Abstract
The popularity of online recommender systems has soared; they are deployed in numerous websites and gather tremendous amounts of user data that are necessary for recommendation purposes. This data, however, may pose a severe threat to user privacy, if accessed by untrusted parties or used inappropriately. Hence, it is of paramount importance for recommender system designers and service providers to find a sweet spot, which allows them to generate accurate recommendations and guarantee the privacy of their users. In this chapter we overview the state of the art in privacy enhanced recommendations. We analyze the risks to user privacy imposed by recommender systems, survey the existing solutions, and discuss the privacy implications for the users of recommenders. We conclude that a considerable effort is still required to develop practical recommendation solutions that provide adequate privacy guarantees, while at the same time facilitating the delivery of high-quality recommendations to their users.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ackerman, M.S., Cranor, L.F., Reagle, J.: Privacy in e-commerce: Examining user scenarios and privacy preferences. In: Proceedings of the 1st ACM Conference on Electronic Commerce, EC ’99, pp. 1–8. ACM, New York, NY, USA (1999). DOI 10.1145/336992.336995
Acquisti, A.: Privacy in electronic commerce and the economics of immediate gratification. In: Proceedings of the 5th ACM conference on Electronic commerce, EC ’04, pp. 21–29. ACM, New York, NY (2004). DOI 10.1145/988772.988777
Acquisti, A.: Nudging privacy: The behavioral economics of personal information. IEEE Security and Privacy 7, 82–85 (2009). DOI http://dx.doi.org/10.1109/MSP.2009.163
Acquisti, A., Grossklags, J.: Privacy and rationality in individual decision making. IEEE Security & Privacy 3(1), 26–33 (2005). DOI 10.1109/MSP.2005.22
Acquisti, A., Grossklags, J.: What can behavioral economics teach us about privacy? In: A. Acquisti, S. De Capitani di Vimercati, S. Gritzalis, C. Lambrinoudakis (eds.) Digital Privacy: Theory, Technologies, and Practices, pp. 363–377. Auerbach Publications (2008)
Acquisti, A., John, L.K., Loewenstein, G.: The impact of relative standards on the propensity to disclose. Journal of Marketing Research 49(2), 160–174 (2012). DOI 10.1509/jmr.09.0215
Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD Conference, pp. 439–450 (2000)
Aïmeur, E., Brassard, G., Fernandez, J.M., Mani Onana, F.S.: Alambic: A privacy-preserving recommender system for electronic commerce. International Journal of Information Security 7(5), 307–334 (2008). DOI 10.1007/s10207-007-0049-3
Arlein, R.M., Jai, B., Jakobsson, M., Monrose, F., Reiter, M.K.: Privacy-preserving global customization. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, EC ’00, pp. 176–184. ACM, New York, NY, USA (2000). DOI 10.1145/352871.352891
Awad, N.F., Krishnan, M.S.: The personalization privacy paradox: An empirical evaluation of information transparency and the willingness to be profiled online for personalization. MIS Quarterly 30(1), 13–28 (2006)
Bakos, Y., Marotta-Wurgler, F., Trossen, D.R.: Does anyone read the fine print? testing a law and economics approach toStandard form contracts (2009). URL http://archive.nyu.edu/handle/2451/29503
Barbaro, M., Zeller Jr., T.: A face is exposed for AOL searcher no. 4417749. URL http://www.nytimes.com/2006/08/09/technology/09aol.html. [Online; accessed 22-January-2014]
Basu, A., Kikuchi, H., Vaidya, J.: Privacy-preserving weighted Slope One predictor for Item-based Collaborative Filtering. In: Proceedings of the international workshop on Trust and Privacy in Distributed Information Processing, Copenhagen, Denmark (2011)
Basu, A., Vaidya, J., Kikuchi, H.: Perturbation based privacy preserving slope one predictors for collaborative filtering. In: IFIPTM, pp. 17–35 (2012)
Basu, A., Vaidya, J., Kikuchi, H., Dimitrakos, T.: Privacy-preserving collaborative filtering on the cloud and practical implementation experiences. In: IEEE CLOUD, pp. 406–413 (2013)
Beatty, P., Reay, I., Dick, S., Miller, J.: P3P adoption on e-commerce web sites: A survey and analysis. IEEE Internet Computing 11(2), 65–71 (2007). DOI 10.1109/MIC.2007.45
Beckett, L.: Big data brokers: They know everything about you and sell it to the highest bidder (18 March 2013).
Bélanger, F., Crossler, R.E.: Privacy in the digital age: A review of information privacy research in information systems. MIS Quarterly 35(4), 1017–1042 (2011)
Benassi, P.: TRUSTe: an online privacy seal program. Commun. ACM 42(2), 56–59 (1999)
Bennett, J., Lanning, S.: The netflix prize. In: KDD Cup (2007)
Berkovsky, S., Borisov, N., Eytani, Y., Kuflik, T., Ricci, F.: Examining users’ attitude towards privacy preserving collaborative filtering. Proceedings of DM. UM 7 (2007)
Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Hierarchical neighborhood topology for privacy enhanced collaborative filtering. Proceedings of PEP06, CHI 2006 Workshop on Privacy-Enhanced Personalization, Montreal, Canada pp. 6–13 (2006)
Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Enhancing privacy and preserving accuracy of a distributed collaborative filtering. In: RecSys, pp. 9–16 (2007)
Berkovsky, S., Kuflik, T., Ricci, F.: The impact of data obfuscation on the accuracy of collaborative filtering. Expert Syst. Appl. 39(5), 5033–5042 (2012)
Besmer, A., Watson, J., Lipford, H.R.: The impact of social navigation on privacy policy configuration. In: Proceedings of the Sixth Symposium on Usable Privacy and Security, p. Article 7. Redmond, Washington (2010). DOI 10.1145/1837110.1837120
Bojars, U., Passant, A., Breslin, J.G., Decker, S.: Social network and data portability using semantic web technologies. In: 2nd Workshop on Social Aspects of the Web (SAW 2008) at BIS2008, pp. 5–19 (2008)
Bonneau, J., Anderson, J., Danezis, G.: Prying data out of a social network. In: Social Network Analysis and Mining, 2009. ASONAM’09. International Conference on Advances in, pp. 249–254. IEEE (2009)
Brown, C.L., Krishna, A.: The skeptical shopper: A metacognitive account for the effects of default options on choice. Journal of Consumer Research 31(3), 529–539 (2004). DOI 10.1086/425087
Buley, T.: Netflix settles privacy lawsuit, cancels prize sequel. Forbes (3 December 2010).
Bustos, L.: Best practice gone bad: 4 shocking A/B tests (2012). URL http://www.getelastic.com/best-practice-gone-bad-4-shocking-ab-tests/
Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “you might also like:” privacy risks of collaborative filtering. In: IEEE Symposium on Security and Privacy, pp. 231–246 (2011)
Canny, J.F.: Collaborative filtering with privacy. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 45–57. IEEE Computer Society, Washington, DC, USA (2002)
Canny, J.F.: Collaborative filtering with privacy via factor analysis. In: SIGIR, pp. 238–245 (2002)
Cavoukian, A.: Privacy by design: The 7 foundational principles. Tech. rep., Information and Privacy Commissioner of Ontario, Canada, Ontario, Canada (2009).
Cavusoglu, H., Phan, T., Cavusoglu, H.: Privacy controls and content sharing patterns of online social network users: A natural experiment. ICIS 2013 Proceedings (2013)
Chaabane, A., Acs, G., Kaafar, M.A.: You Are What You Like! Information Leakage Through Users’ Interests. In: 19th Annual Network & Distributed System Security Symposium (2012)
Chellappa, R.K., Sin, R.G.: Personalization versus privacy: An empirical examination of the online consumer’s dilemma. Information Technology and Management 6(2), 181–202 (2005). DOI 10.1007/s10799-005-5879-y
Chen, T., Boreli, R., Kaafar, D., Friedman, A.: On the effectiveness of obfuscation techniques in online social networks. In: The 14th Privacy Enhancing Technologies Symposium, pp. 42–62 (2014)
Cissée, R., Albayrak, S.: An agent-based approach for privacy-preserving recommender systems. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’07, pp. 182:1–182:8. ACM, New York, NY, USA (2007)
Compañó, R., Lusoli, W.: The policy maker’s anguish: Regulating personal data behavior between paradoxes and dilemmas. In: T. Moore, D. Pym, C. Ioannidis (eds.) Economics of Information Security and Privacy, pp. 169–185. Springer US, New York, NY (2010)
Consolvo, S., Smith, I., Matthews, T., LaMarca, A., Tabert, J., Powledge, P.: Location disclosure to social relations: why, when, & what people want to share. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 81–90. Portland, OR (2005). DOI 10.1145/1054972.1054985
Consumer Reports: Facebook & your privacy: Who sees the data you share on the biggest social network? (2012). URL http://www.consumerreports.org/cro/magazine/2012/06/facebook-your-privacy
Cranor, L.F.: Web Privacy with P3P. O’Reilly & Associates, Inc., Sebastopol, CA (2002)
Cranor, L.F.: ‘I didn’t buy it for myself’: privacy and ecommerce personalization. In: WPES, pp. 111–117 (2003)
Culnan, M.J., Bies, R.J.: Consumer privacy: Balancing economic and justice considerations. Journal of Social Issues 59(2), 323–342 (2003). DOI 10.1111/1540-4560.00067
Dhar, V., Hsieh, J., Sundararajan, A.: Comments on ’Protecting consumer privacy in an era of rapid change: Aproposed framework for businesses and policymakers’. NYU Working Paper CEDER-11-04, New York University, New York, NY (2011)
Duhigg, C.: How companies learn your secrets. New York Times Magazine (16 February 2012). URL http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html. [Online; accessed 22-January-2014]
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: TCC, pp. 265–284 (2006)
Dwork, C., Pitassi, T., Naor, M., Rothblum, G.N.: Differential privacy under continual observation. In: STOC, pp. 715–724 (2010)
Egelman, S., Tsai, J., Cranor, L.F., Acquisti, A.: Timing is everything?: the effects of timing and placement of online privacy indicators. In: Proceedings of the 27th international conference on Human factors in computing systems, CHI ’09, pp. 319–328. ACM (2009)
Erkin, Z., Beye, M., Veugen, T., Lagendijk, R.L.: Privacy enhanced recommender system. Thirty-first Symposium on Information Theory in the Benelux pp. 35–42 (2010)
Erkin, Z., Veugen, T., Lagendijk, R.L.: Generating private recommendations in a social trust network. In: CASoN, pp. 82–87 (2011)
Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommendations efficiently using homomorphic encryption and data packing. IEEE Transactions on Information Forensics and Security 7(3), 1053–1066 (2012)
EU: Directive 2002/58/EC of the european parliament and of the council concerning the processing of personal data and the protection of privacy in the electronic communications sector. Tech. rep., European Commission (2002)
EU: Proposal for a directive of the european parliament and of the council on the protection of individuals with regard to the processing of personal data by competent authorities for the purposes of prevention, investigation, detection or prosecution of criminal offences or the execution of criminal penalties, and the free movement of such data. Tech. Rep. 2012/0010 (COD), European Commission (2012)
Felten, E.W.: Understanding trusted computing: Will its benefits outweigh its drawbacks? IEEE Security & Privacy 1(3), 60–62 (2003)
Friedman, A., Sharfman, I., Keren, D., Schuster, A.: Privacy-preserving distributed stream monitoring. In: Proceedings of the 21st Annual Network & Distributed System Security Symposium, NDSS ’14. Internet Society (2014)
van de Garde-Perik, E., Markopoulos, P., de Ruyter, B., Eggen, B., Ijsselsteijn, W.: Investigating privacy attitudes and behavior in relation to personalization. Social Science Computer Review 26(1), 20–43 (2008). DOI 10.1177/0894439307307682
Gardner, J.: 12 surprising A/B test results to stop you making assumptions (2012). URL http://unbounce.com/a-b-testing/shocking-results/
Goldfarb, A., Tucker, C.E.: Privacy regulation and online advertising. Management Science 57(1), 57–71 (2011). DOI 10.1287/mnsc.1100.1246
Hancock, J.T., Thom-Santelli, J., Ritchie, T.: Deception and design: the impact of communication technology on lying behavior. In: Proceedings of the SIGCHI conference on Human factors in computing systems, CHI ’04, pp. 129–134. ACM, New York, NY, USA (2004)
Hann, I.H., Hui, K.L., Lee, S.Y., Png, I.: Overcoming online information privacy concerns: An information-processing theory approach. Journal of Management Information Systems 24(2), 13–42 (2007). DOI 10.2753/MIS0742-1222240202
Harris, L., Westin, A.F., associates: Consumer privacy attitudes: A major shift since 2000 and why. Tech. Rep. 10, Harris Interactive, Inc. (2003)
Heitmann, B., Kim, J.G., Passant, A., Hayes, C., Kim, H.G.: An architecture for privacy-enabled user profile portability on the web of data. In: Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec ’10, pp. 16–23. ACM, New York, NY, USA (2010). DOI 10.1145/1869446.1869449
Hoens, T.R., Blanton, M., Chawla, N.V.: A private and reliable recommendation system for social networks. In: Proceedings of the 2010 IEEE Second International Conference on Social Computing, SOCIALCOM ’10, pp. 816–825. IEEE Computer Society, Washington, DC, USA (2010). DOI 10.1109/SocialCom.2010.124
Hollenbach, J., Presbrey, J., Berners-Lee, T.: Using rdf metadata to enable access control on the social semantic web. In: Proceedings of the Workshop on Collaborative Construction, Management and Linking of Structured Knowledge (CK2009), vol. 514 (2009)
House, W.: Consumer data privacy in a networked world: A framework for protecting privacy and promoting innovation in the global economy. Tech. rep., White House, Washington, D.C. (2012)
Hui, K.L., Teo, H.H., Lee, S.Y.T.: The value of privacy assurance: An exploratory field experiment. MIS Quarterly 31(1), 19–33 (2007)
ICO: Guidance on the rules on use of cookies and similar technologies. Tech. rep., Information Commissioner’s Office (2012)
Isaacman, S., Ioannidis, S., Chaintreau, A., Martonosi, M.: Distributed rating prediction in user generated content streams. In: RecSys, pp. 69–76 (2011)
Jeckmans, A., Tang, Q., Hartel, P.: Privacy-preserving collaborative filtering based on horizontally partitioned dataset. In: Collaboration Technologies and Systems (CTS), 2012 International Conference on, pp. 439–446 (2012). DOI 10.1109/CTS.2012.6261088
Jeckmans, A.J., Beye, M., Erkin, Z., Hartel, P., Lagendijk, R.L., Tang, Q.: Privacy in recommender systems. In: Social Media Retrieval, Computer Communications and Networks, pp. 263–281. Springer (2013)
John, L.K., Acquisti, A., Loewenstein, G.: Strangers on a plane: Context-dependent willingness to divulge sensitive information. Journal of consumer research 37(5), 858–873 (2011)
Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decis. Support Syst. 43(2), 618–644 (2007). DOI 10.1016/j.dss.2005.05.019
Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk. Econometrica 47(2), 263–292 (1979). DOI 10.2307/1914185
Kaleli, C., Polat, H.: Providing private recommendations using naïve bayesian classifier. In: K.M. Wegrzyn-Wolska, P.S. Szczepaniak (eds.) Advances in Intelligent Web Mastering, Advances in Soft Computing, vol. 43, pp. 168–173. Springer Berlin Heidelberg (2007)
Kandappu, T., Friedman, A., Boreli, R., Sivaraman, V.: PrivacyCanary: Privacy-aware recommenders with adaptive input obfuscation. In: MASCOTS (2014)
Knijnenburg, B.P., Jin, H.: The persuasive effect of privacy recommendations. In: Twelfth Annual Workshop on HCI Research in MIS, p. Paper 16. Milan, Italy (2013)
Knijnenburg, B.P., Kobsa, A.: Helping users with information disclosure decisions: potential for adaptation. In: Proceedings of the 2013 ACM international conference on Intelligent User Interfaces, pp. 407–416. ACM Press, Santa Monica, CA (2013)
Knijnenburg, B.P., Kobsa, A.: Making decisions about privacy: Information disclosure in context-aware recommender systems. ACM Transactions on Interactive Intelligent Systems 3(3), 20:1–20:23 (2013). DOI 10.1145/2499670
Knijnenburg, B.P., Kobsa, A., Jin, H.: Counteracting the negative effect of form auto-completion on the privacy calculus. In: ICIS 2013 Proceedings. Milan, Italy (2013)
Knijnenburg, B.P., Kobsa, A., Jin, H.: Dimensionality of information disclosure behavior. International Journal of Human-Computer Studies 71(12), 1144–1162 (2013)
Knijnenburg, B.P., Kobsa, A., Jin, H.: Preference-based location sharing: are more privacy options really better? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2667–2676. ACM, Paris, France (2013). DOI 10.1145/2470654.2481369
Knijnenburg, B.P., Kobsa, A., Saldamli, G.: Privacy in mobile personalized systems: The effect of disclosure justifications. In: Proceedings of the SOUPS 2012 Workshop on Usable Privacy & Security for Mobile Devices, pp. 11:1–11:5. Washington, DC (2012)
Knijnenburg, B.P., Willemsen, M.C., Hirtbach, S.: Receiving recommendations and providing feedback: The user-experience of a recommender system. In: EC-Web, pp. 207–216 (2010)
Kobsa, A.: Tailoring privacy to users’ needs (invited keynote). In: M. Bauer, P.J. Gmytrasiewicz, J. Vassileva (eds.) User Modeling 2001, no. 2109 in Lecture Notes in Computer Science, pp. 303–313. Springer Verlag (2001).
Kobsa, A.: Privacy-enhanced web personalization. In: P. Brusilovsky, A. Kobsa, W. Nejdl (eds.) The Adaptive Web, pp. 628–670. Springer-Verlag, Berlin, Heidelberg (2007)
Kobsa, A., Knijnenburg, B.P., Livshits, B.: Let’s do it at my place instead? attitudinal and behavioral study of privacy in client-side personalization. In: ACM CHI Conference on Human Factors in Computing Systems. Toronto, Canada (2014)
Kobsa, A., Schreck, J.: Privacy through pseudonymity in user-adaptive systems. ACM Trans. Internet Techn. 3(2), 149–183 (2003)
Kobsa, A., Teltzrow, M.: Contextualized communication of privacy practices and personalization benefits: Impacts on users’ data sharing and purchase behavior. In: D. Martin, A. Serjantov (eds.) Privacy Enhancing Technologies: Revised Selected Papers of the 4th International Workshop, PET 2004, Toronto, Canada, May 26–28, 2004, LNCS, vol. 3424, pp. 329–343. Springer Berlin Heidelberg (2005). DOI 10.1007/b136164
Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences (2013)
Krishnamurthy, B., Wills, C.: Privacy diffusion on the web: A longitudinal perspective. In: Proceedings of the 18th International Conference on World Wide Web, WWW ’09, pp. 541–550. ACM, New York, NY, USA (2009). DOI 10.1145/1526709.1526782
Lai, Y.L., Hui, K.L.: Internet opt-in and opt-out: Investigating the roles of frames, defaults and privacy concerns. In: Proceedings of the 2006 ACM SIGMIS CPR Conference on Computer Personnel Research, pp. 253–263. Claremont, CA (2006). DOI 10.1145/1125170.1125230
Lathia, N., Hailes, S., Capra, L.: Private distributed collaborative filtering using estimated concordance measures. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys ’07, pp. 1–8. ACM, New York, NY, USA (2007)
Laufer, R.S., Proshansky, H.M., Wolfe, M.: Some analytic dimensions of privacy. In: R. Küller (ed.) Proceedings of the Lund Conference on Architectural Psychology. Dowden, Hutchinson & Ross, Lund, Sweden (1973)
Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collaborative filtering. In: SDM (2005)
Li, H., Sarathy, R., Xu, H.: Understanding situational online information disclosure as a privacy calculus. Journal of Computer Information Systems 51(1), 62–71 (2010)
Li, T., Unger, T.: Willing to pay for quality personalization? trade-off between quality and privacy. European Journal of Information Systems 21(6), 621–642 (2012)
Lin, J., Sadeh, N.M., Amini, S., Lindqvist, J., Hong, J.I., Zhang, J.: Expectation and purpose: understanding users’ mental models of mobile app privacy through crowdsourcing. In: UbiComp, pp. 501–510 (2012)
Liu, Y., Gummadi, K.P., Krishnamurthy, B., Mislove, A.: Analyzing facebook privacy settings: user expectations vs. reality. In: Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference, pp. 61–70. ACM, Berlin, Germany (2011)
Machanavajjhala, A., Korolova, A., Sarma, A.D.: Personalized social recommendations - accurate or private? PVLDB 4(7), 440–450 (2011)
Malhotra, N.K., Kim, S.S., Agarwal, J.: Internet users’ information privacy concerns (IUIPC): the construct, the scale, and a nomological framework. Information Systems Research 15(4), 336–355 (2004). DOI 10.1287/isre.1040.0032
McSherry, F., Mironov, I.: Differentially private recommender systems: Building privacy into the netflix prize contenders. In: KDD, pp. 627–636 (2009)
Metzger, M.J.: Privacy, trust, and disclosure: Exploring barriers to electronic commerce. Journal of Computer-Mediated Communication 9(4) (2004)
Mikians, J., Gyarmati, L., Erramilli, V., Laoutaris, N.: Detecting price and search discrimination on the internet. In: HotNets, pp. 79–84 (2012)
Mikians, J., Gyarmati, L., Erramilli, V., Laoutaris, N.: Crowd-assisted search for price discrimination in e-commerce: first results. In: CoNEXT, pp. 1–6 (2013)
Miller, B.N., Konstan, J.A., Riedl, J.: Pocketlens: Toward a personal recommender system. ACM Transactions on Information Systems 22(3), 437–476 (2004)
Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: IEEE Symposium on Security and Privacy, pp. 111–125 (2008)
Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-preserving matrix factorization. In: ACM Conference on Computer and Communications Security, pp. 801–812 (2013)
Nissenbaum, H.: Privacy as contextual integrity. Washington Law Review 79(1), 101–139 (2004)
Nissenbaum, H.: A contextual approach to privacy online. Daedalus 140(4), 32–48 (2011)
Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC ’07, pp. 75–84. ACM, New York, NY, USA (2007)
Norberg, P.A., Horne, D.R., Horne, D.A.: The privacy paradox: Personal information disclosure intentions versus behaviors. Journal of Consumer Affairs 41(1), 100–126 (2007)
OECD: Recommendation of the council concerning guidelines governing the protection of privacy and transborder flows of personal data. Tech. rep., Organization for Economic Co-operation and Development (1980). Print file://Lit1/OECD-privacy-1980.htm
Ohm, P.: Broken promises of privacy: Responding to the surprising failure of anonymization. UCLA Law Review 57, 1701 (2010)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: EUROCRYPT, pp. 223–238 (1999)
Pallapa, G., Das, S.K., Di Francesco, M., Aura, T.: Adaptive and context-aware privacy preservation exploiting user interactions in smart environments. Pervasive and Mobile Computing 12, 232–243 (2014). DOI 10.1016/j.pmcj.2013.12.004. URL http://www.sciencedirect.com/science/article/pii/S1574119213001557
Parameswaran, R., Blough, D.M.: Privacy preserving collaborative filtering using data obfuscation. In: Proceedings of the IEEE Conference on Granular Computing, p. 380 (2007)
Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management. http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf (2010)
Polat, H., Du, W.: Privacy-preserving collaborative filtering using randomized perturbation techniques. In: ICDM, pp. 625–628 (2003)
Polat, H., Du, W.: Svd-based collaborative filtering with privacy. In: SAC, pp. 791–795 (2005)
Polat, H., Du, W.: Achieving private recommendations using randomized response techniques. In: PAKDD, pp. 637–646 (2006)
Put, A., Dacosta, I., Milutinovic, M., De Decker, B., Seys, S., Boukayoua, F., Naessens, V., Vanhecke, K., De Pessemier, T., Martens, L.: inshopnito: An advanced yet privacy-friendly mobile shopping application. In: Proceedings of 2014 IEEE World Congress on Services. IEEE Computer Society Press (2014). URL https://lirias.kuleuven.be/handle/123456789/454582
Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A., Karypis, G.: Privacy risks in recommender systems. IEEE Internet Computing 5(6), 54–62 (2001)
Ravichandran, R., Benisch, M., Kelley, P., Sadeh, N.: Capturing social networking privacy preferences:. In: I. Goldberg, M. Atallah (eds.) Privacy Enhancing Technologies, Lecture Notes in Computer Science, vol. 5672, pp. 1–18. Springer Berlin / Heidelberg (2009).
Renckes, S., Polat, H., Oysal, Y.: A new hybrid recommendation algorithm with privacy. Expert Systems 29(1), 39–55 (2012)
Riboni, D., Bettini, C.: Private context-aware recommendation of points of interest: An initial investigation. In: PerCom Workshops, pp. 584–589 (2012)
Rifon, N.J., LaRose, R., Choi, S.M.: Your privacy is sealed: Effects of web privacy seals on trust and personal disclosures. Journal of Consumer Affairs 39(2), 339–360 (2005)
Sadeh, N., Hong, J., Cranor, L., Fette, I., Kelley, P., Prabaker, M., Rao, J.: Understanding and capturing people’s privacy policies in a mobile social networking application. Personal and Ubiquitous Computing 13(6), 401–412 (2009). DOI 10.1007/s00779-008-0214-3
Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Min. Knowl. Discov. 5(1/2), 115–153 (2001)
Shokri, R., Pedarsani, P., Theodorakopoulos, G., Hubaux, J.P.: Preserving privacy in collaborative filtering through distributed aggregation of offline profiles. In: RecSys, pp. 157–164 (2009)
Smith, H.J., Dinev, T., Xu, H.: Information privacy research: An interdisciplinary review. MIS Quarterly 35(4), 989–1016 (2011)
Smith, H.J., Milberg, S.J., Burke, S.J.: Information privacy: Measuring individuals’ concerns about organizational practices. MIS Quarterly 20(2), 167–196 (1996)
Smith, N.C., Goldstein, D.G., Johnson, E.J.: Choice without awareness: Ethical and policy implications of defaults. Journal of Public Policy & Marketing 32(2), 159–172 (2013)
Solove, D.J.: Privacy self-management and the consent dilemma. Harvard Law Review 126, 1880–1903 (2013)
Stafford, J., Wallnau, K.: Is third party certification necessary. In: Proceedings of the 4th ICSE Workshop on Component-based Software Engineering: Component Certification and System Prediction, pp. 13–17 (2001)
Suguri, H.: A standardization effort for agent technologies: The foundation for intelligent physical agents and its activities. In: HICSS (1999)
Taylor, D., Davis, D., Jillapalli, R.: Privacy concern and online personalization: The moderating effects of information control and compensation. Electronic Commerce Research 9(3), 203–223 (2009). DOI 10.1007/s10660-009-9036-2
Toch, E., Wang, Y., Cranor, L.F.: Personalization and privacy: a survey of privacy risks and remedies in personalization-based systems. User Modeling and User-Adapted Interaction 22(1–2), 203–220 (2012). DOI 10.1007/s11257-011-9110-z
TRUSTe: First in-depth analysis of the impact of EU cookie directive shows majority of users choosing to allow advertising cookies (2012).
Vallet, D., Friedman, A., Berkovsky, S.: Matrix factorization without user data retention. In: PAKDD (2014)
Walton, D.: Plausible deniability and evasion of burden of proof. Argumentation 10(1), 47–58 (1996). DOI 10.1007/BF00126158
Wang, W., Benbasat, I.: Recommendation agents for electronic commerce: Effects of explanation facilities on trusting beliefs. Journal of Management Information Systems 23(4), 217–246 (2007). DOI 10.2753/MIS0742-1222230410
Wang, Y., Kobsa, A.: Impacts of privacy laws and regulations on personalized systems. In: A. Kobsa, R. Chellappa, S. Spiekermann (eds.) Proceedings of PEP06, CHI 2006 Workshop on Privacy-Enhanced Personalization, pp. 44–46. Springer Verlag, Montréal, Canada (2006)
Wang, Y., Kobsa, A.: Respecting users’ individual privacy constraints in web personalization. In: C. Conati, K. McCoy, G. Paliouras (eds.) User Modeling 2007, pp. 157–166. Springer Verlag (2007)
Wang, Y., Leon, P.G., Scott, K., Chen, X., Acquisti, A., Cranor, L.F.: Privacy nudges for social media: An exploratory facebook study. In: Second International Workshop on Privacy and Security in Online Social Media. Rio De Janeiro, Brazil (2013)
Weinsberg, U., Bhagat, S., Ioannidis, S., Taft, N.: Blurme: inferring and obfuscating user gender based on ratings. In: RecSys, pp. 195–202 (2012)
Westin, A.F., Harris, L., associates: The Dimensions of privacy: a national opinion research survey of attitudes toward privacy. Garland Publishing, New York (1981)
Xu, H., Luo, X.R., Carroll, J.M., Rosson, M.B.: The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decision Support Systems 51(1), 42–52 (2011). DOI 10.1016/j.dss.2010.11.017
Xu, H., Teo, H.H., Tan, B.C.Y.: Predicting the adoption of location-based services: The role of trust and perceived privacy risk. In: Proceedings of the International Conference on Information Systems, pp. 861–874. Las Vegas, NV (2005)
Xu, H., Teo, H.H., Tan, B.C.Y., Agarwal, R.: Effects of individual self-protection, industry self-regulation, and government regulation on privacy concerns: A study of location-based services. Information Systems Research (2012). DOI 10.1287/isre.1120.0416
Xu, H., Wang, N., Grossklags, J.: Privacy-by-ReDesign: alleviating privacy concerns for third-party applications. In: ICIS 2012 Proceedings. Orlando, FL (2012)
Yakut, I., Polat, H.: Privacy-preserving eigentaste-based collaborative filtering. In: A. Miyaji, H. Kikuchi, K. Rannenberg (eds.) Advances in Information and Computer Security, Lecture Notes in Computer Science, vol. 4752, pp. 169–184. Springer Berlin Heidelberg (2007)
Yakut, I., Polat, H.: Arbitrarily distributed data-based recommendations with privacy. Data & Knowledge Engineering 72(0), 239–256 (2012)
Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, SFCS ’82, pp. 160–164. IEEE Computer Society, Washington, DC, USA (1982). DOI 10.1109/SFCS.1982.88
Zhang, A., Bhamidipati, S., Fawaz, N., Kveton, B.: Priview: Media consumption and recommendation meet privacy against inference attacks. In: W2SP (2014)
Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles. In: WWW, pp. 531–540 (2009)
Zhu, T., Ren, Y., Zhou, W., Rong, J., Xiong, P.: An effective privacy preserving algorithm for neighborhood-based collaborative filtering. Future Generation Computer Systems (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this chapter
Cite this chapter
Friedman, A., Knijnenburg, B.P., Vanhecke, K., Martens, L., Berkovsky, S. (2015). Privacy Aspects of Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7637-6_19
Download citation
DOI: https://doi.org/10.1007/978-1-4899-7637-6_19
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4899-7636-9
Online ISBN: 978-1-4899-7637-6
eBook Packages: Computer ScienceComputer Science (R0)