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Abstract:   The detection of fully and partially defective sensors in a linear array composed of N sensors is addressed. First, the 
symmetrical structure of a linear array is proposed. Second, a hybrid technique based on the cultural algorithm with differential 
evolution is developed. The symmetrical structure has two advantages: (1) Instead of finding all damaged patterns, only (N–1)/2 
patterns are needed; (2) We are required to scan the region from 0° to 90° instead of from 0° to 180°. Obviously, the computational 
complexity can be reduced. Monte Carlo simulations were carried out to validate the performance of the proposed scheme, 
compared with existing methods in terms of computational time and mean square error. 
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1  Introduction 

 
In the literature, there have been several tech-

niques that address the issue of detecting detective 
sensors in an array antenna. Rodríguez-González et 
al. (2000; 2009) diagnosed the defective sensor using 
the genetic algorithm (GA), where the fitness function 
is used to compare the measured radiation pattern 
with the given configuration of failed/unfailed sen-
sors. Patnaik et al. (2007) used a neural network (NN) 
approach to detect a maximum of three defective 
sensors in a small array composed of 16 sensors. 
Bucci et al. (2000) considered the ambiguity of the 
result in continuous and discrete on–off cases. Xu et 
al. (2007) used the support vector machine (SVM)  
to diagnose the defective sensors in a small array  

composed of four sensors. However, this technique is 
not applicable to large arrays, where the possible 
number of combinations boosts. Moreover, the 
available techniques are computationally expensive, 
as they not only require to store the patterns of all 
defective sensors in the array, but also need to scan 
the entire region from 0° to 180°. Oliveri et al. (2009) 
presented a linear thinned array with predictable and 
well-behaved sidelobes, in which element placement 
is based on almost difference sets. The array power 
pattern is forced to pass through uniformly spaced 
values. Oliveri et al. (2010) further proposed an an-
alytical technique based on almost difference sets for 
thinning planar arrays with well controlled sidelobes. 
Khan et al. (2015) used the compressed sensing 
technique hybridized with the genetic algorithm for 
the detection of faulty sensors, while Mailloux 
(1996), Yeo and Lu (1999), and Khan et al. (2013; 
2014) developed different algorithms for failure  
correction. 
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Today, biologically inspired techniques, espe-
cially differential evolution (DE) and the cultural 
algorithm (CA), are considered efficient and reliable 
optimization methods (Zaman et al., 2012a; 2012b). 

CA and DE are optimization techniques that in-
clude domain knowledge obtained during the evolu-
tionary process. For many optimization problems, 
both CA and DE have successfully overcome the 
shortcomings of conventional optimization tech-
niques due to their suppleness and effectiveness 
(Reynolds and Chung, 1996a; 1996b; Jin and Reyn-
olds, 1999; Reynolds and Peng, 2005; Becerra and 
Coello, 2006). DE and CA are stochastic-based search 
algorithms, in which function parameters are pro-
grammed as floating-point variables. They are simple 
in structure, converge fast, and are robust against 
noise. Fonollosa et al. (2013) developed a more reli-
able electronic nose (e-nose) and a robust system, in 
which machine learning based on multiple kernels 
was generated to overcome sensor failures. The out-
come confirms that multi-kernel models are more 
robust to sensor failures when the sub-kernel models 
are trained with small sets of sensors. 

In this paper, the detection of fully and partially 
defective sensors in a linear array composed of N 
sensors is addressed. First, the symmetrical structure 
of a linear array is proposed. Second, a hybrid tech-
nique based on CA and DE is developed. In this hy-
brid process, the results achieved through CA are 
further tuned using DE. The mean squared error 
(MSE) is used as an objective evaluation function that 
defines the error between the responses of the desired 
and estimated patterns. The symmetrical structure has 
two advantages: (1) Instead of finding all damaged 
patterns, only (N–1)/2 patterns are needed; (2) We are 
required to scan the region from 0° to 90° instead of 
from 0° to 180°. Obviously, the computational com-
plexity can be reduced. The proposed method  
outperforms the conventional one proposed by 
Choudhury et al. (2013) in terms of computational 
time and MSE. Monte Carlo simulations are carried 
out to validate the performance of the proposed 
scheme, compared with the existing methods in terms 
of computational time and MSE. 

