Knowledge (CK2009), vol. 514 (2009)

    Google Scholar 

  67. House, W.: Consumer data privacy in a networked world: A framework for protecting privacy and promoting innovation in the global economy. Tech. rep., White House, Washington, D.C. (2012)

    Google Scholar 

  68. Hui, K.L., Teo, H.H., Lee, S.Y.T.: The value of privacy assurance: An exploratory field experiment. MIS Quarterly 31(1), 19–33 (2007)

    Google Scholar 

  69. ICO: Guidance on the rules on use of cookies and similar technologies. Tech. rep., Information Commissioner’s Office (2012)

    Google Scholar 

  70. Isaacman, S., Ioannidis, S., Chaintreau, A., Martonosi, M.: Distributed rating prediction in user generated content streams. In: RecSys, pp. 69–76 (2011)

    Google Scholar 

  71. Jeckmans, A., Tang, Q., Hartel, P.: Privacy-preserving collaborative filtering based on horizontally partitioned dataset. In: Collaboration Technologies and Systems (CTS), 2012 International Conference on, pp. 439–446 (2012). DOI 10.1109/CTS.2012.6261088

  72. Jeckmans, A.J., Beye, M., Erkin, Z., Hartel, P., Lagendijk, R.L., Tang, Q.: Privacy in recommender systems. In: Social Media Retrieval, Computer Communications and Networks, pp. 263–281. Springer (2013)

    Google Scholar 

  73. John, L.K., Acquisti, A., Loewenstein, G.: Strangers on a plane: Context-dependent willingness to divulge sensitive information. Journal of consumer research 37(5), 858–873 (2011)

    Article  Google Scholar 

  74. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decis. Support Syst. 43(2), 618–644 (2007). DOI 10.1016/j.dss.2005.05.019

    Article  Google Scholar 

  75. Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk. Econometrica 47(2), 263–292 (1979). DOI 10.2307/1914185

    Article  MATH  Google Scholar 

  76. Kaleli, C., Polat, H.: Providing private recommendations using naïve bayesian classifier. In: K.M. Wegrzyn-Wolska, P.S. Szczepaniak (eds.) Advances in Intelligent Web Mastering, Advances in Soft Computing, vol. 43, pp. 168–173. Springer Berlin Heidelberg (2007)

    Chapter  Google Scholar 

  77. Kandappu, T., Friedman, A., Boreli, R., Sivaraman, V.: PrivacyCanary: Privacy-aware recommenders with adaptive input obfuscation. In: MASCOTS (2014)

    Google Scholar 

  78. Knijnenburg, B.P., Jin, H.: The persuasive effect of privacy recommendations. In: Twelfth Annual Workshop on HCI Research in MIS, p. Paper 16. Milan, Italy (2013)

    Google Scholar 

  79. Knijnenburg, B.P., Kobsa, A.: Helping users with information disclosure decisions: potential for adaptation. In: Proceedings of the 2013 ACM international conference on Intelligent User Interfaces, pp. 407–416. ACM Press, Santa Monica, CA (2013)

    Google Scholar 

  80. Knijnenburg, B.P., Kobsa, A.: Making decisions about privacy: Information disclosure in context-aware recommender systems. ACM Transactions on Interactive Intelligent Systems 3(3), 20:1–20:23 (2013). DOI 10.1145/2499670

  81. Knijnenburg, B.P., Kobsa, A., Jin, H.: Counteracting the negative effect of form auto-completion on the privacy calculus. In: ICIS 2013 Proceedings. Milan, Italy (2013)

    Google Scholar 

  82. Knijnenburg, B.P., Kobsa, A., Jin, H.: Dimensionality of information disclosure behavior. International Journal of Human-Computer Studies 71(12), 1144–1162 (2013)

    Article  Google Scholar 

  83. Knijnenburg, B.P., Kobsa, A., Jin, H.: Preference-based location sharing: are more privacy options really better? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2667–2676. ACM, Paris, France (2013). DOI 10.1145/2470654.2481369

  84. Knijnenburg, B.P., Kobsa, A., Saldamli, G.: Privacy in mobile personalized systems: The effect of disclosure justifications. In: Proceedings of the SOUPS 2012 Workshop on Usable Privacy & Security for Mobile Devices, pp. 11:1–11:5. Washington, DC (2012)

    Google Scholar 

  85. Knijnenburg, B.P., Willemsen, M.C., Hirtbach, S.: Receiving recommendations and providing feedback: The user-experience of a recommender system. In: EC-Web, pp. 207–216 (2010)

    Google Scholar 

  86. Kobsa, A.: Tailoring privacy to users’ needs (invited keynote). In: M. Bauer, P.J. Gmytrasiewicz, J. Vassileva (eds.) User Modeling 2001, no. 2109 in Lecture Notes in Computer Science, pp. 303–313. Springer Verlag (2001).

