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Abstract

Background: High-throughput transcriptome sequencing (RNA-seq) technology promises to discover novel
protein-coding and non-coding transcripts, particularly the identification of long non-coding RNAs (lncRNAs) from
de novo sequencing data. This requires tools that are not restricted by prior gene annotations, genomic sequences
and high-quality sequencing.

Results: We present an alignment-free tool called PLEK (predictor of long non-coding RNAs and messenger RNAs
based on an improved k-mer scheme), which uses a computational pipeline based on an improved k-mer scheme
and a support vector machine (SVM) algorithm to distinguish lncRNAs from messenger RNAs (mRNAs), in the
absence of genomic sequences or annotations. The performance of PLEK was evaluated on well-annotated mRNA
and lncRNA transcripts. 10-fold cross-validation tests on human RefSeq mRNAs and GENCODE lncRNAs indicated
that our tool could achieve accuracy of up to 95.6%. We demonstrated the utility of PLEK on transcripts from other
vertebrates using the model built from human datasets. PLEK attained >90% accuracy on most of these datasets.
PLEK also performed well using a simulated dataset and two real de novo assembled transcriptome datasets
(sequenced by PacBio and 454 platforms) with relatively high indel sequencing errors. In addition, PLEK is
approximately eightfold faster than a newly developed alignment-free tool, named Coding-Non-Coding Index
(CNCI), and 244 times faster than the most popular alignment-based tool, Coding Potential Calculator (CPC), in a
single-threading running manner.

Conclusions: PLEK is an efficient alignment-free computational tool to distinguish lncRNAs from mRNAs in RNA-seq
transcriptomes of species lacking reference genomes. PLEK is especially suitable for PacBio or 454 sequencing data
and large-scale transcriptome data. Its open-source software can be freely downloaded from https://sourceforge.
net/projects/plek/files/.
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Background
With the development of high-throughput transcriptome
sequencing techniques (RNA-seq) [1], numerous tran-
scripts have been identified in many species [2-4]. A new
class of transcripts, long non-coding RNAs (lncRNAs, typ-
ically >200 nt), are of particular interest because they con-
tribute to many important biological processes, such as
dosage compensation [5], regulation of gene expression [6]
and cell cycle regulation [7,8]. Moreover, a number of
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studies showed that mutations and dysregulations in
lncRNA genes were associated with human diseases [9,10],
such as cancers [11-13]. It remains a challenge to distin-
guish mRNAs from lncRNAs, especially for de novo se-
quencing without highly confident reference sequences and
comprehensive annotations, because lncRNAs show many
features similar to mRNAs, such as poly(A) tails, splicing
and approximate sequence length [14]. Until now, several
tools, such as CPC [15] and PhyloCSF [16], have been
developed based on known protein databases, intrinsic
sequence features and sequence conservation proper-
ties. These tools show varied efficiencies in distinguish-
ing lncRNAs from mRNAs for different datasets. Most
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of them rely heavily on sequence alignment, and are there-
fore time-consuming and restricted by prior annotations.
Recently, a software tool named Coding-Non-Coding
Index (CNCI) was developed [17]. It discriminates coding
from non-coding transcripts using intrinsic sequence fea-
tures. CNCI performs better than previous tools for poorly
annotated species or those without whole-genome se-
quence information, but it may misclassify transcripts
when there are insertion or deletion (indel) sequencing er-
rors among them. Such errors are common in the current
Roche (454) and Pacific Biosciences (PacBio) sequencing
platforms [18-21].
In this study, we developed a characteristic k-mer

based alignment-free tool named PLEK, to solve the
above-mentioned problems. PLEK takes calibrated k-mer
frequencies of a transcript sequence as its computational
features. With these features, the support vector ma-
chine (SVM) algorithm was used to build a binary classi-
fication model to separate lncRNAs from mRNAs. The
classification model achieved high accuracy (95.6%) on
training data with 10-fold cross-validation. PLEK also
performed well on data from other vertebrates, using
the classification model built from human training data.
For transcripts containing indel sequencing errors, PLEK
also attained high accuracy (>94%) in simulated and real
transcriptome datasets. Moreover, PLEK is 8 times faster
than CNCI and 244 times faster than CPC on the same
test data. Therefore, PLEK is an accurate, robust and fast
tool. It is suitable for vertebrates lacking high-quality
genome sequences and annotation information, and is
especially effective for the de novo assembled transcrip-
tome data generated by PacBio or 454 sequencing
platforms.

Implementation
Careful selection of high-quality training data and their
appropriate computational features is crucial to build an
accurate, robust and fast binary classifier. In this section,
we describe the data used to build the classification
model and to test its performance. We then describe the
distinct computational pipeline of k-mer usage. This is
followed by the construction of a binary classifier using
these data, k-mer usage features and SVM algorithm. Fi-
nally, we introduce simulation of indel sequencing errors
on human protein-coding transcripts and transcriptome
sequencing data from PacBio and 454 platforms.

Data description
The RefSeq [22,23] and GENCODE [24-26] projects pro-
vide comprehensive, non-redundant and well-annotated
set of sequences, which can be used to build high-quality
training and test datasets. Human protein-coding tran-
scripts were downloaded from the RefSeq database (re-
lease 60) and human long non-coding transcripts were
collected from GENCODE v17. There were 34,691
protein-coding transcripts with the length of >200 nt in
the human RefSeq dataset, and 22,389 long (>200 nt) non-
coding transcripts in the human GENCODE dataset. For
performance assessment of cross-species prediction, we
gathered transcripts from other vertebrates from the
Ensembl [27] database (v72) (Table 1). To compare PLEK
against CNCI, CPC and PhyloCSF, 6,015 mouse lncRNAs
were gathered from GENCODE database (vM2). Mouse
mRNAs were collected from RefSeq (release 60) and those
with ‘putative’, ‘predicted’ or ‘pseudogene’ annotations were
excluded. All the sequences used were longer than 200 nt.

Improved k-mer scheme
To characterize lncRNA and mRNA transcript sequences,
we used k-mer usage and sliding-windows with a one-
nucleotide step-length to analyze each transcript. A k-mer
pattern is a specific string with k nucleotides, each can be
A, C, G or T. For k = 1 to 5, we had 4 + 16 + 64 + 256 +
1024 = 1,364 patterns: 4 one-mer patterns, 16 two-mer
patterns, 64 three-mer patterns, 256 four-mer patterns,
and 1,024 five-mer patterns.
In designing a sliding-window of length k, k = 1,2,…,5,

which slides along the transcript of length l by a step-
length of one nucleotide, if the string in the transcript
within the window matched with some pattern i, the oc-
currence number of the pattern in the transcript, de-
noted by ci, was increased by one. We did not simply
use usage frequency ci/sk, i = 1 to 1364 (where sk was the
total number of times that the sliding-window of size k-
nt could slide along the transcript, sk = l-k + 1); however,
we calibrated it as fi by a factor relating to the length of
the pattern, wk, as the features of the transcript for pre-
diction. The features used for prediction were given in
formula (1).

f i ¼
ci
sk
wk ; k ¼ 1; 2; 3; 4; 5: i ¼ 1; 2;…; 1364 ð1Þ

sk ¼ l−k þ 1; k ¼ 1; 2; 3; 4; 5 ð2Þ

wk ¼ 1

45−k
; k ¼ 1; 2; 3; 4; 5 ð3Þ

Construction of classification model
To produce a balanced training dataset, we collected all
the 22,389 long non-coding transcripts from the GEN-
CODE v17 dataset (labelled as the “negative” class) and
randomly selected 22,389 protein-coding transcripts
from the human RefSeq dataset (labelled as the “posi-
tive” class). The 1,364 calibrated k-mer usage frequencies
of each transcript were regarded as computation fea-
tures. First, these calibrated frequencies were normalized
to the range from 0 to 1 using the svm-scale program
from the LIBSVM package (version 3.17) [28]. Second, a



Table 1 Data sources and performance of cross-species prediction

Species Data source Number of transcripts Accuracy of CNCI Accuracy of PLEK

Mus musculus
RefSeq mRNA 26062 93.9% 88.1%

Ensembl ncRNA 2963 97.1% 89.9%

Danio rerio
RefSeq mRNA 14493 95.3% 91.3%

Ensembl ncRNA 419 89.3% 90.9%

Xenopus tropicalis
RefSeq mRNA 8874 92.9% 94.5%

Ensembl ncRNA 279* 99.7% 100.0%

Bos taurus
RefSeq mRNA 13190 94.3% 94.8%

Ensembl ncRNA 182 100.0% 99.5%

Pan troglodytes
RefSeq mRNA 1906 90.2% 87.1%

Ensembl ncRNA 1166 100.0% 99.9%

Sus scrofa
RefSeq mRNA 3978 93.4% 85.1%

Ensembl ncRNA 241 95.9% 98.3%

Macaca mulatta
RefSeq mRNA 5709 92.0% 85.0%

Ensembl ncRNA 359 99.7% 100.0%

Gorilla gorilla
RefSeq mRNA 33025 87.4% 83.8%

Ensembl ncRNA 367 99.7% 99.7%

Pongo abelii
RefSeq mRNA 3401 93.4% 98.0%

Ensembl ncRNA 392 99.8% 100.0%

PLEK and CNCI were tested on the same data; better accuracies are shown in bold face type. For RefSeq mRNAs, those with ‘putative’, ‘predicted’ or ‘pseudogene’
annotations were excluded (except for Gorilla gorilla).
*279 non-coding transcripts with lengths of more than 150 nt.
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support vector machine (SVM) with a radial basis func-
tional kernel, whose variance is gamma, was selected as
the binary classifier. The optimal C of the SVM and
gamma of the kernel were obtained using the grid.py
script of the LIBSVM package. During the process of
parameter searching, 10-fold cross-validation was carried
out to assess the performance of the classification model
for each C and gamma parameter. Finally, we built an
SVM binary classifier with the optimal C and gamma.

Simulation of indel sequencing errors
Assembly of transcripts is made difficult by short read
length sequences, which are typically generated by next-
generation sequencing technologies [29,30], especially by
Illumina sequencing platforms. In contrast, PacBio and
454 platforms generate longer reads, which tend to be
more easily assembled than short reads [31]. A large
number of studies have been performed on these two
kinds of sequencers [32-38]. However, the indel sequen-
cing error rates are relatively high in PacBio and 454 se-
quencing data [19,39]. A tool robust to such errors is
desirable to distinguish lncRNAs and mRNAs, and facili-
tates annotation of lncRNAs and mRNAs of a species
without whole-genome sequences.
We simulated single-base homopolymer-associated indel

sequencing errors in protein-coding transcripts to evaluate
the robustness of our tool, because they are the most
typical indel sequencing errors in PacBio and 454 sequen-
cing platforms. Without loss of generality, we simulated 0
to 3 single-base indel sequencing errors per 100 bases (the
error rate p was 0% to 3%). For a transcript with a length
of l bases, it had n = lp indel errors. We first counted the
number of homopolymers of various lengths. Suppose the
corresponding number of different homopolymers with
lengths of l1 , l2, …, lt was m1, m2, …, mt, respectively,
where l1 > l2 >… > lt, and t is the number of different
lengths of homopolymers. A biological fact is that the like-
lihood of an indel error increases with the length of a ho-
mopolymer [19], even with no possibility that the indel
error is in place between homopolymers. Thus, the indel
errors start with the longest homopolymers with the
length of l1. If m1 < n, the homopolymers with the length
of l2 are also inserted or deleted with bases, and so on,
until n relatively longer homopolymers are processed. For
these n homopolymers, we randomly inserted or deleted
an identical base. If there are many homopolymers and
few indels, the positions of indels will be evenly distributed
in the transcripts (see Additional file 1 for an example).

Construction of a real sequencing dataset
We used following two transcriptome datasets, sequenced
by PacBio and 454 platforms, to test the performance of
PLEK on de novo assembled transcripts without reference
genomes. The first dataset was recently released by PacBio
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(Pacific Biosciences, Menlo Park, CA, USA). After full-
length cDNA sequencing of the human MCF-7 tran-
scriptome by the PacBio Isoform Sequencing (Iso-Seq)
technology, PacBio used an iterative clustering algorithm
and Quiver [40] to assemble de novo 44,531 polished, full-
length and non-redundant transcripts. We aligned these
transcripts with human RefSeq mRNAs (release 60) and
GENCODE lncRNAs (v17) using NCBI Blastn with the
parameters: -task megablast -evalue 1e-10 -perc_identity
80 -max_target_seqs 1. Then, filtering these transcripts by
query coverage >80%, subject coverage >80% and gaps >0,
we obtained 3,306 transcripts (3,185 mRNAs and 121
lncRNAs) that may have had indel sequencing errors.
The second dataset, a HelaS3 cell line transcriptome,

was sequenced by a 454 GS FLX Titanium platform and
is available at the Sequence Read Archive (SRA) under
accession no. SRA063146 [41]. LUCY (1.20p) [42] and
SeqClean (ftp://occams.dfci.harvard.edu/pub/bio/tgi/soft-
ware/) were used to discard the adapter sequences, low
quality reads and sequences of less than 50 bp, resulting
in 4,222,133 high-quality sequences. Trinity r20131110
[43] with default parameters was used to assemble these
de novo. Trinity assembled 65,583 transcripts, which were
subsequently aligned with human RefSeq mRNAs and
GENCODE lncRNAs, and were filtered in the same man-
ner as the first dataset. Finally, 3,098 transcripts with pos-
sible indel sequencing errors were retained (3,045
mRNAs, 53 lncRNAs).

Running PhyloCSF on mouse datasets
In order to compare PLEK against PhyloCSF [16] on
mouse datasets, we set up a local instance of Galaxy [44].
Multiple alignments of 59 assemblies to the mouse gen-
ome (mm10/GRCm38) were downloaded from the UCSC
Genome Browser (http://hgdownload-test.sdsc.edu/golden-
Path/mm10/multiz60way/maf/). BED files describing mouse
lncRNA and mRNA transcripts were loaded onto the
local Galaxy webserver and the tool ‘Stitch Gene Blocks’
was used to retrieve multiple alignment files with se-
quence entries for the following genome builds based
on the 60-way Multiz alignment to mm10: mm10, rn5,
dipOrd1, cavPor3, speTri2, oryCun2 and ochPri2. Genome
build names were converted to common names and
PhyloCSF was run using the options: –frames = 3, –orf =
StopStop3 and –removeRefGaps.

Results
Different usage frequencies of k-mer strings
To verify the difference between mRNA and lncRNA in
k-mer string usage, we calculated the calibrated usage
frequencies of all the 1,364 k-mer patterns in the positive
training dataset (22,389 protein-coding transcripts) and
negative training dataset (22,389 long non-coding tran-
scripts). We used the Wilcox rank-sum test to determine
which k-mer pattern usage was significantly different be-
tween mRNAs and lncRNAs. With a significance level of
10-6, we found that 1,278 patterns were significantly dif-
ferent in their usage (see Additional files 2 and 3). This
demonstrated that the differences between the usage fre-
quencies of these k-mers could largely differentiate the
two groups. Therefore, our improved k-mer scheme is a
suitable algorithm to distinguish mRNAs and lncRNAs.
10-fold cross-validation on the human training datasets
was performed. The accuracy was 95.6%. Although
PLEK was not better than the state-of-the-art CNCI tool
on the dataset (CNCI’s accuracy was 97.3% on human
RefSeq and GENCODE datasets), it worked better on
transcriptome data from PacBio and 454 datasets (see sec-
tion entitled ‘Performance on PacBio and 454 datasets’).

Performance in cross-species prediction
At present, genomic sequences and annotations of most
organisms are of poor quality or are unavailable. To
analyze the transcriptome data of these organisms, we
could draw wide support from the well-annotated re-
lated organisms in a cross-species manner. For example,
we could try using the models built by human training
data to analyze data from other vertebrates that have not
been deeply explored.
We tested PLEK on several other vertebrates to assess

its performance in cross-species prediction of protein-
coding and non-coding transcripts, and found that it
worked well (Table 1). This result demonstrated that
PLEK exhibits good performance in cross-species predic-
tion, as the CNCI does, which performed uniformly on
all the species of vertebrates [17]. We also found that
the more similar the genome of a vertebrate was to that
of human, the better the performance of the model.
Therefore, for species without reference genomes or
with poor annotation information, one could use tran-
scripts and annotation of closely related organisms to
build models to distinguish their protein-coding and
non-coding transcripts.

Robustness to indel sequencing errors
We applied PLEK to human protein-coding transcripts
with simulated indel sequencing errors to evaluate its ro-
bustness and compare its performance with that of CPC
and CNCI. CPC is widely used to assess the protein-
coding potential of a transcript based on alignment with
a protein database [14,45,46]. CNCI effectively distin-
guishes protein-coding and non-coding sequences inde-
pendent of reference genomes and known annotations
by profiling adjoining nucleotide triplets (ANT). CNCI
provides highly accurate prediction of transcripts assem-
bled from RNA-seq data in a cross-species manner. In
our study, human protein-coding transcripts were ex-
tracted from the RefSeq database and the overlapping

ftp://occams.dfci.harvard.edu/pub/bio/tgi/software/
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transcripts with the training set were removed. Using
the indel error simulation approach, we examined ro-
bustness performance across different indel sequencing
error rates from 0% to 3% (Figure 1). The results showed
that the accuracies of PLEK and CPC were not affected
by a small amount of indels, whereas the accuracy of
CNCI decreased significantly with increasing indel error
rates, indicating that PLEK is a robust tool for distin-
guishing protein-coding and non-coding transcripts with
homopolymer-associated indel sequencing errors.