 
 

2  Problem formulation 
 

Consider a uniform linear array (ULA) com-
posed of N=2M+1 sensors along its x-axis with  

respect to the original one. The far-field array factor 
(AF) for a healthy setup of equally spaced sensors of 
nonuniform amplitudes and progressive phase exci-
tations can be given as (Wolff, 1937) 
 

AF exp j cos( ) [ ( )],
M

i n i
n M

w n kdθ θ α
=−

= +∑  (1) 

 
where wn is the nonuniform weight of the nth sensor, d 
is the spacing between the adjacent sensors, θ is the 
angle from broadside, k=2π/λ is the wave number 
with wavelength λ, and α=−kdcos θs is the progres-
sive phase shift, where θs is the steering angle for the 
main beam. For an unhealthy setup (Fig. 1), AF can 
be written as  
 

AF exp j cos( ) [ ( )].
M

i n i
n M
n m

w n kdθ θ α
=−
≠

= +∑  (2) 

 
If either wm or w−m is damaged, i.e., by putting 

wm or w−m equal to zero, the array factor of the mth 
damaged sensor in a noisy environment is given by  

 

AF exp[ j ( cos )]( ) ,
M

i n i i
n M
n m

w n kdθ θ α η
=−
≠
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where ηi is the additive zero mean complex Gaussian 
noise with variance σ at the nth sensor. AF(θi) is the 
pattern when wm or w−m is fully faulty (Fig. 1). 
Mathematically, the measurement noise (in dB) can 
be expressed as 
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 Fig. 1  Nonuniform amplitude array composed of 2M+1 

sensors with sensor w2 defective  
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Assume that sensor w4 fails in the array. The 
method of locating a faulty element in a linear array 
starts with the measurement of several samples of the 
faulty pattern. The damaged array pattern for sensor 
w4 is shown in Fig. 2, where one can clearly observe 
that the pattern is symmetrical about θ=90°.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3  Proposed methodology 
 

In this section, we develop a method based on 
faulty patterns that are symmetric about θ=90°. Due 
to the symmetric structure, no matter wm or w−m is 
damaged, the patterns are the same. The failure of w4 
or w−4 gives the same pattern (Figs. 2 and 3). To 
detect the faulty sensor, we tabulate only half the 
number of faulty patterns; i.e., only (N−1)/2 faulty 
patterns are required. The other advantage is that we 
need only to scan the damage pattern from 0° to 90°, 
as the damage pattern is symmetrical about line 
θ=90°. The location of the faulty sensor can be found 
as 

 
90

F
1

2( ) ( ) ,m i m i
i

C P Pθ θ
°

= °
= −∑  (5) 

 
where PF(θi) is the faulty pattern and Pm(θi) is the 
pattern when wm or w−m is fully faulty (1≤m≤ 
(N−1)/2). In Eq. (5) the faulty patterns are compared 
with a given configuration of a fully faulty sensor, 
and its minimum result will give us the location of a 
faulty sensor. Then, based on another fitness func-
tion, we will decide whether the sensor is fully or 
partially defective. The value of the threshold has 

been found on the basis of MSE. If the lowest error is 
not larger than Eth (which is set as 0.5), the weight wm 
or w−m is fully faulty. If the lowest error is larger than 
Eth (Eth=0.5), then the weight is partially faulty. We 
use the cultural algorithm with differential evolution 
(CADE) technique to find the weights for a partially 
detective sensor. The fitness function is given by 

 
90

F CADE
1

2( ) ( ) ,i i
i

G P Pθ θ
°

= °
−= ∑  (6) 

 
where PF(θi) is the desired response, and PCADE(θi) is 
the value of the pattern obtained by using the CADE 
technique. The proposed method starts with tabulat-
ing both the faulty patterns {F1(θi), F2(θi), …, 
F(N−1)/2(θi)} and the single defective pattern Pm(θi) 
evaluated in the range of 0° to 90°. Then Cm in Eq. (5) 
is calculated by finding the faulty sensor that mini-
mizes Cm between one faulty pattern and one defec-
tive pattern when wm or w−m is fully faulty. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The proposed method is computationally effi-
cient, as we require half the number of samples {θ0°, 
θ2°, …, θ90°}; also, we have to tabulate (N−1)/2 faulty 
patterns to detect faulty sensors. The method of 
finding the faulty sensor in an array starts with 
measuring faulty patterns. If the defective sensor 
fails but radiates some power (i.e., the defective array 
pattern can be obtained from Eq. (2)), the defective 
weight is a fraction of the original one.  