    Google Scholar 

  87. Kobsa, A.: Privacy-enhanced web personalization. In: P. Brusilovsky, A. Kobsa, W. Nejdl (eds.) The Adaptive Web, pp. 628–670. Springer-Verlag, Berlin, Heidelberg (2007)

    Chapter  Google Scholar 

  88. Kobsa, A., Knijnenburg, B.P., Livshits, B.: Let’s do it at my place instead? attitudinal and behavioral study of privacy in client-side personalization. In: ACM CHI Conference on Human Factors in Computing Systems. Toronto, Canada (2014)

    Google Scholar 

  89. Kobsa, A., Schreck, J.: Privacy through pseudonymity in user-adaptive systems. ACM Trans. Internet Techn. 3(2), 149–183 (2003)

    Article  Google Scholar 

  90. Kobsa, A., Teltzrow, M.: Contextualized communication of privacy practices and personalization benefits: Impacts on users’ data sharing and purchase behavior. In: D. Martin, A. Serjantov (eds.) Privacy Enhancing Technologies: Revised Selected Papers of the 4th International Workshop, PET 2004, Toronto, Canada, May 26–28, 2004, LNCS, vol. 3424, pp. 329–343. Springer Berlin Heidelberg (2005). DOI 10.1007/b136164

    Chapter  Google Scholar 

  91. Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences (2013)

    Google Scholar 

  92. Krishnamurthy, B., Wills, C.: Privacy diffusion on the web: A longitudinal perspective. In: Proceedings of the 18th International Conference on World Wide Web, WWW ’09, pp. 541–550. ACM, New York, NY, USA (2009). DOI 10.1145/1526709.1526782

  93. Lai, Y.L., Hui, K.L.: Internet opt-in and opt-out: Investigating the roles of frames, defaults and privacy concerns. In: Proceedings of the 2006 ACM SIGMIS CPR Conference on Computer Personnel Research, pp. 253–263. Claremont, CA (2006). DOI 10.1145/1125170.1125230

  94. Lathia, N., Hailes, S., Capra, L.: Private distributed collaborative filtering using estimated concordance measures. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys ’07, pp. 1–8. ACM, New York, NY, USA (2007)

    Google Scholar 

  95. Laufer, R.S., Proshansky, H.M., Wolfe, M.: Some analytic dimensions of privacy. In: R. Küller (ed.) Proceedings of the Lund Conference on Architectural Psychology. Dowden, Hutchinson & Ross, Lund, Sweden (1973)

    Google Scholar 

  96. Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collaborative filtering. In: SDM (2005)

    Book  Google Scholar 

  97. Li, H., Sarathy, R., Xu, H.: Understanding situational online information disclosure as a privacy calculus. Journal of Computer Information Systems 51(1), 62–71 (2010)

    Google Scholar 

  98. Li, T., Unger, T.: Willing to pay for quality personalization? trade-off between quality and privacy. European Journal of Information Systems 21(6), 621–642 (2012)

    Article  Google Scholar 

  99. Lin, J., Sadeh, N.M., Amini, S., Lindqvist, J., Hong, J.I., Zhang, J.: Expectation and purpose: understanding users’ mental models of mobile app privacy through crowdsourcing. In: UbiComp, pp. 501–510 (2012)

    Google Scholar 

  100. Liu, Y., Gummadi, K.P., Krishnamurthy, B., Mislove, A.: Analyzing facebook privacy settings: user expectations vs. reality. In: Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference, pp. 61–70. ACM, Berlin, Germany (2011)

