
Appendix A 
Linear Programming and Duality 
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This appendix outlines linear programming and its duality relations. Readers 
are referred to text books such as Gass (1985)^, Charnes and Cooper (1961)^, 
Mangasarian (1969)^ and Tone (1978)^ for details. More advanced treatments 
may be found in Dantzig (1963)^, Spivey and Thrall (1970)^ and Nering and 
Tucker (1993).^ Most of the discussions in this appendix are based on Tone 
(1978). 

A.i LINEAR PROGRAMMING AND OPTIMAL SOLUTIONS 

The following problem, which minimizes a linear functional subject to a system 
of linear equations in nonnegative variables, is called a linear programming 
problem: 

(A.l) 

(A.2) 

(A.3) 

where A G K^^"^, b G R^ and c e K^ are given, and cc G î "" is the vector of 
variables to be determined optimally to minimize the scalar z in the objective, c 
is a row vector and b a column vector. (A.3) is called a nonnegativity constraint. 
Also, we assume that m < n and rank(A) = m. 

A nonnegative vector of variables x that satisfies the constraints of (P) is 
called a feasible solution to the linear programming problem. A feasible solution 
that minimizes the objective function is called an optimal solution. 

A.2 BASIS AND BASIC SOLUTIONS 

We call a nonsingular submatrix B G R^^^ of A a basis of A when it has the 
following properties: (1) it is of full rank and (2) it spans the space of solutions. 
We partition A into B and R and write symbolically: 

A=[B \R], (A.4) 
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where R is an (m x [n — m)) matrix. The variable vector x is similarly divided 
into x^ and x^. x^ is called basic and x^ nonhasic. (A.2) can be expressed 
in terms of this partition as follows: 

Bx^ + Rx^ = b. (A.5) 

By multiplying the above equation by B~^, we have: 

x^ ^B-^h-B-^Rx^. (A.6) 

Thus, the basic vector x^ is expressed in terms of the nonbasic vector x^. By 
substituting this expression into the objective function in (A.l), we have: 

z = c^B-^b - {c^B-'R - c^)x^. (A.7) 

Now, we define a simplex multiplier TT G R ^ and simplex criterion p E R^~'^ 
by 

TT = c^B-^ (A.8) 

p = 7TR-C^, (A.9) 

where TT and p are row vectors. The following vectors are called the basic 
solution corresponding to the basis B: 

x^ = B-^b (A.IO) 

x^ = 0. (A.ll) 

Obviously the basic solution is feasible for (A.2) and (A.3). 

A.3 OPTIMAL BASIC SOLUTIONS 

We call a basis B optimal if it satisfies: 

x^ = B-^b>0 (A.12) 

p = 7rR-c^ <0. (A.13) 

Theorem A . l The basic solution corresponding to an optimal basis is the 
optimal solution of linear programming (P). 

Proof. It is easy to see that {x^ = B~^b, x^ = 0) is a feasible solution to 
(P). Furthermore, 

z = c^x^ -px^. (A.14) 

Hence, by considering p < 0, we find that z attains its minimum when x^ = 0. 
D 

The simplex method for linear programming starts from a basis, reduces 
the objective function monotonically by changing bases and finally attains an 
optimal basis. 
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A.4 DUAL PROBLEM 

Given the linear programming (P) (called the primal problem), there corre­
sponds the following dual problem with the row vector of variables y G R^. 

{D) max w = yb (A.15) 

subject to yA < c, (A.16) 

and y not otherwise constrained. 

Theorem A.2 For each primal feasible solution x and each dual feasible so­
lution y, 

ex > yb, (A.17) 

That is, the objective function value of the dual maximizing problem never 
exceeds that of the primal minimizing problem. 

Proof. By multiplying (A.2) from the left by j / , we have 

yAx :== yb. (A.18) 

By multiplying (A. 16) from the right by x and noting cc > 0, we have: 

yAx < ex. (A.19) 

Comparing (A. 18) and (A. 19), 

ex > yAx = yb. (A.20) 

D 

Corollary A . l If a primal feasible x^ and a dual feasible y^ satisfy 

ex^ = y%, (A.21) 

then x^ is optimal for the primal and y^ is optimal for its dual. 

Theorem A.3 (Duality Theorem) (i) In a primal-dual pair of linear pro­
grams, if either the primal or the dual problem has an optimal solution, then 
the other does also, and the two optimal objective values are equal, 
(a) If either the primal or the dual problem has an unbounded solution, then 
the other has no feasible solution. (Hi) If either problem has no solution then 
the other problem either has no solution or its solution is unbounded. 

Proof, (i) Suppose that the primal problem has an optimal solution. Then 
there exists an optimal basis B and p — TTR — e^ < 0 as in (A. 13). Thus, 

TvR < e^. (A.22) 

However, multiplying (A.8) on the right by B, 

7TB = e^. (A.23) 
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Hence, 

TTA = TT [B\R] < [c^\c^] = c. (A.24) 

Consequently, 

TTA < c. (A.25) 

This shows that the simplex multiplier TT for an optimal basis to the primal is 
feasible for the dual problem. Furthermore, it can be shown that n is optimal 
to the dual problem as follows: The basic solution {x^ = B~^b, x^ = 0) for 
the primal basis B has the objective value z = c^B~^b = 7r6, while TT has the 
dual objective value w = 7r6. Hence, by Corollary A.l, TT is optimal for the 
dual problem. Conversely, it can be demonstrated that if the dual problem has 
an optimal solution, then the primal problem does also and the two objective 
values are equal, by transforming the dual to the primal form and by observing 
its dual. (See Gass, Linear Programming, pp. 158-162, for details). 

(ii) (a) If the objective function value of the primal problem is unbounded 
below and the dual problem has a feasible solution, then by Theorem A.2, 

w = yb< -cx). (A.26) 

Thus, we have a contradiction. Hence, the dual has no feasible solution. 
(b) On the other hand, if the objective function value of the dual problem 

is unbounded upward, it can be shown by similar reasoning that the primal 
problem is not feasible. 

(Hi) To demonstrate (Hi), it is sufficient to show the following as an example 
in which both primal and dual problems have no solution. 