3.1  Differential evolution 

DE, developed by Storn and Price (1997), is 
used to solve real-valued optimization problems. DE 
is a stochastic-based search algorithm that has a 

Fig. 3  Original Chebyshev array and w−4 sensor failure 
pattern 
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Fig. 2  Original Chebyshev array and w4 sensor damage 
pattern 
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simple structure, fast convergence, and robustness 
against noise. It has shown good results for multi- 
model and non-differential fitness functions. DE is 
based on a mutation operator, which adds an amount 
obtained by the difference between two randomly 
chosen individuals of the present population. Thus, it 
has found tremendous applications (Rogalsky et al., 
2000; Das and Konar, 2006). The basic steps are 
given in the form of pseudo-codes as follows: 

Step 1 (Initialization): First we randomly ini-
tialize Q chromosomes, each with a length of 1×P. 
The P genes in each chromosome represent the 
weights of the array antenna, given as 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

,

p

p

Q Q Q p

w w w
w w w

w w w

 
 
 =
 
 
 





  



S  

, b , b, , 1,2, , , 1,2, , ,i k i kw l w u i Q k P∈ ≤ ≤ ∀ = =  

 

where lb and ub are the lower and upper bounds of wi,k, 
respectively. 

Step 2 (Update): All the chromosomes from 1  
to Q of the current generation are updated. Choose 

, eq g
hd  from the matrix, where ge and h represent the 

particular generation and length of chromosome, 
respectively. Our main task is to find the chromo-
some of the next generation, i.e., 1, ,e eq g +  by using 
mutation, crossover, and selection operations. 

Mutation: To perform the mutation process, we 
select randomly three different chromosomes from 
matrix S: 
 

1 2 3, , , ,( )e e e eq g c g c g c gf d F d d= + − , (7) 

1 2 31 2 30.5 1, 1 , , , .F c c c Q c c c j≤ ≤ ≤ ≤ ≠ ≠ ≠  
 

Crossover: Crossover is performed using 
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where 0.5≤CR≤1, and hrand is chosen randomly.  

Selection: The next-generation chromosome is 
generated by 
 

1

, , ,
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where ,( )error eq gr and ,error( )q ged are defined in ma-
trix S. 

Step 3 (Stopping criterion): The stopping crite-
rion is based on the following condition: 

If 1,error( ) ,egqd e+ <  the maximum number of 
iterations is reached. 

3.2  Cultural algorithm 

CA was developed by Reynolds (1994) to model 
the evolution of the cultural component of an evolu-
tionary computational system over time. The main 
idea behind CA is to clearly attain the problem- 
solving knowledge from the growing population, and 
apply this knowledge to guide the search space 
(Reynolds and Chung, 1996b). CA uses culture as a 
van for storing information available to the entire 
population over many generations. The parameter 
setting is given in Table 1. The flow diagram for CA is 
shown in Fig. 4. CA consists of three components: a 
populated space, a belief space, and a communication 
protocol. The first one contains the population to 
evolve and the mechanisms for its estimate. The 
population space consists of a set of possible solutions 
to the problem. In this study, the population space is 
DE. The second one is a belief space which represents 
the bias that has been acquired by the population 
during its problem-solving process. The belief space 
is the information depository in which the individuals 
can store their experiences for other individuals to 
learn ultimately. These two spaces are connected to 
each other through the communication protocol 
composed of two functions, i.e., acceptance and in-
fluenc. The acceptance function is used to accept the 
experience of the best individuals from the population 
space, and store them in the belief space. Then the 
knowledge in the belief space can be updated through 
the update function. The influence function can guide 
the search space. In the present work, the belief space 
is divided into two knowledge components, i.e., situ-
ational knowledge and normative knowledge. CA is 

 
 
 
 
 
 
 
 

Table 1  Parameters used in the cultural algorithm with 
differential evolution 

Parameter Setting 
Population size 500 
Number of generation 500 
Value of F 0.5 
Value of CR 0.5<CR<1 
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used as an optimization algorithm, whose belief space 
is stored and updated with the population space dur-
ing each generation. The knowledge in the belief 
space is used to guide the search space toward the 
required solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The differential evolution variation operators are 
influenced in the following way: 

 
32, ,,( ),i g

i
n gn gy Q F w w= + −  (9) 

 
where Qi is the ith component of the individuals 
stored in the situational knowledge.  