    Google Scholar 

  101. Machanavajjhala, A., Korolova, A., Sarma, A.D.: Personalized social recommendations - accurate or private? PVLDB 4(7), 440–450 (2011)

    Google Scholar 

  102. Malhotra, N.K., Kim, S.S., Agarwal, J.: Internet users’ information privacy concerns (IUIPC): the construct, the scale, and a nomological framework. Information Systems Research 15(4), 336–355 (2004). DOI 10.1287/isre.1040.0032

    Article  Google Scholar 

  103. McSherry, F., Mironov, I.: Differentially private recommender systems: Building privacy into the netflix prize contenders. In: KDD, pp. 627–636 (2009)

    Google Scholar 

  104. Metzger, M.J.: Privacy, trust, and disclosure: Exploring barriers to electronic commerce. Journal of Computer-Mediated Communication 9(4) (2004)

    Google Scholar 

  105. Mikians, J., Gyarmati, L., Erramilli, V., Laoutaris, N.: Detecting price and search discrimination on the internet. In: HotNets, pp. 79–84 (2012)

    Google Scholar 

  106. Mikians, J., Gyarmati, L., Erramilli, V., Laoutaris, N.: Crowd-assisted search for price discrimination in e-commerce: first results. In: CoNEXT, pp. 1–6 (2013)

    Google Scholar 

  107. Miller, B.N., Konstan, J.A., Riedl, J.: Pocketlens: Toward a personal recommender system. ACM Transactions on Information Systems 22(3), 437–476 (2004)

    Article  Google Scholar 

  108. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: IEEE Symposium on Security and Privacy, pp. 111–125 (2008)

    Google Scholar 

  109. Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-preserving matrix factorization. In: ACM Conference on Computer and Communications Security, pp. 801–812 (2013)

    Google Scholar 

  110. Nissenbaum, H.: Privacy as contextual integrity. Washington Law Review 79(1), 101–139 (2004)

    Google Scholar 

  111. Nissenbaum, H.: A contextual approach to privacy online. Daedalus 140(4), 32–48 (2011)

    Article  Google Scholar 

  112. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC ’07, pp. 75–84. ACM, New York, NY, USA (2007)

    Google Scholar 

  113. Norberg, P.A., Horne, D.R., Horne, D.A.: The privacy paradox: Personal information disclosure intentions versus behaviors. Journal of Consumer Affairs 41(1), 100–126 (2007)

    Article  Google Scholar 

  114. OECD: Recommendation of the council concerning guidelines governing the protection of privacy and transborder flows of personal data. Tech. rep., Organization for Economic Co-operation and Development (1980). Print file://Lit1/OECD-privacy-1980.htm

    Google Scholar 

  115. Ohm, P.: Broken promises of privacy: Responding to the surprising failure of anonymization. UCLA Law Review 57, 1701 (2010)

    Google Scholar 

  116. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: EUROCRYPT, pp. 223–238 (1999)

    Google Scholar 

  117. Pallapa, G., Das, S.K., Di Francesco, M., Aura, T.: Adaptive and context-aware privacy preservation exploiting user interactions in smart environments. Pervasive and Mobile Computing 12, 232–243 (2014). DOI 10.1016/j.pmcj.2013.12.004. URL http://www.sciencedirect.com/science/article/pii/S1574119213001557

  118. Parameswaran, R., Blough, D.M.: Privacy preserving collaborative filtering using data obfuscation. In: Proceedings of the IEEE Conference on Granular Computing, p. 380 (2007)

    Google Scholar 

  119. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management. http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf (2010)

  120. Polat, H., Du, W.: Privacy-preserving collaborative filtering using randomized perturbation techniques. In: ICDM, pp. 625–628 (2003)

    Google Scholar 

  121. Polat, H., Du, W.: Svd-based collaborative filtering with privacy. In: SAC, pp. 791–795 (2005)

    Google Scholar 

  122. Polat, H., Du, W.: Achieving private recommendations using randomized response techniques. In: PAKDD, pp. 637–646 (2006)

    Google Scholar 

  123. Put, A., Dacosta, I., Milutinovic, M., De Decker, B., Seys, S., Boukayoua, F., Naessens, V., Vanhecke, K., De Pessemier, T., Martens, L.: inshopnito: An advanced yet privacy-friendly mobile shopping application. In: Proceedings of 2014 IEEE World Congress on Services. IEEE Computer Society Press (2014). URL https://lirias.kuleuven.be/handle/123456789/454582

