Nothing Special   »   [go: up one dir, main page]

Skip to main content

Scale Selection

  • Reference work entry
  • First Online:
Computer Vision

Synonyms

Automatic scale selection; Scale-invariant image features and image descriptors

Related Concepts

Corner Detection; Edge Detection

Definition

The notion of scale selection refers to methods for estimating characteristic scales in image data and for automatically determining locally appropriate scales in a scale-space representation, so as to adapt subsequent processing to the local image structure and compute scale-invariant image features and image descriptors.

An essential aspect of the approach is that it allows for a bottom-up determination of inherent scales of features and objects without first recognizing them or delimiting, alternatively segmenting, them from their surroundings.

Scale selection methods have also been developed from other viewpoints of performing noise suppression and exploring top-down information.

Background

The concept of scaleis essential when computing features and descriptors from image data. Real-world objects may contain different types of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bay H, Ess A, Tuytelaars T, van Gool (2008) Speeded up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  2. Bretzner L, Lindeberg T (1998) Feature tracking with automatic selection of spatial scales. Comput Vis Image Underst 71(3):385–392

    Article  Google Scholar 

  3. Crowley J, Riff O (2003) Fast computation of scale normalised receptive fields. In: Proceedings of scale-space'03. Lecture Notes in Computer Science, vol 2695. Springer, Berlin/New York, pp 584–598

    Google Scholar 

  4. Elder JH, Zucker SW (1998) Local scale control for edge detection and blur estimation. IEEE Trans Pattern Anal Mach Intell 20(7):699–716

    Article  Google Scholar 

  5. Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am 4:2379–2394

    Article  Google Scholar 

  6. Frangi AF, Niessen WJ, Hoogeveen RM, vanWalsum T, Viergever MA (2000) Model-based quantitation of 3D magnetic resonance angiographic images. IEEE Trans Med Imaging 18(10):946–956

    Article  Google Scholar 

  7. Kadir T, Brady M (2001) Saliency, scale and image description. Int J Comput Vis 45(2):83–105

    Article  MATH  Google Scholar 

  8. Koenderink JJ (1984) The structure of images. Biol Cybern 50:363–370

    Article  MathSciNet  MATH  Google Scholar 

  9. Krissian K, Malandain G, Ayache N, Vaillant R, Trousset Y (2000) Model-based detection of tubular structures in 3D images. Comput Vis Image Underst 80(2):130–171

    Article  MATH  Google Scholar 

  10. Lindeberg T (1994) Scale-space theory in computer vision. The Springer international series in engineering and computer science. Springer, Berlin/New York

    Google Scholar 

  11. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):77–116

    Google Scholar 

  12. Lindeberg T (1998) Edge detection and ridge detection with automatic scale selection. Int J Comput Vis 30(2):117–154

    Article  Google Scholar 

  13. Lindeberg T (1998) A scale selection principle for estimating image deformations. Image Vis Comput 16(14):961–977

    Article  Google Scholar 

  14. . Lindeberg T (2008) Scale-space. In: Wah B (ed.) Encyclopedia of computer science and engineering. Wiley, pp 2495–2504. dx.doi.org/10.1002/9780470050118.ecse609. Also available from http://www.nada.kth.se/ tony/abstracts/Lin08-EncCompSci.html

  15. . Lindeberg T (2010) Interest point from scale-space features: scale-space primal sketch for differential descriptors International Journal of Computer Vision

    Google Scholar 

  16. Lindeberg T (2013) Scale selection properties of generalized scale-space interest point detectors. J Mathematical Imaging and Vision, 46(2):177–210

    Article  MathSciNet  MATH  Google Scholar 

  17. Lindeberg T, Bretzner L (2003) Real-time scale selection in hybrid multi-scale representations. In: Proceedings of Scale-Space Methods in Computer Vision. Lecture Notes in Computer Science, vol 2695. Springer, Berlin/New York, pp 148–163

    Chapter  Google Scholar 

  18. Loog M, Li Y, Tax D (2009) Maximum membership scale selection. In: Multiple Classifier Systems. Lecture Notes in Computer Science, vol 5519. Springer, Berlin, pp 468–477.

    Chapter  Google Scholar 

  19. Li Y, Tax DMJ, Loog M (2012) Supervised scale-invariant segmentation (and detection). In: Proc. Scale Space and Variational Methods in Computer Vision (Scale-Space'11), Ein Gedi, Israel. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, pp 350–361

    Chapter  Google Scholar 

  20. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  21. Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vis 60(1):63–86

    Article  Google Scholar 

  22. Mrázek P, Navara M (2003) Selection of optimal stopping time for nonlinear diffusion filtering. Int J Comput Vis 52(2–3):189–203

    Article  Google Scholar 

  23. Negre A, Braillon C, Crowley JL, Laugier C (2008) Real-time time-to-collision from variation of intrinsic scale. Exp Robot 39:75–84

    Article  Google Scholar 

  24. Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2(2):143–168

    Article  Google Scholar 

  25. Sporring J, Colios, CJ, Trahanias, PE (2000) Generalized scale-selection. In: Proc. International Conference on Image Processing (ICIP'00), Vancouver, Canada, pp 920–923

    Google Scholar 

  26. Witkin AP (1983) Scale-space filtering. In: Proceedings of 8th International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, pp 1019–1022

    Google Scholar 

  27. Lindeberg T (2013) Invariance of visual operations at the level of receptive fields. PLoS ONE 8(7): e66990. doi:10.1371/journal.pone.0066990

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Lindeberg, T. (2014). Scale Selection. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_242

Download citation

Publish with us

Policies and ethics