
Texts and Monographs in Computer Science 

Editor 

David Gries 

Advisory Board 
F. L. Bauer 

J. J. Horning 
R. Reddy 

D. C. Tsichritzis 
W. M. Waite 



The AKM Series in 
Theoretical Computer Science 
A Subseries of Texts and Monographs in Computer Science 

A Basis for Theoretical Computer Science 
by M. A. Arbib, A. J. Kfoury, and R. N. Moll 

A Programming Approach to Computability 
by A. J. Kfoury, R. N. Moll, and M. A. Arbib 

An Introduction to Formal Language Theory 
by R. N. Moll, M. A. Arbib, and A. J. Kfoury 

Algebraic Approaches to Program Semantics 
by E. G. Manes and M. A. Arbib 



Algebraic 
Approaches to 

Program 
Semantics 

Ernest G. Manes 
Michael A. Arbib 

Springer-Verlag 
New York Berlin Heidelberg 

London Paris Tokyo 



To 
Bernadette and Prue 



Preface 

In the 1930s, mathematical logicians studied the notion of "effective comput­
ability" using such notions as recursive functions, A-calculus, and Turing 
machines. The 1940s saw the construction of the first electronic computers, 
and the next 20 years saw the evolution of higher-level programming languages 
in which programs could be written in a convenient fashion independent 
(thanks to compilers and interpreters) of the architecture of any specific 
machine. The development of such languages led in turn to the general 
analysis of questions of syntax, structuring strings of symbols which could 
count as legal programs, and semantics, determining the "meaning" of a 
program, for example, as the function it computes in transforming input data 
to output results. An important approach to semantics, pioneered by Floyd, 
Hoare, and Wirth, is called assertion semantics: given a specification of which 
assertions (preconditions) on input data should guarantee that the results 
satisfy desired assertions (postconditions) on output data, one seeks a logical 
proof that the program satisfies its specification. An alternative approach, 
pioneered by Scott and Strachey, is called denotational semantics: it offers 
algebraic techniques for characterizing the denotation of (i.e., the function 
computed by) a program-the properties of the program can then be checked 
by direct comparison of the denotation with the specification. 

This book is an introduction to denotational semantics. More specifically, 
we introduce the reader to two approaches to denotational semantics: the 
order semantics of Scott and Strachey and our own partially additive semantics. 
Moreover, we show how each approach may be applied both to the specifica­
tion of the semantics of programs, including recursive programs, and to the 
specification of new data types from old. There has been a growing acceptance 
that category theory, a branch of abstract algebra, provides a perspicuous 



viii Preface 

general setting for all these topics, and for many other algebraic approaches 
to program semantics as well. Thus, an important aim of this book is to 
interweave the study of semantics with a completely self-contained introduc­
tion to a useful core of category theory, fully motivated by basic concepts of 
computer science. 

Computer science seeks to provide a scientific basis for the study of in­
formation processing, algorithms, and the design and programming of com­
puters. The past four decades have witnessed major advances in programming 
methodology, which allow immense programs to be designed with increasing 
speed and reduced error, and in the development of mathematical techniques 
to allow the rigorous specification of program, process, and machine. The 
present volume is one of a series, the AKM Series in Theoretical Computer 
Science, designed to make key mathematical developments in computer 
science readily accessible to undergraduate and beginning graduate students. 
The book is essentially self-contained: what little background is required may 
be found in the AKM volume A Basis for Theoretical Computer Science. 

However, this book is more algebraic than other books in the AKM 
Series, and as such may prove somewhat heavier going-at least for American 
students, since the American curriculum in theoretical computer science, as 
distinct from the European curriculum, stresses combinatorial methods over 
algebraic methods. 

The book is organized in three parts: Part 1 presents the denotational 
semantics of control, that is, the way in which the denotation of a program 
can be obtained from the denotation of the pieces from which it is composed. 
The approach is motivated by analysis of a fragment of Pascal, a functional 
programming fragment, and a consideration of nondeterministic semantics. 
Basic notions of category theory include those of product and coproduct. 
Chapter 3 presents the elements of partially additive semantics, including 
a denotational semantics of iteration and a new theory of guards ("test 
functions") which provides a bridge between denotational semantics and the 
assertion semantics presented in Chapter 4. 