<Primal> min —x <Dual> max y 
subject to 0 X a: = 1 subject to y x 0 < —1 

x>0 

where x and y are scalar variables. D 

A.5 SYMMETRIC DUAL PROBLEMS 

The following two LPs, (PI) and (1^1), are mutually dual. 

(PI) min z = cx 

subject to Ax > b (A.27) 

X > 0. 

(Dl) max w — yb 

subject to yA < c (A.28) 

2/ > 0. (A.29) 
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The reason is that, by introducing a nonnegative slack A E K^^ (PI) can be 
rewritten as {PI') below and its dual turns out to be equivalent to (Dl) . 

(PI ') min z = ex 

subject to Ax — \ = b 

X > 0, A > 0. 

(A.30) 

This form of mutually dual problems can be depicted as Table A.l, which is 
expressed verbally as follows: 

For the inequality > (<) constraints of the primal (dual) problem, the corre­
sponding dual (primal) variables must be nonnegative. The constraints of the 
dual (primal) problem are bound to inequaUty < (>). The objective function 
is to be maximized (minimized). 

This pair of LPs are called symmetric primal-dual problems. The duality 
theorem above holds for this pair, too. 

Table A . l . Symmetric Primal-Dual Problem 

Xi Xn \ > 0 

0 < 

yi 

Um 

ail ain hi 

lA 
c i 

A.6 COMPLEMENTARITY THEOREM 

Let us transform the symmetric primal-dual problems into equality constraints 
by introducing nonnegative slack variables A G R^ and /x G P^, respectively. 

> 0. 

(PI ') 

subject to 

min z = ex 

Ax- X = b 

cc > 0, A 

{Dl') max w = yb 

subject to yA-\- fi — e (A.31) 

2/ > 0, M > 0. (A.32) 

Then, the optimality condition in Duality Theorem A.3 can be stated as follows: 

Theorem A.4 (Complementarity Theorem) Let {x, A) and (t/, /i) be 
feasible to {PV) and {DV), respectively. Then, (cc. A) and (y, fi) are optimal 
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to (PV) and {DV) if and only if it holds: 

^x = yX = 0. (A.33) 

Proof. 

From /ix = 0, we have (c - yA)x = 0 ^ ex = yAx. (A.34) 

From yX = 0, we have y(Ax — b) = 0 =^ yAx = yb. (A.35) 

Thus, ex = yb. By the duaUty theorem, x and y are optimal for the primal 
and the dual, respectively. • 

By (A.33), we have 

^ / i , x , - 0 , J2yiXi = 0. (A.36) 
j=i i=i 

By nonnegativity of each term in these two expressions, 

IJjXj = 0 (j = 1 , . . . , n) (A.37) 

yiXi = 0. (i = l , . . . , m ) (A.38) 

Thus, either the variable /ij or the variable Xj must be zero for each j and either 
yi or Xi must be zero for each i. We called this property complementarity. 

A.7 FARKAS' LEMMA AND THEOREM OF THE ALTERNATIVE 

Theorem A.5 (Farkas' Lemma, Theorem of the Alternative) For each 
(m X n) matrix A and each vector b G R^, either 

{I) Ax = b x>0 

has a solution x £ R^ or 

{II) yA<0 yb>0 

has a solution y G R^ but never both. 

Proof. For (/), we consider the following the primal-dual pair of LPs: 

(P2) min z = Ox 

Ax = b 

x>0 

{D2) max w = yb 

yA < 0. 
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If (J) has a feasible solution, then it is optimal for (P2) and hence, by the 
duality theorem, the optimal objective value of {D2) is 0. Therefore, (//) has 
no solution. 

On the other hand, {D2) has a feasible solution y = 0 and is not infeasible. 
Hence, if (P2) is infeasible, {D2) is unbounded upward. Thus, (//) has a 
solution. 

D 

A.8 STRONG THEOREM OF COMPLEMENTARITY 

Theorem A.6 For each skew-symmetric matrix K {— —K^) E R^^^, the 
inequality 

Kx>0, x>0 (A.39) 

has a solution x such that 

Kx-{-x>0. (A.40) 

Proof. Let Sj (j = 1 , . . . ,n) be the j - th unit vector and the system (Pj) be, 

{Pj) Kx>0 

x > 0, CjX > 0. 

If (Pj) has a solution x^ E K^, then we have: 

{Kx^)j > 0, x^ > 0, ejX^ = {x^)j > 0 

and hence 
iKx^)j + {xi)j > 0. 

If (Pj) has no solution, then by Farkas' lemma the following system has a 
solution v^ E R"", w^ E R"". 

(Dj) Kv = Sj +w 

v>0, w>0. 

This solution satisfies: 
iKv^)j = 1 + {w^)j > 0 

and hence 
{Kv^)j + {v^)j > 0. 

Since, for each j = 1 , . . . ,n, either x^ or v^ exists, we can define a vector x 
by summing over j . Then x satisfies: 

Kx-{-x> 0. 

D 
Let a primal-dual pair of LPs with the coefficient A E R'^^^y h E R"^ 

and c E R^ be {PV) and {DV) in Section A.6. Suppose they have optimal 
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solutions (x, A) for the primal and {y, /x) for the dual, respectively. Then, by 
the complementarity condition in Theorem A.4, we have: 

fLjXj - 0 0' = l , . . . , n ) (A.41) 

ViXi = 0 (i = l , . . . , m ) (A.42) 

However, a stronger theorem holds: 

Theorem A.7 (Strong Theorem of Complementar i ty) The primal-dual 
pair of LPs {PV) and {DV) have optimal solutions such that, in the comple­
mentarity condition (A.41) and (A.42), if one member of the pair is 0, then 
the other is positive. 

Proof, Observe the system: 

Ax -rb > 0 

-yA + re > 0 

yb — ex > 0 

x>0,y > 0, r > 0. 

We define a matrix K and a vector w by: 

0 
A^ 
6^ 

( l / ^ 

A 
0 

-c 

-b 
c^ 

0 

X, r) . w 

Then, by Theorem A.6, the system 

Kw > 0, w>0 

has a solution w = (t/ , cc, r 1 such that 

Kw + ii; > 0. 