The normative knowledge includes a scaling 
factor dsi to influence the mutation operator adopted 
in DE. The following expression shows the influence 
of the normative knowledge of the variation  
operators: 
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where li and ui are the lower and upper bounds for the 
ith decision variable, respectively, and 1 ,n gw repre-
sents the jth component of the ith individual selected 
from the gth generation by the acceptance function i 
(i=1, 2, …, naccepted, where naccepted is the number of 
best individuals at the gth generation). {dsi} is up-
dated with the difference 32 ,, )( gg nnw w−  of the varia-
tion operators of the prior generation. Normative 
knowledge leads the individuals to jump into the 
good range if they are not there. Normative 
knowledge is updated as follows. Consider 

1 2 accepted
{ , , , }

na a ax x x  as the accepted individuals in the 

current generation, where 
accepted1 2{ , , , }na a a  is the 

series of accepted individuals. Thus, we have 
 

,max ,max max, or ( ) ,

, otherwise,
i i i ii i i

i
i

w w u f w U
u

u

> <= 


 (11) 

,min ,min min, or ( ) ,

,  otherwise,
i i ii i i i

i
i

w w l f w L
l

l

< <= 


 (12) 

 
where mini

w and maxi
w  are the minimum and maxi-

mum values for parameter i, respectively. If li and ui 
are updated, the values of Li and Ui will be updated in 
the same way. {dsi} is updated with the largest dif-
ference of 

1 2, ,| |i r i rw w−  found during the variation 

operators at the previous generation. 
 
 
4  Simulation results and discussions 
 

In this section, we discuss several cases based on 
different numbers of defective sensors in an array. 
Case 1    Consider a Chebyshev linear array com-
posed of 51 sensors with a λ/2 intersensor spacing as 
the test antenna. The array of sensors was placed 
symmetrically along the x-axis, and excited around 
the center of the array. An analytical technique was 
used to find the nonuniform weights for a −30 dB 
constant sidelobe level (SLL) in the Chebyshev array. 

Fig. 4  Generic flow diagram of the cultural algorithm 
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To diagnose the faulty sensor in the linear symmet-
rical array, the radiation patterns for the fully and 
partially faulty sensors were generated. The samples 
were taken from the patterns in the region of 0° to 90°. 
Fifteen samples were taken from each pattern at an 
interval of 6° to scan the region of 0° to 90° to detect 
fully and partially faulty sensors. It is clear from  
Figs. 2 and 3 that the failure of either w4 or w−4 gave 
the same pattern, which is symmetrical about θ=90°. 
For the detection of the faulty sensor, we we have to 
tabulate both the faulty patterns {F1(θi), F2(θi), …, 
F25(θi)} and the single fault pattern Pm(θi), if either wm 
or w−m is damaged (m=0, 1, …, 25). The cost function 
in Eq. (5) is minimized for a given sample {θ0°, 
θ1°, …, θ90°}. The decision for the detection of a faulty 
sensor will be made based on the cost function. The 
minimization of cost functions in Eq. (5) will give us 
the location of a faulty sensor. If Cm≤Eth=0.5, the 
weight wm is fully faulty. If Cm>Eth=0.5, then the 
weight is partially faulty, and for the partial fault we 
will use the CADE technique (Eq. (6)) to find the 
weights. Simulation results for full and partial faults 
have been checked, showing the validity of the pro-
posed method. 

Fig. 5 shows the behavior of the diagnostic er-
rors for different values of the signal-to-noise ratio 
(SNR). We examined different values of SNR versus 
MSE. As one can see from Fig. 5, MSE decreases as 
the value of SNR increases.  
Case 2    Consider that a sensor fails partially and 
radiates some power; i.e., its weight is not zero, but a 
fraction of the original one. First we consider that 
sensor w2 is 50% damaged and this damage pattern is 
created by making the weight of the sensor half of its 
original weight in the original Chebyshev array. Now  
 
 
 
 
   
 
 
 
 
 
 

 
 

the CADE technique is used to locate its position. 
This array factor was obtained by making the weight 
of sensor w2 equal to half of the original weight in  
Eq. (1), represented by PF(θi) in the fitness function of 
Eq. (6). Then the CADE technique is used to mini-
mize the fitness function, which in turn gives the 
weight of the defected sensor. MSE is used as a fitness 
function, given by Eq. (6). To check the performance 
of the CADE technique, these weights are compared 
to those obtained by the Chebyshev method in which 
the weight of the sensor equals half of the original 
one. The weight obtained by CADE is given in Table 
2, and the pattern recovered using the CADE tech-
nique is shown in Fig. 6. 

Now we suppose that the sensor is 50% faulty by 
making the weight of w5 half of the original value. 
The CADE technique was used to locate its position. 
The array factor was obtained by making the weight 
of sensor w5 equal to half of its original value in Eq. 
(1). Then the CADE technique was used to minimize 
the fitness function in Eq. (6), which in turn gave the 
weight of the faulty array. The weights obtained by 
using the CADE technique for partial failure are given 
in Table 2. To check the validity, the weights obtained 
by the CADE technique were compared to the 
weights obtained from the Chebyshev method of 
damage patterns for 50% fault. The comparison of the 
weights of the defective array with those obtained by 
the CADE technique is given in Table 2. The original 
weight distributions, partially faulty weight distribu-
tions, and the weight distributions obtained by CADE 
are depicted in Fig. 7. From this comparison, the 
partial fault can be clearly identified. Comparison of 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 Fig. 5  Mean-squared error versus the number of iterations 
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the weights obtained by CADE with those of the 
defected array shows the level of the partial fault. The 
weights for the original Chebyshev array and the 
weights obtained for different cases by the CADE 
technique are given in Table 2. Now we assume that 
sensor w10 is 25% failed. The CADE algorithm is run 
to locate the partial fault of the sensor. The weights 
obtained by CADE for detection of partial faults 
(25%) for the sensor are given in Table 2 and shown 
in Fig. 8. 
Case 3    Consider a linear Chebyshev array com-
posed of 24 sensors taken as the reference antenna to 
execute the method of fault diagnosis developed by 
Choudhury et al. (2013). The proposed method was 
compared with the conventional method. The fully 
and partially faulty patterns were generated by mak-
ing their weights either equal to zero or some frac-
tions of the original weights. Assume that the 4th, 
10th (50%), and 17th (100%) sensors in the array  

 
 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Chebyshev and normalized weights obtained 
from the cultural algorithm with those of the differential 
evolution algorithm 

Sensor Chebyshev 
weight 

Nonuniform weight 

Sensor w2 
50% failed 

Sensor w5 
50% failed 

Sensor w10 
25% failed 

W−25 0.6426 0.6475 0.6437 0.6453 
w−24 0.2200 0.2234 0.2252 0.2317 
w−23 0.2554 0.2593 0.2584 0.2643 
w−22 0.2928 0.2959 0.2969 0.2975 
w−21 0.3321 0.3402 0.3451 0.3429 
w−20 0.3730 0.3754 0.3758 0.3813 
w−19 0.4152 0.4197 0.4247 0.4341 
w−18 0.4584 0.4610 0.4635 0.4618 
w−17 0.5023 0.5076 0.5085 0.5163 
w−16 0.5465 0.5485 0.5496 0.5538 
w−15 0.5907 0.5934 0.5952 0.5916 
w−14 0.6344 0.6431 0.6417 0.6384 
w−13 0.6773 0.6796 0.6815 0.6794 
w−12 0.7190 0.7203 0.7351 0.7265 
w−11 0.7591 0.7612 0.7652 0.7631 
w−10 0.7973 0.7995 0.7987 0.1987 
w−9 0.8330 0.8413 0.8418 0.8491 
w−8 0.8661 0.8676 0.8673 0.8752 
w−7 0.8961 0.8987 0.8984 0.8987 
w−6 0.9228 0.9264 0.9378 0.9376 
w−5 0.9459 0.9476 0.4857 0.9518 
w−4 0.9651 0.9685 0.9721 0.9687 
w−3 0.9802 0.9843 0.9873 0.9885 
w−2 0.9912 0.4879 0.9992 0.9932 
w−1 0.9978 0.9986 0.9983 0.9986 
w0 1.0000 0.9994 0.9987 0.9975 
w1 0.9978 0.9995 0.9993 0.9996 
w2 0.9912 0.9945 0.9928 0.9934 
w3 0.9802 0.9835 0.9834 0.9827 
w4 0.9651 0.9676 0.9676 0.9675 
w5 0.9459 0.9513 0.9473 0.9486 
w6 0.9228 0.9301 0.9362 0.9264 
w7 0.8961 0.8978 0.8988 0.8975 
w8 0.8661 0.8751 0.8676 0.8676 
w9 0.8330 0.8421 0.8414 0.8451 
w10 0.7973 0.7985 0.7993 0.7998 
w11 0.7591 0.7584 0.7632 0.7685 
w12 0.7190 0.7542 0.7531 0.7326 
w13 0.6773 0.6833 0.6795 0.6891 
w14 0.6344 0.6461 0.6384 0.6454 
w15 0.5907 0.5932 0.5951 0.5937 
w16 0.5465 0.5496 0.5485 0.5579 
w17 0.5023 0.5159 0.5046 0.5163 
w18 0.4584 0.4613 0.4597 0.4627 
w19 0.4152 0.4271 0.4174 0.4256 
w20 0.3730 0.3742 0.3819 0.3828 
w21 0.3321 0.3364 0.3357 0.3482 
w22 0.2928 0.2953 0.2961 0.2952 
w23 0.2554 0.2571 0.2589 0.2617 
w24 0.2200 0.2262 0.2317 0.2356 
w25 0.6426 0.6432 0.6478 0.6513 

Bold numbers represent the faulty sensors 
 

Fig. 7  Weight distributions of the original, w5 defected, 
and that obtained by the cultural algorithm with differen-
tial evolution (CADE: cultural algorithm with differential 
evolution) 
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Fig. 8. Weight distributions of the original, w10 defected, 
and that corrected by the cultural algorithm with differ-
ential evolution (CADE: cultural algorithm with differen-
tial evolution) 
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have become faulty. The faulty pattern and symmet-
rical counterpart failure of the 4th, 10th (50%), and 
17th (100%) sensors are shown in Fig. 9a and 9b, 
respectively. It is clear from Figs. 9a and 9b that the 
failures give the same power pattern. Therefore, we 
have to tabulate half of the faulty patterns. The second 
advantage of using a symmetrical linear array is that 
the faulty pattern is symmetrical about θ=90°; i.e., we 
need half the number of samples to scan the pattern. 
First we simulated the pattern with 1–3 faulty ele-
ments. We used a set of 1162 patterns. In each case, 
the faulty pattern contains M samples as the input to 
check the diagnosis of fault. In this case, we take 18 
samples, 35 samples, or a random number of  
samples to validate the performance of the pro- 
posed method. Assume there are a maximum of  
three defective sensors, which yields a total of 

3

1

! 2324
!( )!f

N
f N f=

=
−∑  patterns by the conventional 

method, while 1162 patterns by our proposed method. 
To locate the faulty sensors in an array of antennas, 
the weight of each sensor was considered as the op-
timizing parameter for the bacteria foraging optimi-
zation (BFO) and CADE algorithms. CADE would 
converge to the optimum solution. In an array diag-
nosis, 35 samples were taken in the range of 0° to 
180° at an interval of 5°. We supposed that the 4th and 
10th sensors were partially faulty and that the 17th 
sensor was fully faulty. We ran BFO and the proposed 
method to diagnose the faulty sensors. Fig. 10a shows 
the faulty pattern with the positions of 35 samples. 
The fault diagnosed by the conventional method is 
shown in Fig. 10b. Then the same process was re-
peated using the proposed method (Figs. 11a and 
11b). 