Part 2 extends the theory of Part 1 by showing how the Kleene sequence 
yields a denotation for the computation given by a recursive program. 
Chapter 6 then introduces domains as the setting for the order semantics 
of recursion, while Chapter 8 provides the partially ordered semantics of 
recursion. Chapter 7, on canonical fixed points, provides a unified setting for 
both approaches, as well as for the study of fixed points in metric spaces in 
Chapter 9. 

Part 3 extends the theory to data types. The crucial tools are provided 
by the following notions from category theory, which are introduced in 
Chapters 10 and 11: functors, fixed points of functors, and co-continuous and 
continuous functors. We motivate these with a discussion of how a generalized 
Kleene sequence can provide the denotation of a recursive specification of a 
data type. In Chapter 12, we consider parametric specification of data types, 
analyzing arrays, stacks, queues, and our functional programming fragment 



Preface ix 

in the process. We devote Chapter 13 to the order semantics of data types. 
Finally, Chapter 14 gives a brief introduction to describing data types using 
operations and equations, and extends the earlier theory of functorial fixed 
points to include these ideas. As a result, the reader is not limited to anyone 
algebraic approach to program semantics, but rather is given the tools to 
tailor the formal semantics to the need of different applications. 

The book grew out of our research in partially additive semantics, which 
was in turn based on our general investigation of "category theory applied to 
computation and control." We thank the National Science Foundation for 
its support of this research. This volume represents an attempt to place the 
material in the perspective of other approaches to denotational semantics, 
and to render the common algebraic tools as accessible as possible. We thank 
our many colleagues in both America and Europe for all they taught us in the 
course of this research, and for their comments on an earlier draft of the 
book. It is with regret that we note that limitations of space make it impossible 
to address all the topics raised in this correspondence within the compass of 
an introductory text. Finally, we thank Gwyn Mitchell and Kathy Adamczyk 
for their typing ofthe draft of this manuscript; and Ms. Adamczyk for helping 
with research on the notes for Chapter 5. 

Amherst, Massachusetts ERNEST G. MANES 

MICHAEL A. ARBIB 



Contents 

Part 1 Denotational Semantics of Control 

CHAPTER 1 
An Introduction to Denotational Semantics 

1.1 Syntax and Semantics 
1.2 A Simple Fragment of Pascal 
1.3 A Functional Programming Fragment 
1.4 Multifunctions 
1.5 A Preview of Partially Additive Semantics 

CHAPTER 2 
An Introduction to Category Theory 

2.1 The Definition of a Category 
2.2 Isomorphism, Duality, and Zero Objects 
2.3 Products and Coproducts 

CHAPTER 3 
Partially Additive Semantics 

3.1 Partial Addition 
3.2 Partially Additive Categories and Iteration 
3.3 The Boolean Algebra of Guards 

CHAPTER 4 
Assertion Semantics 

4.1 Assertions and Preconditions 
4.2 Partial Correctness 
4.3 . Total Correctness 

3 

3 
5 

11 
21 
26 

38 

39 
46 
57 

71 

71 
75 
85 

98 

98 
102 
109 



Contents 

CHAPTER 12 
Parametric Specification 

12.1 Arrays 
12.2 Stacks and Queues 
12.3 A Functional Programming Fragment Revisited 

CHAPTER 13 
Order Semantics of Data Types 

13.1 Introduction 
13.2 Constructions with Domains 
13.3 Cartesian-Closed Categories 
13.4 Solving Function Space Equations 

CHAPTER 14 
Equational Specification 

14.1 Initial Algebras 
14.2 Sur-reflections 

Epilogue 

Author Index 

Subject Index 

xiii 

279 

280 
283 
288 

293 

293 
296 
300 
305 

318 

319 
328 

341 

345 

347 