  124. Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A., Karypis, G.: Privacy risks in recommender systems. IEEE Internet Computing 5(6), 54–62 (2001)

    Article  Google Scholar 

  125. Ravichandran, R., Benisch, M., Kelley, P., Sadeh, N.: Capturing social networking privacy preferences:. In: I. Goldberg, M. Atallah (eds.) Privacy Enhancing Technologies, Lecture Notes in Computer Science, vol. 5672, pp. 1–18. Springer Berlin / Heidelberg (2009).

    Google Scholar 

  126. Renckes, S., Polat, H., Oysal, Y.: A new hybrid recommendation algorithm with privacy. Expert Systems 29(1), 39–55 (2012)

    Google Scholar 

  127. Riboni, D., Bettini, C.: Private context-aware recommendation of points of interest: An initial investigation. In: PerCom Workshops, pp. 584–589 (2012)

    Google Scholar 

  128. Rifon, N.J., LaRose, R., Choi, S.M.: Your privacy is sealed: Effects of web privacy seals on trust and personal disclosures. Journal of Consumer Affairs 39(2), 339–360 (2005)

    Article  Google Scholar 

  129. Sadeh, N., Hong, J., Cranor, L., Fette, I., Kelley, P., Prabaker, M., Rao, J.: Understanding and capturing people’s privacy policies in a mobile social networking application. Personal and Ubiquitous Computing 13(6), 401–412 (2009). DOI 10.1007/s00779-008-0214-3

    Article  Google Scholar 

  130. Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Min. Knowl. Discov. 5(1/2), 115–153 (2001)

    Article  MATH  Google Scholar 

  131. Shokri, R., Pedarsani, P., Theodorakopoulos, G., Hubaux, J.P.: Preserving privacy in collaborative filtering through distributed aggregation of offline profiles. In: RecSys, pp. 157–164 (2009)

    Google Scholar 

  132. Smith, H.J., Dinev, T., Xu, H.: Information privacy research: An interdisciplinary review. MIS Quarterly 35(4), 989–1016 (2011)

    Google Scholar 

  133. Smith, H.J., Milberg, S.J., Burke, S.J.: Information privacy: Measuring individuals’ concerns about organizational practices. MIS Quarterly 20(2), 167–196 (1996)

    Article  Google Scholar 

  134. Smith, N.C., Goldstein, D.G., Johnson, E.J.: Choice without awareness: Ethical and policy implications of defaults. Journal of Public Policy & Marketing 32(2), 159–172 (2013)

    Article  Google Scholar 

  135. Solove, D.J.: Privacy self-management and the consent dilemma. Harvard Law Review 126, 1880–1903 (2013)

    Google Scholar 

  136. Stafford, J., Wallnau, K.: Is third party certification necessary. In: Proceedings of the 4th ICSE Workshop on Component-based Software Engineering: Component Certification and System Prediction, pp. 13–17 (2001)

    Google Scholar 

  137. Suguri, H.: A standardization effort for agent technologies: The foundation for intelligent physical agents and its activities. In: HICSS (1999)

    Google Scholar 

  138. Taylor, D., Davis, D., Jillapalli, R.: Privacy concern and online personalization: The moderating effects of information control and compensation. Electronic Commerce Research 9(3), 203–223 (2009). DOI 10.1007/s10660-009-9036-2

    Article  Google Scholar 

  139. Toch, E., Wang, Y., Cranor, L.F.: Personalization and privacy: a survey of privacy risks and remedies in personalization-based systems. User Modeling and User-Adapted Interaction 22(1–2), 203–220 (2012). DOI 10.1007/s11257-011-9110-z

    Article  Google Scholar 

  140. TRUSTe: First in-depth analysis of the impact of EU cookie directive shows majority of users choosing to allow advertising cookies (2012).