By the proposed method, we diagnosed the fault 
by half the number of samples. Similarly, the fault 
was repeated for 18 samples and some other random 
number of samples for the conventional and proposed 
methods, respectively. The results obtained by the 
conventional and proposed methods for 18 samples 
and some random number of samples are shown in 
Figs. 12–13. By the proposed method, one can detect 
the faulty sensor accurately even with fewer sample 
points. Fig. 14 shows the MSE plots for conventional 
and proposed methods.  

For a few initial iterations, the value of MSE was 
high, but after some iterations it went down. BFO and 

the proposed method were run to detect the location 
of faults for six random cases and find the average 
time of the faulty sensors for various scenarios. The 
results are given in Tables 3–6. From the simulation 
results, it is clear that the computation time increases 
as the number of faulty sensors increases. 

 
 

5  Conclusions 
 

We proposed a computationally efficient tech-
nique to find fully and partially defective sensors in a 
linear array. Using the approach of a symmetrical 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Time comparison for six configurations of two 
defective sensors 

Fault 
location 

Detection time (s) 
Proposed method Conventional method 

18 
samples 

35 
samples 

18 
samples 

35 
samples 

5,  7 67.70 139.70 123.50 254.30 
20, 23 66.40 141.40 121.70 237.40 
18, 20 72.30 153.60 137.10 238.75 
11, 21 74.80 155.10 139.30 241.50 
7, 10 76.20 161.90 143.60 231.94 
8, 12 78.90 165.20 144.10 235.50 

Average 72.72 152.82 134.88 239.90 
 Table 5  Time comparison for six random configura-

tions of three defective sensors 

Fault  
location 

Detection time (s) 
Proposed method Conventional method 

18 
samples 

35 
samples 

18 
samples 

35 
samples 

5, 7, 12 81.70 169.40 144.10 231.40 
1, 7, 12 85.30 173.70 157.30 274.10 
1, 9, 11 79.30 167.30 142.90 230.90 

13, 17, 24 82.60 169.90 153.50 227.20 
15, 19, 22 85.50 175.50 151.30 237.60 
14, 21, 24 77.30 164.80 145.60 241.70 
Average 81.95 170.10 149.12 240.48 

 

Table 3  Time comparison for six configurations of one 
defective sensor 

Fault  
location 

Detection time (s) 
Proposed method Conventional method 

18 
samples 

35 
samples 

18 
samples 

35 
samples 

1 56.72 117.46 108.42 201.71 
2 58.53 121.69 113.73 206.50 
5 59.65 115.78 114.56 213.31 

10 60.87 109.95 117.35 205.37 
20 54.47 108.60 107.50 203.95 
23 52.89 107.95 105.45 204.87 

Average 57.18 113.57 111.17 205.95 
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Fig. 10  Defective array pattern with fault at the 4th, 10th (50%), and 17th (100%) sensors with 35 sample points (a) and 
its fault diagnosed by the conventional method (Choudhury et al., 2013) (b) 
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Fig. 9  Patterns of the Chebyshev array and the 4th, 10th (50%), and 17th (100%) sensors faulty array (a) and  Chebyshev 
array and the symmetrical counterpart of the 4th, 10th (50%), and 17th (100%) sensors faulty array (b) 
 

Fig. 11  Defective array pattern with fault at the 4th, 10th (50%), and 17th (100%) sensors with 19 sample points (a) and its 
fault diagnosed by the proposed method (b) 

Fig. 12  Defective array pattern with fault at the 4th, 10th (50%), and 17th (100%) sensors with 10 sample points (a) and 
its fault diagnosed by the proposed method (b) 



Khan et al. / Front Inform Technol Electron Eng   2017 18(2):235-245 244 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
linear array brings two advantages. First, the failure of 
wm or w−m gives the same pattern; i.e., we require 
 (N−1)/2 patterns instead of finding all damaged pat-
terns. Second, we need to scan half of the damage 
patterns {θ0°, θ1°, …, θ90°}, as the patterns are sym-
metrical about θ=90°. The decision of the fully or 

 
 
 
 
 
 
 
 
 
 
 

 
partially faulty sensor is made based on the cost 
function. If Cm>0.5, the sensor is fully faulty; if 
Cm≤0.5, the sensor is partially faulty. For partial faults 
we used the CADE technique to locate the defective 
sensors. This method can be extended to planar arrays 
and L-type arrays. 
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