This results in the following inequalities: 

Ax -

yA-h 

yb 

rb-hy 

rc-\- X 

- ex -\-r 

> 

> 

> 

0 

0 

0 

We have two cases for r. 
(i) If r > 0, we define x and A by 

(A.43) 

(A.44) 

(A.45) 

X =: x/r, y = y/r (A.46) 

\ = Ax -b, fi- e- yA. (A.47) 
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Then, {x, A) is a feasible solution of (PI ') and (y, p.) is a feasible solution 
of {DV). Furthermore, yb > ex . Hence, these solutions are optimal for the 
primal-dual pair LPs. In this case, (A.43) and (A.44) result in 

A + ^ > 0 (A.48) 

fl + x > 0. (A.49) 

Thus, strong complementarity holds as asserted in the theorem. 
(ii) If r = 0, it cannot occur that both (PV) and (i^l') have feasible solutions. 
The reason is: if they have feasible solutions x* and y*, then 

Ax"" > 6, aj* > 0, 2/M < c, y* > 0. (A.50) 

Hence, we have: 
ex > y*Ax > 0 > yAx* > yb. (A.51) 

This contradicts (A.45) in the case r = 0. Thus, the case r = 0 cannot occur. 
D 

A.9 LINEAR PROGRAMMING AND DUALITY IN GENERAL FORM 

As a more general LP, we consider the case when there are both nonnegative 
variables x^ E R^ and sign-free variables cĉ  G R^~^ and both inequality and 
equality constraints are to be satisfied as follows: 

(A.52) 

{LP) min 

subject to 

z = e^x^ -h c^x^ 

Anx^ -\-Ai2x'^ > b^ 

A2lX^ -\-A22x'^ =b'^ 

x^ >0 

x'^ free. 

w h e r e i n G i? >̂<̂  Au Gi^^^(^-^), A21 G i?(^-^)><^ and A22 G i^^^-^^^^^"^). 
The corresponding dual problem is expressed as follows, with variables y^ E R^ 
and 2/2 ^ R'^-K 

(A.53) 

{DP) max 

subject to 

w = y^b^ ^-y^b^ 

y^An+y'^A2i < e^ 

y^Ai2+y'^A22 = c 2 

2/' > 0 

y^ free. 

It can be easily demonstrated that the two problems are mutually primal-dual 
and the duality theorem holds between them. Table A.2 depicts the general 
form of the duality relation of Linear Progrmming. 
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Table A.2. General Form of Duality Relation 

> 0 free 

0 < 

free 

x' x' 

Axx 

A21 

lA 
c' 

A12 

A22 

11 
c' 

> 

= 

fel 

62 

Now, we introduce slack variables X^ E R^ and /i^ G R^ to (LP) and (DP) 
and rewrite them as {LP') and {DP') below: 

{LP') min 

subject to 

A2lX^ +A22X'^ = 6^ 

x^ >0 

x^ free 

Â  > 0 . 

(A.54) 

{DP') max 

subject to y'An+y^A2i+fx'=c' (A.55) 

y^Ai2-{-y'^A22 = c^ 

y'>o 
y^ free 

M̂  > 0. 

We then have the following complementarity theorem: 

Corollary A.2 (Complementarity Theorem in General Form) 
Let{x^, cc ,̂ A^) and{y^, y'^, fi^) be feasible to {LP') and {DP'), respectively. 
Then they are optimal to {LP') and {DP') if and only if the relation below holds. 

i \ i fx'x' =y'X' =0. (A.56) 

Also, there exist optimal solutions that satisfy the following strong complemen­
tarity. 
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Corollary A.3 (Strong Theorem of Complementarity) In the optimal so­
lutions to the primal-dual pair LPs, {LP') and {DP'), there exist ones such 
that, in the complementarity condition (A.56), if one of the pair is 0, then the 
other is positive. 
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Appendix B 
Introduction to DEA-Solver 

This is an introduction and manual for the attached DEA-Solver. There are two 
versions of DEA-Solver, the "Learning Version" (called DEA-Solver-LV, in 
the attached CD) and the "Professional Version" (called DEA-Solver-PRO: 
visit the DEA-Solver website at: http://www.saitech-inc.coin/ for further 
information). This manual serves both versions. DEA-Solver was developed by 
Kaoru Tone. All responsibility is attributed to Tone, but not to Cooper and 
Seiford in any dimension. 

B.l PLATFORM 

The platform for this software is Microsoft Excel 97/2000 or later (a trademark 
of Microsoft Corporation). 

B.2 INSTALLATION OF DEA-SOLVER 

The accompanying installer will install DEA-Solver and sample problems in 
the attached CD-ROM to the hard disk (C:) of your PC. Chck Setup.EXE 
in the folder "DEA-Solver" in the CD-ROM. Just follow the instruction on 
the screen. The folder in the hard disk is "C:\DEA-Solver" which includes the 
code DEA-Solver-LV(V3).xls and another folder "Samples(LV3)." A shortcut to 
DEA-Solver.xls will be automatically put on the Desktop. If you want to install 
"DEA-Solver" to another drive or to other folder (not to "C:\DEA-Solver"), 
just copy it to the disk or to the folder you designate. For the "Professional 
Version" an installer will automatically install "DEA-Solver." 

B.3 NOTATION OF DEA MODELS 

DEA-Solver applies the following notation for describing DEA models. 