    Google Scholar 

  141. Vallet, D., Friedman, A., Berkovsky, S.: Matrix factorization without user data retention. In: PAKDD (2014)

    Book  Google Scholar 

  142. Walton, D.: Plausible deniability and evasion of burden of proof. Argumentation 10(1), 47–58 (1996). DOI 10.1007/BF00126158

    Article  MathSciNet  Google Scholar 

  143. Wang, W., Benbasat, I.: Recommendation agents for electronic commerce: Effects of explanation facilities on trusting beliefs. Journal of Management Information Systems 23(4), 217–246 (2007). DOI 10.2753/MIS0742-1222230410

    Article  Google Scholar 

  144. Wang, Y., Kobsa, A.: Impacts of privacy laws and regulations on personalized systems. In: A. Kobsa, R. Chellappa, S. Spiekermann (eds.) Proceedings of PEP06, CHI 2006 Workshop on Privacy-Enhanced Personalization, pp. 44–46. Springer Verlag, Montréal, Canada (2006)

    Google Scholar 

  145. Wang, Y., Kobsa, A.: Respecting users’ individual privacy constraints in web personalization. In: C. Conati, K. McCoy, G. Paliouras (eds.) User Modeling 2007, pp. 157–166. Springer Verlag (2007)

    Google Scholar 

  146. Wang, Y., Leon, P.G., Scott, K., Chen, X., Acquisti, A., Cranor, L.F.: Privacy nudges for social media: An exploratory facebook study. In: Second International Workshop on Privacy and Security in Online Social Media. Rio De Janeiro, Brazil (2013)

    Google Scholar 

  147. Weinsberg, U., Bhagat, S., Ioannidis, S., Taft, N.: Blurme: inferring and obfuscating user gender based on ratings. In: RecSys, pp. 195–202 (2012)

    Google Scholar 

  148. Westin, A.F., Harris, L., associates: The Dimensions of privacy: a national opinion research survey of attitudes toward privacy. Garland Publishing, New York (1981)

    Google Scholar 

  149. Xu, H., Luo, X.R., Carroll, J.M., Rosson, M.B.: The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decision Support Systems 51(1), 42–52 (2011). DOI 10.1016/j.dss.2010.11.017

    Article  Google Scholar 

  150. Xu, H., Teo, H.H., Tan, B.C.Y.: Predicting the adoption of location-based services: The role of trust and perceived privacy risk. In: Proceedings of the International Conference on Information Systems, pp. 861–874. Las Vegas, NV (2005)

    Google Scholar 

  151. Xu, H., Teo, H.H., Tan, B.C.Y., Agarwal, R.: Effects of individual self-protection, industry self-regulation, and government regulation on privacy concerns: A study of location-based services. Information Systems Research (2012). DOI 10.1287/isre.1120.0416

    Google Scholar 

  152. Xu, H., Wang, N., Grossklags, J.: Privacy-by-ReDesign: alleviating privacy concerns for third-party applications. In: ICIS 2012 Proceedings. Orlando, FL (2012)

    Google Scholar 

  153. Yakut, I., Polat, H.: Privacy-preserving eigentaste-based collaborative filtering. In: A. Miyaji, H. Kikuchi, K. Rannenberg (eds.) Advances in Information and Computer Security, Lecture Notes in Computer Science, vol. 4752, pp. 169–184. Springer Berlin Heidelberg (2007)

    Chapter  Google Scholar 

  154. Yakut, I., Polat, H.: Arbitrarily distributed data-based recommendations with privacy. Data & Knowledge Engineering 72(0), 239–256 (2012)

    Article  Google Scholar 

  155. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, SFCS ’82, pp. 160–164. IEEE Computer Society, Washington, DC, USA (1982). DOI 10.1109/SFCS.1982.88

  156. Zhang, A., Bhamidipati, S., Fawaz, N., Kveton, B.: Priview: Media consumption and recommendation meet privacy against inference attacks. In: W2SP (2014)

    Google Scholar 

  157. Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles. In: WWW, pp. 531–540 (2009)

    Google Scholar 

  158. Zhu, T., Ren, Y., Zhou, W., Rong, J., Xiong, P.: An effective privacy preserving algorithm for neighborhood-based collaborative filtering. Future Generation Computer Systems (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arik Friedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friedman, A., Knijnenburg, B.P., Vanhecke, K., Martens, L., Berkovsky, S. (2015). Privacy Aspects of Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7637-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7637-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7636-9

  • Online ISBN: 978-1-4899-7637-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics