Abstract
The maximum clique problem is a classical problem in combinatorial optimization which finds important applications in different domains. In this paper we try to give a survey of results concerning algorithms, complexity, and applications of this problem, and also provide an updated bibliography. Of course, we build upon precursory works with similar goals [39, 232, 266].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines, J. Wiley & Sons, Chichester, UK, 1989.
E. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization, J. Wiley & Sons, Chichester, UK, 1997.
F. Abbattista, F. Bellifemmine and D. Dalbis, The Scout algorithm applied to the maximum clique problem, in Advances in Soft Computing—Engineering and Design, Springer, Berlin, 1998.
J. Abello, P.M. Pardalos and M.G.C. Resende, On maximum clique problems in very large graphs, in External Memory Algorithms, DI-MACS Series, AMS (J. Abello and J. Vitter, Editors ) 1999.
L.M. Adleman, Molecular computation of solutions to combinatorial optimization, Science, Vol. 266: 1021–1024, 1994.
F. Alizadeh, A sublinear-time randomized parallel algorithm for the maximum clique problem in perfect graphs, in: A. Aggarwal (ed.), Discrete Algorithms, Proc. 2nd ACM-SIAM Symposium, Vol. 2: 188194, 1991.
N. Alon, U. Feige, A. Wigderson and D. Zuckerman, Derandomized graph products, Comput. Complex., Vol. 5: 60–75, 1995.
E.A. Akkoyunlu, The enumeration of maximal cliques of large graphs, SIAM J. Comput., Vol. 2: 1–6, 1973.
N. Alon, L. Babai and A. Itai, A fast and simple randomized parallel algorithm for the maximal independent set problem, J. Algorithms, Vol. 7: 567–583, 1986.
N. Alon, M. Krivelevich and B. Sudakov, Finding a large hidden clique in a random graph, in: Proc. SODA ‘88—Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco CA, January 2527, 1998.
A.P. Ambler, H.G. Barrow, C.M. Brown, R.M. Burstall and R.J. Popplestone, A versatile computer-controlled assembly system, in Proc. 3rd Int. J. Conf. Artif. Intell.: 298–307, 1973.
A.T. Amin and S.L. Hakimi, Upper bounds on the order of a clique of a graph, SIAM J. Appl. Math., Vol. 22: 569–573, 1972.
S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and hardness of approximation problems, Proc. 33rd Ann. Symp. Found. Computer Sci.: 14–23, 1992.
S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, Proc. 33rd Ann. Symp. Found. Computer Sci.: 2–13, 1992.
J.G. Auguston and J. Minker, An analysis of some graph theoretical cluster techniques, J. ACM, Vol. 17: 571–588, 1970.
G. Ausiello, P. Crescenzi and M. Protasi, Approximation solution of NP optimization problems, Theor. Comput. Sci., Vol. 150: 1–55, 1995.
G. Avondo-Bodeno, Economic Applications of the Theory of Graphs, Gordon and Breach Science Publishers, New York, 1962.
S.M. Baas, M.C. Bonvanie and A.J. Verschoor, A relaxation method for the set packing problem using polyhedron characteristic, Technical Report 699, University of Twente, Netherlands, 1988.
L. Babel, Finding maximum cliques in arbitrary and in special graphs, Computing, Vol. 46: 321–341, 1991.
L. Babel, A fast algorithm for the maximum weight clique problem, Computing, Vol. 52: 31–38, 1994.
L. Babel and G. Tinhofer, A branch and bound algorithm for the maximum clique problem, ZOR-Methods and Models of Operations Research, Vol. 34: 207–217, 1990.
T. Bäck and S. Khuri, An evolutionary heuristic for the maximum independent set problem, Proc. 1st IEEE Conf. Evolutionary Comput.: 531–535, 1994.
E. Balas, A fast algorithm for finding an edge-maximal subgraph with a TR-formative coloring, Discr, Appl. Math., Vol. 15: 123–134, 1986.
E. Balas, S. Ceria, G. Corneujols and G. Pataki, Polyhedral methods for the maximum clique problem, in [189]: 11–28, 1996.
E. Balas, V. Chvâtal and J. Nesetril, On the maximum weight clique problem, Math. Oper. Res., Vol. 12: 522–535, 1987.
E. Balas and W. Niehaus, Finding large cliques in arbitrary graphs by bipartite matching, in [189]: 29–51, 1996.
E. Balas and H. Samuelsson, A Node Covering Algorithm, Naval Research Logistics Quarterly, Vol. 24: 213–233, 1977.
E. Balas and P. Toth, Branch and bound methods, In: E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (Eds.), The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, J. Wiley & Sons, Chichester, UK: 361–403, 1985.
E. Balas and J. Xue, Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs, SIAM J. Comput., Vol. 2: 209–221, 1991. “Addendum,” SIAM J. Comput., Vol. 21: 1000, 1992.
E. Balas and J. Xue, Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring, Algorithmica Vol. 15: 397–412, 1996.
E. Balas and C.S. Yu, Finding a maximum clique in an arbitrary graph, SIAM J. Comput., Vol. 14: 1054–1068, 1986.
E. Balas and C.S. Yu, On graphs with polynomially solvable maximum-weight clique problem, Networks, Vol. 19: 247–253, 1989.
D.H. Ballard and M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, N.J., 1982.
D.H. Ballard, P.C. Gardner and M.A. Srinivas, Graph problems and connectionist architectures, Technical Report TR 167, Dept. Computer Science, University of Rochester, 1987
F. Barahona, A. Weintraub, and R. Epstein, Habitat dispersion in forest planning and the stable set problem, Oper. Res. Vol. 40, Supp. 1: S14 — S21, 1992.
H.G. Barrow and R.M. Burstall, Subgraph isomorphism, matching relational structures and maximal cliques, Inform. Proc. Lett., Vol. 4: 83–84, 1976.
R. Battiti and M. Protasi, Reactive local search for the maximum clique problem, Technical Report TR-95–052, International Computer Science Institute, Berkeley, CA, 1995.
A.R. Bednarek and O.E. Taulbee, On maximal chains, Roum. Math. Pres et Appl., Vol. 11: 23–25, 1966.
L.W. Beineke, A survey of packings and coverings in graphs, in: G. Chartrand and S. Kapoor (Eds.), Many Facets of Graph Theory, Springer: 45–53, Berlin, 1969.
M. Bellare, O. Goldreich, C. Lund and A. Russell, Efficient probabilistically checkable proofs and application to approximation, Proc. 25th Ann. ACM Symp. Theory of Comput.: 294–304, 1993.
M. Bellare, O. Goldreich and M. Sudan, Free bits, PCPs and nonapproximability—Towards tight results, SIAM J. Comput. Vol. 27: 804–915, 1997.
M. Bellare and M. Sudan, Improved nonapproximability results, Proc. 26th Ann. ACM Symp. Theory of Comput.: 184–193, 1994.
[43] C. Berge and V. Chvâtal (Eds.), Topics on Perfect Graphs, Ann. Discr. Math. Vol. 21, 1984.
P. Berman and A. Pelc, Distributed fault diagnosis for multiprocessor systems, Proc. of the 20th Annual Int. Symp. on Fault- Tolerant Computing (Newcastle, UK): 340–346, 1990.
P. Berman and G. Schnitger, On the complexity of approximating the independent set problem, in Proc.1989 Symposium on Theoret. Aspects of Comp. Sci., Springer, Lecture Notes in Computer Sciences Vol. 349: 256–268, Berlin, 1989.
P. Berman and G. Schnitger, On the complexity of approximating the independent set problem, Inform. and Comput., Vol. 96: 77–94, 1992.
A. Bertoni, P. Campadelli and G. Grossi, A discrete neural algorithm for the maximum clique problem: Analysis and circuit implementation, presented at WAE’97: Int. Workshop on Algorithm Engineering, Venice, Italy, 1997.
B.K. Bhattacharya, P. Hell and J. Huang, A linear algorithm for maximum weight cliques in proper circular arc graphs, SIAM J. Discr. Math. Vol. 9: 274–289, 1996.
B.K. Bhattacharya and D. Kaller, An O(m+n log n) algorithm for the maximum clique problem in circular-arc graphs, J. Algorithms Vol. 25: 33–358, 1997.
D.M. Blough, Fault detection and diagnosis in multiprocessor systems Ph.D. Thesis The Johns Hopkins University1988.
R.C. Bolles and R.A. Cain, Recognizing and locating partially visible objects: The locus-feature-focus method, Int. J. Robotics Res., Vol. 1: 57–82, 1982.
R.C. Bolles and P. Horaud, 3DPO: A three-dimensional part orientation system, Int. J. Robotics Res., Vol. 5: 3–26, 1986.
B. Bollobâs, Random graphs, Academic Press, New York, NY, 1985.
B. Bollobâs, Modern graph theory, Springer, New York, NY, 1998.
B. Bollobâs and P. Erdös, Cliques in Random Graphs, Math. Proc. Cambridge Philos. Soc., Vol. 80: 419–427, 1976.
I.M. Bomze, Evolution towards the maximum clique J. Glob. Optim. Vol. 10: 143–164, 1997.
I.M. Bomze, Global escape strategies for maximizing quadratic forms over a simplex J. Global Optim. Vol. 11: 325–338, 1997.
I.M. Bomze, On standard quadratic optimization problems J. Glob. Optim. Vol. 13: 369–387, 1998.
I.M. Bomze, M. Budinich, M. Pelillo and C. Rossi, Annealed replication: A new heuristic for the maximum clique problem, submitted for publication, 1998.
I.M. Bomze and G. Danninger, A finite algorithm for solving general quadratic problems, J. Global Optim. Vol. 4: 1–16, 1994.
I.M. Bomze, M. Pelillo, and R. Giacomini, Evolutionary approach to the maximum clique problem: Empirical evidence on a larger scale, in Developments in Global Optimization, I.M. Bomze, T. Csendes, R. Horst, and P.M. Pardalos (eds.), Kluwer: 95–108, Dordrecht, 1997.
I.M. Bomze, M. Pelillo, and V. Stix, Approximating the Maximum Weight Clique: An Evolutionary Game Theory Approach, manuscript in preparation, 1998.
I.M. Bomze and F. Rendi, Replicator dynamics for the evolution towards the maximum clique: Variants and experiments, in: High Performance Algorithms and Software in Nonlinear Optimization, R. De Leone, A. Murlí, P.M. Pardalos and G. Toraldo (eds.), Kluwer: 53–67, Dordrecht, 1998.
I.M. Bomze and V. Stix, Genetical engineering via negative fitness: Evolutionary dynamics for global optimization, to appear in: Ann. Oper. Res. Vol. 90, 1999.
R.E. Bonner, On some clustering techniques, IBM J. Res. Develop., Vol. 8: 22–32, 1964.
R. Boppana and M.M. Halldórsson, Approximating maximum independent sets by excluding subgraphs, BIT, Vol. 32: 180–196, 1992.
M. Boulala and J.P. Uhry, Polytope des Independants dans un Graphe Serie-Parallele, Discr. Math., Vol. 27: 225–243, 1979.
J.-M. Bourjolly, P. Gill, G. Laporte and H. Mercure, An exact quadratic 0–1 algorithm for the stable set problem, in [189]: 53–73, 1996.
J.-M. Bourjolly, G. Laporte and H. Mercure, A combinatorial column generation algorithm for the maximum stable set problem, Oper. Res. Lett. Vol. 20: 21–29, 1997.
D.P. Bovet and P. Crescenzi, Introduction to the Theory of Complexity, Prentice-Hall, Englewood Cliffs, N.J., 1994.
D. Brelaz, New methods to color the vertices of a graph, Commun. ACM, Vol. 22: 251–256, 1979.
M. Brockington and J.C. Culberson, Camouflaging independent sets in quasi-random graphs, in [189]: 75–88, 1996.
C. Bron and J. Kerbosch, Algorithm 457: Finding all cliques of an undirected graph, Commun. ACM, Vol. 16: 575–577, 1973.
A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, A new Table of constant weight codes, IEEE Trans. Inform. Theory, Vol. 36: 1334–1380, 1990.
M. Budinich, Bounds on the maximum clique of a graph, submitted (http://www.ts.infn.it/“mbh/MCBounds.ps.Z).
M. Budinich and P. Budinich, A Clifford algebra formulation of the maximum clique problem of a graph, preprint in preparation (will be available from http: //www. t s. infn. it/’mbh/PubNN. html).
T.N. Bui and P.H. Eppley A hybrid genetic algorithm for the maximum clique problem, Proc. 6th Int. Conf. Genetic Algorithms: 478–484, 1995.
M. Burlet and J. Fonlupt, Polynomial algorithm to recognize a Meyniel graph, W.R. Pulleyblank (ed.), Progress in Combinatorial Optimization, Academic Press, Toronto: 69–99, 1984.
J.E. Burns, The maximum independent set problem for cubic planar graph, Networks, Vol. 9: 373–378, 1989
R. Carraghan and P.M. Pardalos, An exact algorithm for the maximum clique problem, Oper. Res. Lett., Vol. 9: 375–382, 1990.
R. Carraghan and P.M. Pardalos, A parallel algorithm for the maximum weight clique problem, Technical Report CS-90–40, Dept. of Computer Science, Penn. State Univ., 1990.
B. Carter and K. Park, How good are genetic algorithms at finding large cliques: An experimental study, Technical Report BU-CS-93015, Computer Science Dept., Boston University, 1993.
M.-S. Chang, Y.-H. Chen, G.J. Chang, and J.-H. Yan, Algorithmic aspects of the generalized clique-transversal problem on chordal graphs, Discr. Appl. Math.,Vol. 66: 189–203, 1996.
R.C. Chang, On the query complexity of clique size and maximum satisfiability, J. Comput. Syst. Sci., Vol. 53: 298–313, 1996.
R.C. Chang, W.I. Gasarch, C. Lund, On bounded queries and approximation, SIAM J. Comput., Vol. 26: 188–209, 1997.
R.C. Chang and H.S. Lee, Finding a maximum set of independent chords in a circle, Inform. Proc. Lett., Vol. 41: 99–102, 1992.
N. Chiba and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput., Vol. 14: 210–223, 1985.
N. Chiba, T. Nishizeki and N. Saito, An approximation algorithm for the maximum independent set problem on planar graphs, SIAM. J. Comput., Vol. 11: 663–675, 1982.
N. Chiba, T. Nishizeki and N. Saito, An algorithm for finding a large independent set in planar graphs, Networks, Vol. 13: 247–252, 1983.
E. Choukhmane and J. Franco, An approximation algorithm for the maximum independent set problem in cubic planar graphs, Networks, Vol. 16: 349–356, 1986.
M. Chrobak and J. Naor, An efficient parallel algorithm for computing a large independent set in a planar graph, Algorithmica, Vol. 6: 80 1815, 1991.
V. Chvâtal, On certain polytopes associated with graphs, J. Combin. Theory B, Vol. 18: 138–154, 1975.
V. Chvâtal, Determining the stability number of a graph, SIAM J. Comput., Vol. 6: 643–662. 1977.
V. Chvâtal, A greedy heuristic for the set-covering problem, Math. Oper. Res., Vol. 4: 233–23, 1979.
V. Chvâtal, Perfectly orderable graphs, Ann. Discr. Math., Vol. 21: 63–65, 1985.
K. Corradi and S. Szabo, A combinatorial approach for Keller’s conjecture, Periodica Mathematica Hungarica, Vol. 21: 95–100, 1990.
P. Crescenzi, C. Fiorini and R. Silvestri, A Note on the approximation of the MAX CLIQUE problem, Inform. Process. Lett. 40: 1–5, 1991.
F. Della Croce and R. Tadei, A multi-KP modeling for the maximum-clique problem, Europ. J. Oper. Res., Vol. 73: 555–561, 1994.
V.-D. Cung, S. Dowaji, B. Le Cun, T. Mautor and C. Roucairol, Concurrent data structures and load balancing strategies for parallel branch-and-bound/A* algorithms, in S.N. Bhatt (ed.), Parallel algorithms, 3rd DIMACS Implementation Challenge, October 17–19, 1994, AMS DIMACS Ser. Discrete Math. Theor. Comput. Sci. Vol. 30: 141–162, 1997.
D.M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Academic Press, New York, NY, 1980.
E. Dahlhaus and M. Karpinski, A fast parallel algorithm for computing all maximal cliques in a graph and the related problems, in: Algorithm Theory. Proc. 1st Scand. Workshop, Halmstad/Sweden 1988. Lect. Notes Comput. Sci. Vol. 318: 139–144, 1988.
C. De Simone and A. Sassano, Stability number and bull-and chair-free graphs, Discr. Appl. Math., Vol. 41: 121–129, 1993.
V. Degot and J.M. Hualde, De l’utilisation de la notion de clique en matière de typologie des populations (in French), R.A.I.R.O., Vol. 9: 5–18, 1975.
N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall, Englewood Cliffs, NJ, 1974.
J.F. Desler and S.L. Hakimi, On finding a maximum internally stable set of a graph, Proc. of Fourth Annual Princeton Conference on Information Sciences and Systems, Vol. 4: 459–462, Princeton, NJ, 1970.
G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc., Vol. 27: 85–92, 1952.
G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem., Univ. Hamburg, Vol. 25: 71–76, 1961.
P. Doreian, A note on the detection of cliques in valued graphs, Sociometry, Vol. 32: 237–242, 1969.
D.-Z. Du, B. Gao and W. Wu, A special case for subset interconnection designs, Discr. Appl. Math., Vol. 78: 51–60, 1997.
C. Ebenegger, P.L. Hammer, and D. de Werra, Pseudo-boolean functions and stability of graphs, Ann. Discr. Math., Vol. 19: 83–98, 1984.
U. Feige, S. Goldwasser, L. Lovâsz, S. Safra, and M. Szegedy, Approximating the maximum clique is almost NP-complete, Proc. 32nd IEEE Symp. on Foundations of Computer Science: 2–12, 1991.
U. Feige, S. Goldwasser, L. Lovâsz, S. Safra, and M. Szegedy, Interactive proofs and the hardness of approximating cliques, J. ACM, Vol. 43: 268–292, 1996.
U. Feige and J. Kilian, Two prover protocols—Low error at affordable rates, Proc. 26th Ann. ACM Symp. Theory of Comput.: 172–183, 1994.
S. Felsner, R. Mueller and L. Wernisch, Trapezoid graphs and generalizations, geometry and algorithms, Discr. Appl. Math., Vol. 74: 13–32, 1997.
T.A. Feo, M.G.C. Resende and S.H. Smith, A greedy randomized adaptive search procedure for maximum independent set, Oper. Res., Vol. 42: 860–878, 1994.
M.L. Fisher and L.A. Wolsey, On the greedy heuristic for continuous covering and packing problems, SIAM J. Alg. Discr. Meth., Vol. 3: 584–591, 1982.
C. Fleurent and J.A. Ferland, Object-oriented implementation of heuristic search methods for graph coloring, maximum clique, and satisfiability, in [189]: 619–652, 1996.
J.A. Foster and T. Soule, Using genetic algorithms to find maximum cliques, Technical Report LAL 95–12, Dept. of Computer Science, U. Idaho, 1995.
A. Frank, Some polynomial algorithms for certain graphs and hyper-graphs, Proc. 5th British Combin. Conf.: 211–226, 1976.
C. Friden, A. Hertz, and D. de Werra, STABULUS: A technique for finding stable sets in large graphs with tabu search, Computing, Vol. 42: 35–44, 1989.
C. Friden, A. Hertz and M. de Werra, TABARIS: An exact algorithm based on tabu search for finding a maximum independent set in a graph, Comput. Oper. Res., Vol. 17: 437–445, 1990.
A. Frieze, On the independence number of random graphs, Discr. Math., Vol. 81: 171–175, 1990.
K. Fujisawa, M. Kojima, and K. Nakata, Exploiting sparsity in primal-dual interior-point methods for semidefinite programming, Math. Programming, Vol. 79: 235–253, 1997.
N. Funabiki, Y. Takefuji, and K.C. Lee, A neural network model for finding a near-maximum clique, J. Parallel Distrib. Comput., Vol. 14: 340–344, 1992.
M. Carey and D. Johnson, The complexity of near-optimal coloring, J. ACM, Vol. 23: 43–49, 1976.
M. Garey and D. Johnson, Computers and Intractability—A guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979.
F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph, SIAM J. Comput., Vol. 1: 180–187, 1972.
F. Gavril, Algorithms for a maximum clique and a maximum independent set of a circle graph, Networks, Vol. 3: 261–273, 1973.
F. Gavril, Algorithms on circular arc graphs, Networks, Vol. 4: 357369, 1974.
M. Gendreau, J.C. Picard and L. Zubieta, An efficient implicit enumeration algorithm for the maximum clique problem, A. Kurzhanski et al. (eds), Lecture Notes in Economics and Mathematical Systems, Vol. 304: 70–91, Springer, Berlin 1988.
A. Gendreau, L. Salvail, and P. Soriano, Solving the maximum clique problem using a tabu search approach, Ann. Oper. Res., Vol. 41: 385–403, 1993.
L. Gerhards and W. Lindenberg, Clique detection for nondirected graphs: Two new algorithms, Computing, Vol. 21: 295–322, 1979.
A.M.H. Gerards and A. Schrijver, Matrices with the Edmonds-Johnson property, Combinatorica, Vol. 6: 403–417, 1986.
L.E. Gibbons, D.W. Hearn and P.M. Pardalos, A continuous based heuristic for the maximum clique problem, in [189]: 103–124, 1996.
L.E. Gibbons, D.W. Hearn, P.M. Pardalos, and M.V. Ramana, Continuous characterizations of the maximum clique problem, Math. Oper. Res., Vol. 22: 754–768, 1997.
F. Glover, Tabu search—Part I, ORSA J. Comput., Vol. 1: 190–260, 1989.
F. Glover, Tabu search—Part II, ORSA J. Comput., Vol. 2: 4–32, 1990.
F. Glover and M. Laguna, Tabu search, in Modern Heuristic Techniques for Combinatorial Problems, C. Reeves (ed.), Blackwell, Oxford, UK: 70–141, 1993.
G.H. Godbeer, J. Lipscomb, and M. Luby, On the computational complexity of finding stable state vectors in connectionist models (Hopfield nets), Technical Report 208/88, Dept. of Computer Science, University Toronto, 1988.
M.X. Goemans, Semidefinite programming in combinatorial optimization, Math. Programming, Vol.. 79: 143–161, 1997.
D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.
M.K. Goldberg and R.D. Rivenburgh, Constructing cliques using restricted backtracking, in [189]: 89–101, 1996.
M. Goldberg and T. Spencer, A new parallel algorithm for the maximal independent set problem, SIAM J. Comput., Vol. 18: 419–427, 1989.
M. Goldberg and T. Spencer, Constructing a maximal independent set in parallel, SIAM J. Discr. Math., Vol. 2: 322–328, 1989.
M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, NY, 1980.
M.C. Golumbic and P.L. Hammer, Stability in circular-arc-graphs, J. Algorithms, Vol. 9: 314–320, 1988.
G.R. Grimmett and W.R. Pulleyblank, Random near-regular graphs and the node packing problem, Oper. Res. Lett., Vol. 4: 169–174, 1985.
T. Grossman, Applying the INN model to the max clique problem, in [189]: 125–146, 1996.
M. Grötschel, L. Lovâsz and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, Vol. 1: 169–197, 1981.
M. Grötschel, L. Lovâsz and A. Schrijver, Relaxations of vertex packing, J. Combin. Theory B, Vol. 40: 330–343, 1986.
M. Grötschel, L. Lovâsz and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, 2nd Ed., Springer, Berlin, 1993.
M. Grötschel, L. Lovâsz and A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discr. Math., Vol. 21: 325–356, 1989.
U.I. Gupta, D.T. Lee and J.Y.T. Leung, Efficient algorithms for interval graphs and circular-arc graphs, Networks, Vol. 12: 459–467, 1982.
G. Hajós, Sur la factorisation des abeliens, Casopis Vol. 74: 189–196, 1950.
M.-H. Han and D. Jang, The use of maximum curvature points for the recognition of partially occluded objects, Pattern Recognition, Vol. 23: 21–33, 1990.
P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, Computing, Vol. 44: 279–303, 1990.
F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
F. Harary and I.C. Ross, A procedure for clique detection using the group matrix, Sociometry, Vol. 20: 205–215, 1957.
J. Hasselberg, P.M. Pardalos and G. Vairaktarakis, Test case generators and computational results for the maximum clique problem, J. Global Optim., Vol. 3: 463–482, 1993.
J. Hastad, Testing of the long code and hardness clique, Proc. 28th Ann. Symp. Theory of Comput.: 11-19, 1996.
J. Hastad, Clique is hard to approximate within n 1— ß, Proc. 37th Ann. Symp. Found. Comput. Sci.: 627–636, 1996.
S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, New York, 1994.
R.B. Hayward, Weakly triangulated graphs, J. of Combin. Theory B, Vol. 39: 200–209, 1985.
R. Hayward, C.T. Hoang and F. Maffray, Optimizing weakly triangulated graphs, Graphs and Combinatorics, Vol. 5: 339–349, 1989. See also Erratum, Vol. 6: 33–35, 1990.
I. Heller, On linear systems with integral valued solutions, Pacific J. Math., Vol. 7: 1351–1364, 1957
C. Helmberg, F. Rendl, R.J. Vanderbei and H. Wolkowicz, An interior-point method for semidefinite programming, SIAM J. Optim., Vol. 6: 342–361, 1996.
J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, Redwood City, CA, 1991.
A. Hertz, E. Taillard and D. de Werra, Tabu search, in [2]: 121–136.
M. Hifi, A genetic algorithm-based heuristic for solving the weighted maximum independent set and some equivalent problems, J. Oper. Res. Soc. Vol. 48: 612–622, 1997.
C.W. Ho and R.C.T. Lee, Efficient parallel algorithms for finding maximal cliques, clique trees, and minimum coloring of chordal graphs, Inform. Proc. Lett., Vol. 28: 301–309, 1988.
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.
J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.
S. Homer and M. Peinado, Experiments with polynomial-time CLIQUE approximation algorithms on very large graphs, in [189]: 147–167, 1996.
J.J. Hopfield and D.W. Tank, “Neural” computation of decisions in optimization problems, Biol. Cybern., Vol. 52: 141–152, 1985.
R. Horaud and T. Skordas, Stereo correspondence through feature grouping and maximal cliques, IEEE Trans. Pattern Anal. Machine Intell., Vol. 11: 1168–1180, 1989.
R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985.
D.J. Houck, On the vertex packing problem, Ph.D. dissertation, The Johns Hopkins University, Baltimore, 1974.
D.J. Houck and R.R. Vemuganti, An algorithm for the vertex packing problem Oper. Res. Vol. 25: 773–787 1977.
W.L. Hsu, Maximum weight clique algorithms for circular-arc graphs and circle graphs, SIAM J. Comput., Vol. 14: 224–231, 1985.
W.L. Hsu, The coloring and maximum independent set problems on planar perfect graphs, J. ACM, Vol. 35: 535–563, 1988.
W.Hsu, Y. Ikura and G.L. Nemhauser, A polynomial algorithm for maximum weighted vertex packings on graphs without long odd cycles, Math. Programming, Vol. 20: 225–232, 1981.
H.B. Hunt III, M.V. Marathe, V. Radhakrishnan and R.E. Stearns, The complexity of planar counting problems, SIAM J. Comput., Vol. 27: 1142–1167, 1998.
A. Jagota, Approximating Maximum Clique with a Hopfield Network, IEEE Trans. Neural Networks, Vol. 6: 724–735, 1995.
A. Jagota (ed.), Neural Networks for Combinatorial Optimization J. Artif. Neural Networks Vol. 2 1995.
A. Jagota and K.W. Regan, Performance of neural net heuristics for maximum clique on diverse highly compressible graphs, J. Global Optim., Vol. 10: 439–465, 1997.
A. Jagota, L. Sanchis, and R. Ganesan, Approximately solving maximum clique using neural networks and related heuristics, in [189]: 169–204, 1996.
M. Jerrum, Large cliques elude the Metropolis process, Random Structures and Algorithms, Vol. 3: 347–359, 1992.
D.S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. Syst. Sci., Vol. 9: 256–278, 1974.
D.S. Johnson and M.A. Trick (eds.), Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge,DI-MACS Vol. 26,American Mathematical Society, 1996 (see also http:/ /dimacs.rutgers.edu/Volumes/Vo126.html).
D.S. Johnson, M. Yannakakis and C.H. Papadimitriou, On generating all maximal independent sets, Inform. Proc. Lett., Vol. 27: 119–123, 1988.
L.F. Johnson, Determining cliques of a graph, Proc. 5th Manitoba Conf. on Numer. Math.: 429–437, 1975.
H.C. Johnston, Cliques of a graph: Variations on the Bron-Kerbosch algorithm, Int. J. Comput. Inform. Sci., Vol. 5: 209–238, 1976.
N. Karmarkar, K.G. Ramakrishnan and M.G.C. Resende, An interior point approach to the maximum independent set problem in dense random graphs, Proc. XV Latin American Conference on Informatics, Santiago, Chile, I: 241–260, 1989.
R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, New York: 85–103, 1972.
R.M. Karp and A. Wigderson, A fast parallel algorithm for the maximal independent set problem, J. ACM, Vol. 32: 762–773, 1985.
M. Karpinski and A. Zelikovsky, Approximating dense cases of covering problems, in P.M. Pardalos et al. (eds), Network Design: Connectivity and Facilities Location, DIMACS Workshop, April 28–30, 1997. AMS-DIMACS Ser. Discr. Math. Theor. Comput. Sci. Vol. 40: 169–178, 1998.
T. Kashiwabara, S. Masuda, K, Nakajima and T. Fujisawa, Generation of maximum independent sets of a bipartite graph and maximum cliques of a circular-arc-graph, J. Algorithms, Vol. 13: 161–174, 1992.
O.H. Keller, Über die lückenlose Erfüllung des Raumes mit Würfeln (in German), J. Reine Angew. Math., Vol. 163: 231–248, 1930.
P. Kikusts, Another algorithm determining the independence number of a graph, Elektron. Inf. Verarb. Kybern. ELK 22: 157–166, 1986.
D.S. Kim and D.-Z. Du, On conflict-free channel set assignments for optical cluster-based hypercube networks, In DIMACS Series Vol. 46: 109–116, American Mathematical Society (1999).
S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing, Science, Vol. 220: 671–680, 1983.
P.N. Klein, Efficient parallel algorithms for chordal graphs, Proc. 29th Ann. Symp. Found. Computer Sci.: 150–161, 1988.
J. Kleinberg and M.X. Goemans, The Lovâsz theta function and a semidefinite programming relaxation of vertex cover, SIAM J. Discr. Math. Vol. 11: 196–204, 1997.