<Model N a m e > - <I or 0 > - <C or V or GRS> 

where I or 0 corresponds to "Input"- or "Output"-orientation and C, V or 
GRS to "Constant", "Variable" or "General" returns to scale. For example, 
"AR-I-C" means the Input oriented Assurance Region model under Constant 
returns-to-scale assumption. In some cases, "I or 0" and/or "C or V" are 
omitted. For example, "CCR-I" indicates the Input oriented CCR model which 
is naturally under constant returns-to-scale. "FDH" (= Free Disposal Hull) 
has no extensions. The abbreviated model names correspond to the following 
models, 

1. CCR = Charnes-Cooper-Rhodes model (Chapters 2, 3) 

2. BCC = Banker-Charnes-Cooper model (Chapters 4, 5) 

3. IRS = Increasing Returns-to-Scale model (Chapter 5) 

4. DRS = Decreasing Returns-to-Scale model (Chapter 5) 

http://www.saitech-inc.coin/
file://C:/DEA-Solver
file://C:/DEA-Solver
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5. GRS = Generalized Returns-to-Scale model (Chapter 5) 

6. AR = Assurance Region model (Chapter 6) 

7. ARG = Assurance Region Global model (Chapter 6) 

8. NCN = Non-controllable variable model (Chapter 7) 

9. NDSC = Non-discretionary variable model (Chapter 7) 

10. BND = Bounded variable model (Chapter 7) 

11. CAT = Categorical variable model (Chapter 7) 

12. SYS = Different Systems model (Chapter 7) 

13. SBM = Slacks-Based Measure model (Chapter 4) 

14. Weighted SBM = Weighted Slacks-Based Measure model (Chapter 4) 

15. Cost = Cost efficiency model (Chapter 8) 

16. New-Cost = New-Cost efficiency model (Chapter 8) 

17. Revenue = Revenue efficiency model (Chapter 8) 

18. New-Revenue — New-Revenue efficiency model (Chapter 8) 

19. Profit = Profit efficiency model (Chapter 8) 

20. New-Profit = New-Profit efficiency model (Chapter 8) 

21. Ratio = Ratio efficiency model (Chapter 8) 

22. Bilateral — Bilateral comparison model (Chapter 7) 

23. FDH = Free Disposal Hull model (Chapter 4) 

24. Window = Window Analysis (Chapter 9) 

25. Super-efficiency = Super-efficiency model (Chapter 10) 

B.4 INCLUDED DEA MODELS 

The "Learning Version" includes all models and can solve problems with up 
to 50 DMUs; The "Professional Version" includes Malmquist, Scale elasticity, 
Congestion and Undesirable output models in addition to the above models and 
can deal with large-scale problems within the capacity of Excel worksheet. 

B.5 PREPARATION OF THE DATA FILE 

The data file should be prepared in an Excel Workbook prior to execution of 
DEA-Solver. The formats are as follows: 
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B,5.1 The CCR, BCC, IRS, DRS, GRS, SBM, Super-Efficiency and FDH 

Models 

Figure B.l shows an example of data file for these models. 

1. The first row (Row 1) 
The first row (Row 1) contains Names of Problem and Input/Output Items, 
i.e., 
Cell Al = Problem Name 
Cell Bl , CI, .. .= Names of I/O items. 
The heading (I) or (0), showing them as being input or output should head 
the names of I/O items. The items without an (I) or (O) heading will not 
be considered as inputs and outputs. The ordering of (I) and (O) items is 
arbitrary. 

2. The second row and after 
The second row contains the name of the first DMU and I/O values for the 
corresponding I/O items. This continues up to the last DMU. 

3. The scope of data domain 
A data set should be bordered by at least one blank column at right and at 
least one blank row at bottom. This is a necessity for knowing the scope of 
the data domain. The data set should start from the top-left cell (Al). 

Data sheet name 
A preferable sheet name is "DAT" (not "Sheet 1"). Never use names "Score", 
"Rank", "Projection", "Weight", "WeightedData", "Slack", "RTS", "Win­
dow", "Graphl" and "Graph2" for data sheet. These are reserved for this 
software. 

The sample problem "Hospital(CCR)" in Figure B.l has 12 DMUs with 
two inputs "(I)Doctor" and "(I)Nurse" and two outputs "(0)Outpatient" and 
"(O)Inpatient". The data set is bordered by one blank column (F) and by one 
blank row (14). The GRS model has the constraint L < YTj^i ^i < U. The 
values of L(< 1) and t/(> 1) must be supplied through the Message-Box on 
the display by request. Defaults are L == 0.8 and U = 1.2, 

As noted in 1. above, items without an (I) or (0) heading will not be consid­
ered as inputs or outputs. So, if you delete "(I)" from "(I)Nurse" to "Nurse," 
then "Nurse" will not be accounted for in this eflficiency evaluation. Thus you 
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can add (delete) items freely to (from) inputs and outputs without changing 
your data set. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

1 14 

A 
Hospital 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

B 
(I)Doctor 

20 
19 
25 
27 
22 
55 
33 
31 
30 
50 
53 
38 

C 
(I)Nurse 

151 
131 
160 
168 
158 
255 
235 
206 
244 
268 
306 
284 

D 
(O)Outpatient 

100 
150 
160 
180 
94 
230 
220 
152 
190 
250 
260 
250 

E 
(O)Inpatient 

90 
50 
55 
72 
66 
90 
88 
80 
100 
100 
147 
120 

F 

Figure B . l . Sample.xls in Excel Sheet 

B,5.2 The AR Model 

Figure B.2 exhibits an example of data for the AR (Assurance Region) model. 
This problem has the same inputs and outputs as in Figure B.l. The constraints 
for the assurance region are described in rows 15 and 16 after "one blank 
row" at 14. This blank row is necessary for separating the data set and the 
assurance region constraints. These rows read as follows: the ratio of weights 
"(I)Doctor" vs. "(I)Nurse" is not less than 1 and not greater than 5 and that 
for "(0)Outpatient" vs. "(0)Inpatient" is not greater than 0.2 and not less 
than 0.5. Let the weights for Doctor and Nurse be v{l) and ^(2), respectively. 
Then the first constraint implies 

1 < ^(l)/^(2) < 5. 

Similarly, the second constraint means that the weights u{l) (for Outpatient) 
and u{2) (for Inpatient) satisfies the relationship 

0.2 < u{l)/u{2) < 0.5. 
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Notice that the weights constraint can be apphed between inputs and outputs 
as well. 

1 
2 
3" 
4 
5 
6 
7 
8 
9"" 
10 

i'i' 
12 
13 

^4 
15 
16 
17 

A 
Hospital 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

1 
0.2 

B 
(I)Doctor 

20 
19 
25 
27 
22 
55 
33 
31 
30 
50 
53 
38 

(I)Doctor 
(O)Outpatient 

C 
(I)Nurse 

151 
131 
160 
168 
158 
255 
235 
206 
244 
268 
306 
284 

(I)Nurse 
(O)Inpatient 

D 
(O)Outpatient 

100 
150 
160 
180 
94 

230 
220 
152 
190 
250 
260 
250 

5 
0.5 

E 
(O)Inpatient 

90 
50 
55 
72 
66 
90 
88 
80 

100 
100 
147 
120 

F] 

Figure B.2. Sample-AR.xls in Excel Sheet 

B.5.3 The ARG Model 

Instead of restricting ratios of virtual multipliers, this model imposes bounds 
on the virtual input (output) relative to the total virtual input (output). For 
example, in the above hospital case, the virtual input of Doctor is expressed 
by v(l) X (Number of) Doctor and the total virtual input is denoted by v(l) 
X (Number of) Doctor + v(2) x (Number of) Nurse, where v(l) and v(2) 
are weights to Doctor and Nurse, respectively. We impose lower and upper 
bounds, L and U, to the ratio of these two factors. Thus, we have constraints 
as expressed below. 

L< 
v{l) X Doctor 

v{l) X Doctor 4- v{2) x Nurse 
< [ / . 
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In the Excel worksheet, we designate L and U along with the input (output) 
name as exhibited in Figure B.3. This means that L — 0.5 and U = 0.8 for 
Doctor in the above expression. See Section 6.3 in Chapter 6. 
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A 
5ample-ARC 

A 
B 
C 
D 
E 
F 
G 
H 
1 
J 
K 
L 

0.5 
0.2 
0.2 
0.4 

B 
(l)Doctor 

20 
19 
25 
27 
22 
55 
33 
31 
30 
50 
53 
38 

(l)Doctor 
(l)Nurse 
(O)Outpatier 
(O)lnpatient 

C 
(l)Nurse 

151 
131 
160 
168 
158 
255 
235 
206 
244 
268 
306 
284 

0.8 
0.3 
0.5 
0.8 

D 
(O)Outpatien 

100 
150 
160 
180 
94 

230 
220 
152 
190 
250 
260 
250 

E I F 
(O)lnpatient 

90 
50 
55 
72 
66 
90 
88 
80 

100 
100 
147 
120 

Figure B.3. Sample-ARG.xls in Excel Sheet 

B.5A The NCN and NDSC Models 

The non-controllable and non-discretionary models have basically the same 
data format as the CCR model. However, the uncontrollable inputs or outputs 
must have the headings (IN) or (ON), respectively. Figure B.4 exhibits the case 
where 'Doctor' is an uncontrollable (i.e., "non-discretionary" or "exogenously 
fixed") input and 'Inpatient' is an uncontrollable output. 
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• • IB 
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A 
Hospital 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

B 
(IN)Doctor 

20 
19 
25 
27 
22 
55 
33 
31 
30 
50 
53 
38 

C 
(I)Nurse 

151 
131 
160 
168 
158 
255 
235 
206 
244 
268 
306 
284 

D 
(O)Outpatient 

100 
150 
160 
180 
94 

230 
220 
152 
190 
250 
260 
250 

E 
(ON)Inpatient 

90 
50 
55 
72 
66 
90 
88 
80 

100 
100 
147 
120 

. F 

Figure B.4. Sample-NCN (NDSC).xls In Excel Sheet 
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B.5.5 The BND Model 

The bounded inputs or outputs must have the headings (IB) or (OB). Their 
lower and upper bounds should be designated by the columns headed by (LB) 
and (UB), respectively. These (LB) and (UB) columns must be inserted im­
mediately after the corresponding (IB) or (OB) column. Figure B.5 implies 
that 'Doctor' and 'Inpatient' are bounded variables and their lower and up­
per bounds are given by the columns (LB)Doc., (UB)Doc., (LB)Inpat., and 
(UB)Inpat, respectively. 

1 
2 

i l l i l 
l l l l ! 
illlill 
^m 
^m l l i l l l 
i l l i l l 
iiiiiii 
i i i i i 
i i i i i 
l i i l i i 
Iiiiiii 

1 A 
Hospital 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

B 
(IB)Doc. 

20 
19 
25 
27 
22 
55 
33 
31 
30 
50 
53 
38 

C 
(LB)Doc. 

15 
15 
20 
21 
20 
45 
31 
29 
28 
45 
45 
30 

D 
(UB)Doc. 

22 
23 
25 
27 
25 
56 
36 
33 
31 
50 
54 
40 

E 
(I)Nurse 

151 
131 
160 
168 
158 
255 
235 
206 
244 
268 
306 
284 

F 
(O)Outpat 

100 
150 
160 
180 
94 

230 
220 
152 
190 
250 
260 
250 

G 
(OB)Inpat. 

90 
50 
55 
72 
66 
90 
88 
80 

100 
100 
147 
120 

H 
(LB)Inpat. 

80 
45 
50 
70 
60 
80 
80 
70 
90 
90 

130 
110 

• ^ ' ^ / T . - . . • 

(UB)Inpat. 
100 
55 
60 
76 
80 

100 
95 
90 

110 
120i 
1601 
130 

Figure B.5. Sample-BND.xls in Excel Sheet 

B.5.6 The CAT, SYS and Bilateral Models 

These models have basically the same data format as the CCR model. However, 
in the last column they must have an integer showing their category, system or 
bilateral group, as follows. 
For the CAT model, the number starts from 1 (DMUs under the most difficult 
environment or with the most severe competition), 2 (in the second group of 
difficulty) and so on. It is recommended that the numbers be continuously 
assigned starting from 1. 
For the SYS model, DMUs in the same system should have the same integer 
starting from 1. 
For the Bilateral model, DMUs must be divided into two groups, denoted by 1 
or 2. 
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Figure B.6 exhibits a sample data format for the CAT model. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

A 
Hospital 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

B 
(I)Doctor 

20 
19 
25 
27 
22 
55 
33 
31 
30 
50 
53 
38 

C 
(I)Nurse 

151 
131 
160 
168 
158 
255 
235 
206 
244 
268 
306 
284 

D 
(O)Outpatient 

100 
150 
160 
180 
94 
230 
220 
152 
190 
250 
260 
250 

E 
(O)Inpatient 

90 
50 
55 
72 
66 
90 
88 
80 
100 
100 
147 
120 

F 
Cat 

1 
2 
2 
2 
1 
1 
2 
1 
1 
2 
2 
2 

Figure B.6. Sample-CAT.xls in Excel Sheet 

B.5.7 The Cost and New-Cost Models 

The unit cost columns must have the heading (C) followed by the input name. 
The ordering of columns is arbitrary. If an input has no cost column, its cost 
is regarded as zero. Figure B.7 is a sample. 

