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PREFACE 

K -Theory has revolutionized the study of operator algebras in the last few 

years. As the primary component of the subject of "noncommutative topol

ogy," K -theory has opened vast new vistas within the structure theory of C*

algebras, as well as leading to profound and unexpected applications of opera

tor algebras to problems in geometry and topology. As a result, many topolo

gists and operator algebraists have feverishly begun trying to learn each others' 

subjects, and it appears certain that these two branches of mathematics have 

become deeply and permanently intertwined. 

Despite the fact that the whole subject is only about a decade old, operator 

K -theory has now reached a state of relative stability. While there will 

undoubtedly be many more revolutionary developments and applications in the 

future, it appears the basic theory has more or less reached a "final form." But 

because of the newness of the theory, there has so far been no comprehensive 

treatment of the subject. 

It is the ambitious goal of these notes to fill this gap. We will develop the 

K -theory of Banach algebras, the theory of extensions of C*-algebras, and the 

operator K -theory of Kasparov from scratch to its most advanced aspects. We 

will not treat applications in detail; however, we will outline the most striking 

of the applications to date in a section at the end, as well as mentioning others 

at suitable points in the text. 

There is little in these notes which is new. They represent mainly a con

solidation and integration of previous work. I have borrowed freely from the 

ideas and writings of others, and I hope I have been sufficiently conscientious 

in acknowledging the sources of my presentation within the text and in the 

notes at the end of sections. There are some places where I have presented 

new arguments or points of view to (hopefully) make the exposition cleaner or 

more complete. 

These notes are an expanded and refined version of the lecture notes from 

a course I gave at the Mathematisches Institut, Universitat Tiibingen, West Ger

many, while on sabbatical leave during the 1982-83 academic year. I taught the 

course in an effort to learn the material of the later sections. I am grateful to 

the participants in the course, who provided an enthusiastic and critical audi

ence: A. Kumjian, B. Kiimmerer, M. Mathieu, R. Nagel, W. Schroder, J. 

Vazquez, M. Wolff, and L. Zsido; and to all the others in Tiibingen who made 



my stay pleasant and worthwhile. I am also grateful to the Alexander von 

Humboldt-Stiftung for their financial support through a Forschungsstipendium. 

I have benefited greatly from numerous lectures and discussions at the 

Mathematical Sciences Research Institute, Berkeley, during the 1984-85 

academic year. I am particularly indebted to P. Baum, L. Brown, A. Connes, J. 

Cuntz, R. Douglas, N. Higson, J. Kaminker, C. Phillips, M. Rieffel, J. Rosen

berg, and C. Schochet for sharing their knowledge and insights. 

In addition, I want to thank J. Cuntz, P. Julg, G. Kasparov, C. Phillips, M. 

Rieffel, J. Roe, D. Voiculescu, and especially J. Rosenberg, for taking the time 

to review a preliminary draft of the manuscript, pointing out a number of minor 

(and a few major) errors, and suggesting improvements. 

I am also grateful to Ed Wishart, Jana Dunn, Bill Rainey, Mark Schank, 

and Ron Sheen for patiently helping me master the UNIXt system and manag

ing to keep the UNR system operating long enough to produce the manuscript. 

Since these notes are primarily written for specialists in operator algebras, 

we will assume familiarity with the rudiments of the theory of Banach algebras 

and C*-algebras, such as can be found in the first part of [Dx 1], [Pd 1], or 

[Tk]. Some of the sections, particularly later in the book, require more detailed 

knowledge of certain aspects of C*-algebra theory. 

Most of the notation we use will be standard, and will be explained as 

needed. Some basic notation used throughout: N, Z, Q, R, C will denote the 

natural numbers, integers, and rational, real, and complex numbers respectively; 

Mn will denote the n Xn matrices over C; H will denote a Hilbert space, separ

able and infinite-dimensional unless otherwise specified; and B(H) and K(H), 

or often just B and K, will respectively denote the bounded operators and 

compact operators on H. diag (x 1> ••• ,xn) will denote the diagonal matrix with 

diagonal elements xl' ... ,Xn • If A and B are C*-algebras, A ®B will always 

denote the minimal (spatial) C*-tensor product of A and B . 

This work was supported in part by NSF grant no. 8120790. 

tUNIX is a Trademark of Bell Laboratories. 
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