D.E. Knuth, The sandwich theorem, Electr. J. Combin.,Vol. 1: Al, 1994 (http://www2.combinatorics.org/Volume_1/volumel.html#A1).
R. Kopf and G. Ruhe, A computational study of the weighted independent set problem for general graphs, Found. Control Engin., Vol. 12: 167–180, 1987.
D. Kozen, A clique problem equivalent to graph isomorphism, SIGACT News: 50–52, Summer 1978.
J.C. Lagarias and P.W. Shor, Keller’s cube-tiling conjecture is false in high dimensions, Bull. Amer. Math. Soc. New Ser., Vol. 27: 279–283, 1992.
P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications, Reidel, Dordrecht, 1987.
E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, 1976.
L.J. Leifman, On construction of all maximal complete subgraphs (cliques) of a graph, Technical Report, Dept. of Mathematics., University of Haifa, Israel, 1976.
F. Lin and K. Lee, A parallel computation network for the maximum clique problem, in Proc. 1st Int. Conf. Fuzzy Theory Tech., Baton Rouge, Louisiana, 1992.
R.J. Lipton, On proving that a graph has no large clique: A connection with Ramsey theory, Inform. Proc. Lett., Vol. 58: 39–42, 1996.
C.-K. Looi, Neural network methods in combinatorial optimization, Comput. Oper. Res.,Vol. 19: 191–208, 1992.
E. Loukakis, A new backtracking algorithm for generating the family of maximal independent sets of a graph, Comp. Math. Appl., Vol. 9: 583–589, 1983.
E. Loukakis and C. Tsouros, A depth first search algorithm to generate the family of maximal independent sets of a graph lexicographically, Computing, Vol. 27: 249–266, 1981.
E. Loukakis and C. Tsouros, Determining the number of internal stability of a graph, Int. J. Comp. Math, Vol. 11: 207–220, 1982.
E. Loukakis and C. Tsouros, An algorithm for the maximum internally stable set in a weighted graph, Int. J. Comput. Math., Vol. 13: 117129, 1983.
L. Lovâsz, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, Vol. 25: 1–7, 1979.
L. Lovâsz and A. Schrijver, Cones of matrices and set-functions and 0–1 optimization, SIAM J. Optim.,Vol. 1: 166–190, 1991.
M. Luby, A simple parallel algorithm for the maximum independent set problem, SIAM J. Comput., Vol. 15: 1036–1053, 1986.
J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1979.
K. Maghout, Sur la determination des nombres de stabilite et du nombre chromatique d’un graphe, C.R. Acad. Sci., Paris, Vol. 248: 2522–2523, 1959.
G.K. Manacher and T.A. Mankus, Finding a maximum clique in a set of proper circular arcs in 0(n) with applications, Int. J. Found. Comput. Sci., Vol. 8: 443–467, 1997.
C. Mannino and A. Sassano, Edge projection and the maximum cardinality stable set problem, in [189]: 205–219, 1996.
E. Marchiori, A simple heuristic based genetic algorithm for the maximum clique problem, Proc. ACM Symp. Appl. Comput.: 366–373, 1998.
P.M. Marcus, Derivation of maximal compatibles using boolean algebra, IBM J. Res. Develop., Vol. 8: 537–538, 1964.
S. Masuda and K. Nakajima, An optimal algorithm for finding a maximum independent set of a circular-arc graph, SIAM J. Comput.,Vol. 17: 41–52, 1988
S. Masuda, K. Nakajima, T, Kashiwabara and T. Fujisawa, Efficient algorithms for finding maximum cliques of an overlap graph, Networks, Vol. 20: 157–171, 1990.
D.W. Matula, On the complete subgraphs of a random graph, Proc. 2nd Conf. Combin. Theory Appl., Chapel Hill, NC: 356–369, 1970.
D.W. Matula, The largest clique size in a random graph, Technical Report CS 7608, Department of Computer Science, Southern Methodist University, 1976.
W. Meeusen and L. Cuyvers, Clique detection in directed graphs: A new algorithm, J. Comput. Appl. Math., Vol. 1: 185–193, 1975.
W. Meeusen and L. Cuyvers, An annotated bibliography of clique-detection algorithms and related graph-theoretical problems, CAM Discussion Paper 7909, State University Center Antwerp, 1979.
H. Meyniel, On the perfect graph conjecture, Discr. Math., Vol. 16: 339–342, 1976.
H. Meyniel, A new property of imperfect graphs and some consequences, Europ. J. Combin., Vol. 8: 313–316, 1987.
G.J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory B, Vol. 28: 284–304, 1980.
B. Mohar and S. Poljak, Eigenvalues in combinatorial optimization, In Combinatorial and Graph-Theoretic Problems in Linear Algebra R. Brualdi, S. Friedland and V. Klee, eds., IMA Volumes in Mathematics and Its Applications, Vol. 50, Springer, Berlin, 1993.
J.W. Moon and L. Moser, On cliques in graphs, Israel Journal of Mathematics, Vol. 3: 23–28, 1965.
T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turân, Canad. J. Math., Vol. 17: 533–540, 1965.
G.D. Mulligan and D.G. Corneil, Corrections to Bierstone’s algorithm for generating cliques, J. ACM, Vol. 19: 244–247, 1972.
W.J. Murphy, Computing independent sets in graphs with large girth, Discr. Appl. Math., Vol. 36: 167–170, 1992.
A.S. Murthy, G. Parthasarathy and V.U.K. Sastry, Clique finding A genetic approach, Proc. 1st IEEE Conf. Evolutionary Comput.: 18–21, 1994.
J. Naor, M. Naor and A.A. Schaffer, Fast parallel algorithms for chordal graphs, Proc. 19th Annual ACM Symp. Theory Comput.: 355364, 1987.
G.L. Nemhauser and G. Sigismondi, A strong cutting plane/branchand bound algorithm for node packing, J. Opl. Res. Soc., Vol. 43: 443–457, 1992.
G.L. Nemhauser and L.E. Trotter„ Properties of vertex packings and independence system polyhedra, Math. Programming, Vol. 6: 48–61, 1974.
G.L. Nemhauser and L.E. Trotter, Vertex packings: Structural properties and algorithms, Math. Programming, Vol. 8: 232–248, 1975.
G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, J. Wiley 86 Sons, New York, 1988.
H. Ogawa, Labeled point pattern matching by Delaunay triangulation and maximal cliques, Pattern Recognition, Vol. 19: 35–40, 1986.
S. Olariu, Weak bipolarizable graphs, Discr. Math., Vol. 74: 159–171, 1989.
R.E. Osteen, Clique detection algorithms based on line addition and line removal, SIAM J. Appl. Math., Vol. 26: 126–135, 1974.
R.E. Osteen and J.T. Tou, A clique-detection algorithm based on neighborhoods in graphs, Int. J. Comput. Inform. Sci., Vol. 2: 257268, 1973.
Q. Ouyang, P.D. Kaplan, S. Liu and A. Libchaber, DNA solutions of the maximal clique problem, Science, Vol. 278: 446–449, 1997.
M.W. Padberg, Covering, packing and knapsack problems, Ann. Discr. Math., Vol. 4: 265–287, 1979.
A. Panconesi and D. Ranjan, Quantifiers and approximation, Proc. 22nd ACM Ann. Symp. Theory of Comput.: 446–456, 1990.
A. Panconesi and D. Ranjan, Quantifiers and approximation, Theor. Comput. Sci., Vol. 107: 145–163, 1993.
C. Papadimitriou, Computational Complexity, Addison-Wesley, Amsterdam, 1994.
C. Papadimitriou and M. Yannakakis, The clique problem for planar graphs, Inform. Proc. Lett., Vol. 13: 131–133, 1981.
C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes, Proc. 20th Ann. ACM STOC: 229–234, 1988.
C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes, J. Comput. Syst. Sci., Vol. 43: 425–440, 1991.
P.M. Pardalos, Continuous approaches to discrete optimization problems, in Nonlinear Optimization and Applications, G. Di Pillo and F. Giannessi, eds., Plenum Press, New York: 313–328, 1996.
P.M. Pardalos and N. Desai, An algorithm for finding a maximum weighted independent set in an arbitrary graph, Int. J. Comput. Math., Vol. 38: 163–175, 1991.
P.M. Pardalos and A.T. Phillips, A global optimization approach for solving the maximum clique problem, Int. J. Comput. Math., Vol. 33: 209–216, 1990.
P.M. Pardalos, J. Rappe and M.G.C. Resende, An Exact Parallel Algorithm for the Maximum Clique Problem, in High Performance Algorithms and Software in Nonlinear Optimization, R. De Leone, A. Murlí, P.M. Pardalos and G. Toraldo (eds.), Kluwer: 279–300, Dordrecht, 1998.
P. M. Pardalos and G. Rodgers, Parallel branch and bound algorithms for quadratic zero-one programming on a hypercube architecture, Ann. Oper. Res., Vol. 22: 271–292, 1990.
P. M. Pardalos and G. Rodgers, Computational aspects of a branch and bound algorithm for quadratic zero-one programming, Computing, Vol. 45: 131–144, 1990.
P.M. Pardalos and G.P. Rodgers, A branch and bound algorithm for the maximum clique problem, Comput. Oper. Res., Vol. 19: 363–375, 1992.
P.M. Pardalos and J. Xue, The maximum clique problem, J. Global Optim., Vol. 4: 301–328, 1994.
K. Park and B. Carter, On the effectiveness of genetic search in combinatorial optimization, Technical Report BU-CS-94–010,Computer Science Dept., Boston University, 1994. (a shorter version appears in: Proc. 10th ACM Symp. Appl. Comput.,1995.)
M.C. Paull and S.H. Unger, Minimizing the number of states in incompletely specified sequential switching functions, IRE Trans. Electr. Comput., Vol. EC-8: 356–367, 1959.
E.R. Peay, Jr., An iterative clique detection procedure, Michigan Math. Psychol. Program: MMPP 70–4, 1970.
E.R. Peay, Jr., Hierarchical clique structures, Sociometry, Vol. 37: 54–65, 1974.
M. Pelillo, Relaxation labeling networks for the maximum clique problem, J. Artif. Neural Networks, Vol. 2: 313–328, 1995.
M. Pelillo, A unifying framework for relational structure matching, in: Proc. 14th Int. Conf. Pattern Recognition: 1316–1319, 1998.
M. Pelillo, Replicator equations, maximal cliques, and graph isomorphism, Neural Computation, to appear, 1999.
M. Pelillo and A. Jagota, Feasible and infeasible maxima in a quadratic program for maximum clique, J. Artif. Neural Networks, Vol. 2: 41 1420, 1995.
M. Pelillo, K. Siddiqi and S.W. Zucker, Matching hierarchical structures using association graphs, in H. Burkhardt and B. Neumann (eds.), Computer Vision—ECCV’98 (Lecture Notes in Computer Science, Vol. 1407), Springer, Berlin: 3–16, 1998.
O. Perron, Über lückenlose Ausfüllung des n-dimensionalen Raumes durch kongruente Würfel (in German), Math. Z., Vol. 46: 1–26, 161180. Zbl 22, 202, 1940.
C. Peterson and B. Söderberg, Artificial neural networks, in [2]: 173213, 1997.
J.C. Picard and M. Queyranne, On the integer-valued variables in the linear vertex packing problem, Math. Programming, Vol. 12: 97–101, 1977.
F. Pla and J.A. Marchant, Matching feature points in image sequences through a region-based method, Comput. Vision Image Understanding, Vol. 66: 271–285, 1997.
F.P. Preparata, G. Metze and R.T. Chien, On the connection assignment problem of diagnosable systems, IEEE Trans. Electr. Comput., Vol. 16: 848–854, 1967.
W.R. Pulleyblank, Minimum node covers and 2-bicritical graphs, Math. Programming, Vol. 17: 91–103, 1979.
B. Radig, Image sequence analysis using relational structures, Pattern Recognition, Vol. 17: 161–167, 1984.
P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing integer programs, J. Comput. Syst. Sci., Vol. 37: 130–143, 1988.
J. Ramanujam and P. Sadayappan, Optimization by neural networks, Proc. IEEE Int. Conf. Neural Networks: 325–332, 1988.
M.C.G. Resende, T.A. Feo, and S.H. Smith, Fortran subroutines for approximate solution of maximum independent set problems using GRASP, ACM Transactions on Mathematical Software, to appear 1999.