1 
2 
,3 
4 

5 

6 
7 
8 
9 
10 
11 
12 
13 
14 

A 
Hospital 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

B 
(I)Doctor 

20 
19 
25 
27 
22 
55 
33 
31 
30 
50 
53 
38 

C 
(G)Doctor 

500 
350 
450 
600 
300 
450 
500 
450 
380 
410 
440 
400 

D 
(I)Nurse 

151 
131 
160 

168 
158 
255 
235 
206 
244 
268 
306 
284 

E 
(G)Nurse 

100 
80 
90 
120 
70 
80 
100 
85 
76 
75 
80 
70 

F 
(O)Outpat. 

100 
150 
160 
180 
94 
230 
220 
152 
190 
250 
260 
250 

G 
(O)Inpat. 

90 
50 
55 
72 
66 
90 
88 
80 
100 
100 
147 
120 

! H 1 

Figure B.7. Sample-Cost(New-Cost).xls in Excel Sheet 



334 INTRODUCTION TO DATA ENVELOPMENT ANALYSIS AND ITS USES 

JB.5.8 The Revenue and New-Revenue Models 

The unit price columns must have the heading (P) followed by the output name. 
The ordering of columns is arbitrary. If an output has no price column, its price 
is regarded as zero. See Figure B.8 for an example. 

1 
2 
3 
4 
5 
6 
7 
8 
'9 
10 
11 
, 12 
13 
14 

A 
Hospital 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

B 
(I)Doctor 

20 
19 
25 
27 
22 
55 
33 
31 
30 
50 
53 
38 

C 
(I)Nurse 

151 
131 
160 
168 
158 
255 
235 
206 
244 
268 
306 
284 

D 
(O)Outpat. 

100 
150 
160 
180 
94 
230 
220 
152 
190 
250 
260 
250 

E 
(P)Outpat. 

550 
400 
480 
600 
400 
430 
540 
420 
350 
410 
540 
295 

F 
(O)Inpat. 

90 
50 
55 
72 
66 
90 
88 
80 
100 
100 
147 
120 

G 
(P)Inpat. 

2010 
1800 
2200 
3500 
3050 
3900 
3300 
3500 
2900 
2600 
2450 
3000 

W 

Figure B.8. Sample-Revenue(New-Revenue).xls in Excel Sheet 

B.5,9 The Profit, New-Profit and Ratio Models 

As a combination of Cost and Revenue models, these models have cost columns 
headed by (C) for inputs and price columns headed by (P) for outputs. 

B.5.10 The Window Models 

Figure B.9 exhibits an example of data format for a Window Analysis model. 
Top-left corner (Al) contains the problem name, e.g., "Car" in this example. 
The next right cell (Bl) must include the first time period, e.g., "89." The 
second row beginning from the B column exhibits "I/O items", e.g., "(I)Sales" 
and "(O)Profit." The name of DMUs appears from the third row in the column 
A. The contents (observed data) follow in the third row and after. This style is 
repeated until the last time period. Notice that each time period is placed at 
the top-left corner of the corresponding frame and (I)/(0) items have the same 
names throughout the time period. It is not necessary to insert headings (I)/(0) 
to the I/O names of the second time period and after. I/O items are determined 
as designated in the first time period. Figure B.9 demonstrates performance 
of four car-manufacturers, i.e., Toyota, Nissan, Honda and Mitsubishi, during 
five time periods, i.e., from (19)89 to (19)93, in terms of the input "Sales" and 
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the output "Profit." 

|i::i|l|iilili;ii 
Car 
DMU 
Toyota 
Nissan 
Honda 
Mitsubishi 

• • • • • i i 
89 
(l)Sales 

719 
358 
264 
190 

l l l i l l ipfci i l i i l l 
i i i i i i s i i i h i i i i i i i 

(O)Profit 
400 

92 
74 
44 

r&my 
90 
Sales 

800 
401 
275 
203 

mmSm 

Profit 
539 
139 
100 
49 

iiuiuu 
91 
Sales 

850 
418 
280 
231 

• • • • B t i i i i 
i i i i i i i i i i» iBi i 

Profit 
339 
120 
65 
66 

1 ̂  92 
Sales 

894 
427 
291 
255 

I 

Profit 
125 
34 
54 
56 

J 
93 
Sales 

903 
390 
269 
262 

K 

Profit 
103 

0 
33 
57 

Figure B.9. Sample-Window.xls in Excel Sheet 

B.5.11 Weighted SBM Model 

This model requires weights to inputs/outputs as data. They should be given 
at the rows below the main body of data set with one inserted blank row. See 
Figure B.IO. The first column (A) has Weightl or WeightO designating input 
or output, respectively, and the weights to inputs or outputs follow consecu­
tively in the order of input (output) items recorded at the top row. The values 
are relative, since the software normalizes them properly. Refer to (4.81)-(4.83) 
in Chapter 4. If they are vacant, weights are regarded as even. Figure B.IO 
designates that weights to Doctor and Nurse are 10:1 and those to Outpatient 
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and Inpatient are 1:5. 

-1 
2 
3 
4-
5 
6 
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9 
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12 

A 
WSBM 

A 
B 
C 
D 
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F 
G 

Weightl 
WeightC 

B 
(l)Doctoi 

20 
19 
25 
27 
22 
55 
33 

10 
1 

C 
(l)Nurs< 

151 
131 
160 
168 
158 
255 
235 

1 
5 

D 
(O)Outpatiei 

100 
150 
160 
180 
94 

230 
220 

- E" 1 F 
(O)lnpatient | 

90 
50 
55 
72 
66 
90 
88 

Figure B.IO. Sam pie-Weighted SBM.xIs in Excel Sheet 

B.6 STARTING DEA-SOLVER 

After completion of the data file in an Excel sheet on an Excel book as men­
tioned above, close the data file and click either the icon or the file "DEA-
Solver" in Explorer. This starts DEA-Solver. First, click "Enable Macros" and 
then follow the instructions on the display. 

Otherwise if the file "DEA-Solver" is already open (loaded), click "Tools" 
on the Menu Bar, then select "Macro" and click "Macros." Finally, click "Run" 
on the Macro. 

This Solver proceeds as follows, 

1. Selection of a DEA model 

2. Selection of a data set in Excel Worksheet 

3. Selection of a Workbook for saving the results of computation and 

4. DEA computation 

B.7 RESULTS 

The results of computation are stored in the selected Excel workbook. The 
following worksheets contain the results, although some models lack some of 
them. 

1. Worksheet "Summary" 
This worksheet shows statistics on data and a summary report of results 
obtained. 
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2. Worksheet "Score" 
This worksheet contains the DEA-score, reference set, A-value for each DMU 
in the reference set and ranking in input and in the descending order of 
efficiency scores. A part of a sample Worksheet "Score" is displayed in Figure 
B. l l , where it is shown that DMUs A, B and D are efficient (Score=l) and 
DMU C is inefficient (Score=0.882708) with the reference set composed of 
B (Aj5 = 0.9) and D (AD = 0.13889) and so on. 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

DMU 

A 

B 

C 

D 

E 

F 

G 

H 

1 

J 

K 

L 

Score 

1 

1 

0.8827083 

1 

0.7634995 

0.8347712 

0.9019608 

0.7963338 

0.9603922 

0.8706468 

0.955098 

0.9582043 

Rank 

1 

1 

8 

1 

12 

10 

7 

11 

4 

9 

6 

5 

Reference set (lambda) 

A 

B 

B 

D 

A 

B 

A 

A 

A 

D 

A 

A 

1 

1 

0.9 

1 

0.5794409 

0.2 

0.2588235 

0.3866921 

0.6470588 

1.3888889 

0.86 

0.6470588 

D 

B 

D 

B 

B 

B 

D 

B 

0.13888889 

5.72E-02 

1.11111111 

1.29411765 

1.35E-02 

0.83529412 

0.96666667 

1.23529412 

D 

D 

0.1526401 

0.6183983 

Figure B . l l . A Sample Score Sheet 

3. Worksheet "Rank" 
This worksheet contains the ranking of DMUs in the descending order of 
efficiency scores. 

4. Worksheet "Projection" 
This worksheet contains projections of each DMU onto the efficient frontier 
by the chosen model. 

5. Worksheet "Weight" 
Optimal weights v{i) and u{i) for inputs and outputs are exhibited in this 
worksheet. v{0) corresponds to the constraints J2] ^j ^ ^ ^^^ u{0) to 
X^jAj < u. In the BCC model where I = u = 1 holds, u{0) stands for 
the value of the dual variable for this constraint. 

6. Worksheet "WeightedData" 
This worksheet shows the optimal weighted I/O values, Xijv{i) and yrju{r) 
for each DMUj (for j = 1,..., n). 

7. Worksheet "Slack" 
This worksheet contains the input excesses s~ and output shortfalls s"̂  
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for each DMU. In the radial models, e.g., CCR and BCC, s~ and s+ are 
calculated by using the formula (3.10) for the input-oriented case. Hence, 
notice that the (total) input-slacks are obtained as s~ -f- (1 — 0)xo' In the 
non-radial models, e.g., SBM (Slacks-based measure), s~ and s'^ are defined 
via (4.48), and they indicate the total slacks of the concerned DMU. 

8. Worksheet "RTS" 
In case of the BCC, AR-I-V and AR-O-V models, the returns-to-scale char­
acteristics are recorded in this worksheet. For inefficient DMUs, returns-to-
scale characteristics are those of the (input- or output-oriented) projected 
DMUs on the frontier. 

9. Graphsheet "Graphl" 
The bar chart of the DEA scores is exhibited in this graphsheet. This graph 
can be redesigned using the Graph functions of Excel. 

10. Graphsheet "Graph2" 
The bar chart of the DEA scores in the ascending order is exhibited in this 
graphsheet. A sample of Graph2 is exhibited in Figure B.12. 
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Figure B.12. A Sample Graph2 

11. Worksheets "WindowA;" 
These sheets are only for Window models and k ranges from 1 to L (the 
length of time periods in the data). The contents are similar to Table 11.1 
in Chapter 11. They also include two graphs, 'Variations through Window' 
and 'Variations by Term'. We will illustrate them in the case of Sample-
Window.xsl in Figure B.9. Let fc = 3 (so we deal with three adjacent years, 
for example). The results of computation in the case of "Window-I-C" are 
summarized in Table B.l. 
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Table B.l. Window Analysis by Three Adjacent Years 

Maker 

Toyota 

Nissan 

Honda 

Mitsubishi 

89 

0.826 

0.381 

0.416 

0.344 

90 

1 
1 

0.515 
0.515 

0.540 
0.540 

0.358 
0.358 

91 

0.592 
0.592 
1 

0.426 
0.426 
0.720 

0.345 
0.345 
0.582 

0.424 
0.424 
0.716 

92 

0.208 
0.351 

0.118 
0.200 

0.275 
0.465 

0.326 
0.551 

93 

0.286 

0 

0.308 

0.545 

Average 

0.806 
0.600 
0.546 

0.441 
0.353 
0.307 

0.434 
0.387 
0.452 

0.375 
0.369 
0.604 

C Average 

0.651 

0.367 

0.424 

0.449 

From this table we can see row-wise averages of scores for each maker, which 
we call "Average through Window." The graph "Variations through Win­
dow" exhibits these averages. See Figure B.13. 

89-90-91 90-91-92 91-92-93 

Figure B.13. Variations through Window 

Toyota 

Nissan 

Honda 

Mitsubishi! 
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We can also evaluate column-wise averages of scores for each maker, which 
we call "Average by Term." The graph "Variations by Term" exhibits these 
averages. See Figure B.14. 

-Toyota 

-Nissan 

-Honda 

-Mitsubishi 

91 

Figure B.14. 

92 

Variations by Term 

Note . The BCC, AR-I-V and AR-O-V models contain all the worksheets ex­
cept "Window." The CCR, IRS, DRS, GRS, AR-I-C, AR-O-C and SBM models 
contain all sheets except "RTS" and "Window." The NGN, BND, CAT, SYS, 
Cost, Revenue, Profit, Ratio and FDH models produce "Summary," "Rank," 
"Score," "Projection," "Graphl" and "Graph2." The Bilateral model shows 
"Summary," "Score" and "Rank" sheets. The Window models return only 
"Window" and "Summary" sheets. 

B.8 DATA LIMITATIONS 

B.8.1 Problem Size 

The "Learning Version" in the attached CD can solve problems with up to 
50 DMUs. For the "Professional Version," the problem size is unlimited in 
terms of the number of DMUs and I/O items within the capacity of an Excel 
worksheet and the main memory of PC. More concretely, the data limitations 
for the "Professional Version" are as follows; 

1, No. of DMUs must be less than 60000. 

2. If No. of DMUs X (No. of Inputs + No. of Outputs + 2) > 60000, then the 
"Projection" sheet will not be provided. 

B.8.2 Inappropriate Data for Each Model 

DMUs with the following irregular data are excluded from the comparison group 
as "inappropriate" DMUs. They are listed in the Worksheet "Summary." We 
will adopt the following notations for this purpose. 

xmax (xmin) — the max (min) input value of the DMU concerned 



APPENDIX B: DEA-SOLVER 341 

ymax (ymin) — the max (min) output value of the DMU concerned 

costmax {costmin) = the max (min) unit cost of the DMU concerned 

pricemax {pricemin) — the max (min) unit price of the DMU concerned 

1. For the CCR, BCC-I, IRS, DRS, GRS, CAT and SYS models, a DMU 
with no positive value in inputs, i.e., xmax < 0, will be excluded from 
computation. Zero or minus values are permitted if there is at least one 
positive value in the inputs of the DMU concerned. 

For the BCC-0 model, DMUs with no positive value in outputs, i.e., ymax < 
0, will be excluded from computation. 

2. For the AR model, i.e., AR-I-C, AR-I-V, AR-O-C^nd AR-O-V, DMUs with 
xmin < 0, xmax < 0 or ym.ax < 0 will be excluded from the comparison 
group. 

3. For the FDHmodel, DMUs with no positive input value, i.e., xm^ax < 0, or 
a negative input value, i.e., xm^in < 0, will be excluded from computation. 

4. For the Cost model, DMUs with xm^ax < 0, xm^in < 0, costmax < 0, or 
costmin < 0 are excluded. DMUs with the current input cost < 0 will also 
be excluded. 

5. For the Revenue, Profit and Ratio models, DMUs with no positive input 
value, i.e., xm^ax < 0, no positive output value, i.e., ym^ax < 0, or with 
a negative output value, i.e., ym^in < 0, will be excluded from computa­
tion. Furthermore, in the Revenue model, DMUs with pricem^ax < 0, or 
pricem^in < 0 will be excluded from the comparison group. In the Profit 
model DMUs with costmax < 0 or costmin < 0 will be excluded. Finally, 
in the Ratio model, DMUs with pricemax < 0, pricemin < 0, costmax < 0 
or costmin < 0 will be excluded. 

6. For the NCN and END models, negative input and output values are auto­
matically set to zero by the program. DMUs with xmax < 0 in the control­
lable (discretionary) input variables will be excluded from the comparison 
group as "inappropriate" DMUs. In the BND model, the lower bound and 
the upper bound must enclose the given (observed) value, otherwise these 
values will be adjusted to the given value. 

7. For the Window-I-Cand Window-1-Vmodels, no restriction exists for output 
data, i.e., positive, zero or negative values for outputs are permitted. How­
ever, DMUs with xmax < 0 will be characterized as being zero efficiency. 
This is for purpose of completing the score matrix. So, care is needed for 
interpreting the results in this case. If the number of DMUs per one period 
(term) exceeds 255, no graph will be produced. 

8. For the SBM model, nonpositive inputs or outputs are replaced by a small 
positive value. 
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9. For the Bilateral model, we cannot compare two groups if some inputs are 
zero for one group while the other group has all positive values for the 
corresponding input item. 

B.9 SAMPLE PROBLEMS AND RESULTS 

The attached "DEA-Solver LV (learning version)" includes the sample problems 
and results for all models in the folder "Samples". 

The "Professional Version" is available via http://www.saitech-inc.com. 

B.IO SUMMARY OF HEADINGS TO INPUTS/OUTPUTS 

Table B.2 exhibits headings to input/output and samples. 

Table B.2. Headings to Inputs/Outputs 

Heading 

(I) 
(0) 
(IN) 

(ON) 

(IB) 
(OB) 
(LB) 

(UB) 

(C) 

(P) 

Description 

Input 
Output 
Non-controllable or 
Non-discretionary 
input 
Non-controllable or 
Non-discretionary 
output 
Bounded input 
Bounded output 
Lower bound of 
bounded variable 
Upper bound of 
bounded variable 
Unit cost of input 

Unit price of output 

Example 

(I) Employee 
(O)Sales 
(IN) Population 

(ON)Area 

(IB)Doctor 
(OB)Attendance 
(LB)Doctor 

(UB)Doctor 

(C)Manager 

(P)Laptop 

Models employed 

All models 
All models 
NGN (Non-controllable) 
NDSC (Non-discretionary) 

As above 

BND (Bounded variable) 
As above 
As above 

As above 

Cost, New-Cost, 
Profit, New-Profit, Ratio 
Revenue, New-Re venue. 
Profit, New-Profit, Ratio 

http://www.saitech-inc.com
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