J.M. Robson, Algorithms for maximum independent sets, J. Algorithms, Vol. 7: 425–440, 1986.
D.J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl., Vol. 32: 597–609, 1970.
D.J. Rose, R.E. Tarjan and G.S. Leuker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., Vol. 5: 266–283, 1976.
D. Rotem and J. Urrutia, Finding maximum cliques in circle graphs, Networks, Vol. 11: 269–278, 1981.
B.E. Sagan, A note on independent sets in trees, SIAM J. Discr. Math., Vol. 1: 105–108, 1988.
L. Sanchis and A. Jagota, Some experimental and theoretical results on test case generators for the maximum clique problem, INFORMS J. Comput., Vol. 8: 87–102, 1996.
C.E. Shannon, Certain results in coding theory for noisy channels, Inform. and Control, Vol. 1: 6–25, 1957.
N. Z. Shor, Dual quadratic estimates in polynomial and Boolean programming, in Computational Methods in Global Optimization, P. M. Pardalos and J. B. Rosen (eds.), Ann. Oper. Res., Vol. 25: 163–168, 1990.
Y. Shrivastava, S. Dasgupta, and S.M. Reddy, Neural network solutions to a graph theoretic problem, in Proc. IEEE Int. Symp. Circuits Syst.: 2528–2531, 1990.
Y. Shrivastava, S. Dasgupta, and S.M. Reddy, Guaranteed convergence in a class of Hopfield networks, IEEE Trans. Neural Networks, Vol. 3: 951–961, 1992.
N.J.A. Sloane, Unsolved problems in graph theory arising from the study of codes, J. Graph Theory Notes of New York, Vol. 18: 11–20, 1989.
P. Soriano and M. Gendreau, Tabu search algorithms for the maximum clique problem, in [189]: 221–242, 1996.
P. Soriano and M. Gendreau, Diversification strategies in tabu search algorithms for the maximum clique problem, Ann. Oper. Res., Vol. 63: 189–207, 1996.
V.T. Sós and E.G. Straus, Extremal of functions on graphs with applications to graphs and hypergraphs, J. Combin. Theory B, Vol. 32: 246–257, 1982
S.K. Stein, Algebraic tiling, Amer. Math. Monthly, Vol. 81: 445–462, 1974.
S. Szabó, A reduction of Keller’s conjecture, Periodica Math. Hung., Vol. 17: 265–277, 1986.
Y. Takefuji, Neural Network Parallel Computing, Kluwer, Dordrecht, 1992.
Y. Takefuji, L. Chen, K. Lee and J. Huffman, Parallel algorithms for finding a near-maximum independent set of a circle graph, IEEE Trans. Neural Networks, Vol. 1: 263–267, 1990.
R.E. Tarjan, Finding a maximum clique, Technical Report 72–123, Computer Sci. Dept., Cornell University, Ithaca, NY, 1972.
R.E. Tarjan and A.E. Trojanowski, Finding a maximum independent set, SIAM J. Comput., Vol. 6: 537–546, 1977.
R.E. Tarjan and M Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., Vol. 13: 566–579, 1984.
E. Tomita, Y. Kohata and H. Takahashi, A simple algorithm for finding a maximum clique, Technical Report UEC-TR-05, 1988.
E. Tomita, S. Mitsuma and H. Takahashi, Two algorithms for finding a near-maximum clique, Technical Report UEC-TR-C1, 1988.
E. Tomita, A. Tanaka and H. Takahashi, The worst-case time complexity for finding all the cliques, Technical Report UEC-TR-05, 1988.
S. Tsukiyama, M. Ide, H. Aviyoshi and I. Shirakawa, A new algorithm for generating all the maximum independent sets, SIAM J. Comput., Vol. 6: 505–517, 1977.
P. Turin, On an extremal problem in graph theory (in Hungarian), Mat. és Fiz. Lapok, Vol. 48: 436–452, 1941.
L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput., Vol. 8: 410–421, 1979.
O. Verbitsky, On the hardness of approximating some optimization problems that are supposedly easier that MAX CLIQUE, Comb. Probab. Comput. Vol. 4: 167–180, 1995.
M. Vingron and P. Argos, Motif recognition and alignment for many sequences by comparison of dot-matrices, J. Molecular Biol., Vol. 218: 33–43, 1991.
M. Vingron and P.A. Pevzner, Multiple sequence comparison and consistency on multipartite graphs. Adv. Appl. Math Vol. 16: 1–22, 1995.
H.S. Wilf, The eigenvalues of a graph and its chromatic number, J. London Math. Soc., Vol. 42: 330–332, 1967.
H.S. Wilf, Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1986.
H.S. Wilf, Spectral bounds for the clique and independence numbers of graphs, J. Combin. Theory B, Vol. 40: 113–117, 1986.
S. Wimer, R.Y. Pinter and J. Feldman, Optimal chaining of CMOS transistors in a functional cell, IEEE Trans. Computer-Aided Design, Vol. 6: 795–801, 1987.
J. Wu, T. Harada and T. Fukao, New method to the solution of maximum clique problem: Mean-field approximation algorithm and its experimentation. Proc. IEEE Int. Conf. Syst., Man, Cybern.: 22482253, 1994.
J. Xue, Fast Algorithms for Vertex Packing and Related Problems, Ph.D Thesis, GSIA, Carnegie Mellon University, 1991.
J. Xue, Edge-maximal triangulated subgraphs and heuristics for the maximum clique problem, Networks, Vol. 24: 109–120, 1994.
M. Yannakakis, On the approximation of maximum satisfiability, Proc. 3rd Annual ACM-SIAM Symp. Discr. Algorithms, 1992.
M.-S. Yu, L. Yu and S.-J. Chang, Sequential and parallel algorithms for the maximum-weight independent set problem on permutation graphs, Inform. Proc. Lett., Vol. 46: 7–11, 1993.
B.-T. Zhang and S.-Y. Shin, Code optimization for DNA computing of maximal cliques, in Advances in Soft Computing—Engineering and Design, Springer, Berlin, 1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M. (1999). The Maximum Clique Problem. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3023-4_1
Download citation
DOI: https://doi.org/10.1007/978-1-4757-3023-4_1
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4419-4813-7
Online ISBN: 978-1-4757-3023-4
eBook Packages: Springer Book Archive