Performance on PacBio and 454 datasets
We compared the performance of PLEK with that of
CNCI and CPC using de novo assembled transcripts de-
rived from PacBio and 454 platforms. 3,306 transcripts
from the MCF-7 transcriptome sequenced by a PacBio
platform and 3,098 transcripts from HelaS3 transcrip-
tome generated by a 454 platform were fed into these
three tools, respectively. PLEK maintained its high ac-
curacy, 0.947 on the PacBio dataset and 0.954 on the
454 dataset, which was higher than that of CNCI (0.913
and 0.937, respectively) (Table 2). CPC achieved the
highest accuracy (>0.970), but the lowest specificity
(<0.472). CPC remained high positive and negative pre-
dictive values (PPV and NPV) (>0.926). PLEK and CNCI
had relatively better PPV (>0.991) but poor NPV
(<0.407). Sensitivity, specificity, PPV, NPV and accuracy
were calculated using the following formulae:

Sensitivity ¼ TP
TPþ FN

; Specificity ¼ TN
TNþ FP

;

PPV ¼ TP
TPþ FP

; NPV ¼ TN
TNþ FN

;

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN
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Figure 1 Comparison of robustness towards indel sequencing errors.
rates). Performance (accuracy) of CNCI declines significantly as the indel err
FN, false negative; FP, false positive; TN, true negative;
TP, true positive.
Performance comparison on mouse datasets
We compared the performance of PLEK with that of
CNCI, CPC and PhyloCSF on the mouse datasets which
were composed of 6,015 lncRNAs and a random sample
of 6,015 mRNAs. We evaluated these four tools and
measured their accuracy on protein-coding and long
non-coding transcripts, respectively. Figure 2 shows the
fraction of transcripts that were classified as coding or
non-coding by each tool. On protein-coding transcripts,
all these tools performed well. Only a small fraction of
protein-coding transcripts were misclassified as non-
coding (Figure 2A). On non-coding transcripts, PLEK
and CNCI outperformed PhyloCSF and CPC. At least
22% non-coding transcripts were misclassified as coding
by PhyloCSF and CPC (Figure 2B). These results indi-
cate that PLEK is a reasonably efficient tool.

Computational performance
Advances in sequencing technologies have produced
huge amount of transcriptome data. To date (Mar 17,
2014), there are approximately 4,158 studies of tran-
scriptome analysis in the Sequence Read Archive (SRA).
1,606 of these studies generated more than 10 Gb bases,
and 234 of them produced more than 100 Gb bases. The
scale of such data will become much larger when we
comprehensively analyze the RNA-seq data from differ-
ent studies. Thus it is necessary to develop a high-speed
tool to separate lncRNAs from mRNAs in large-scale
transcriptome data.
We measured computation time of PLEK, CNCI, CPC

and PhyloCSF on a sample of 1,000 protein-coding
1.5 1.8 2.1 2.4 2.7 3.0

ing error rate(%)

CNCI CPC

The x-axis is the indel numbers per 100 bases (indel sequencing error
or rate increases.



Table 2 Performances on transcripts derived from PacBio and 454

Dataset Tool Sensitivity Specificity PPV NPV Accuracy

MCF-7 (PacBio)

PLEK 0.947 0.958 0.998 0.407 0.947

CPC 0.999 0.190 0.970 0.958 0.970

CNCI 0.918 0.787 0.991 0.269 0.913

HelaS3 (454)

PLEK 0.955 0.925 0.999 0.262 0.954

CPC 0.999 0.472 0.991 0.926 0.990

CNCI 0.939 0.811 0.997 0.189 0.937

Bold face type indicates the best performances (sensitivity, specificity, PPV, NPV, accuracy) among PLEK, CPC and CNCI. Italic face type indicates the worst
specificity and NPV among these tools.
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sequences and 1,000 long non-coding sequences ran-
domly selected from human RefSeq and GENCODE
v17 databases, respectively. All these tools were run in
a single-threading manner on an IBM X3650 M4 com-
puter equipped with two E5-2640 CPUs and 64 GB of
RAM. PLEK took 128 seconds to process the data,
which was approximately eightfold faster than CNCI
(1,048 seconds), 244 times than CPC (31,247 seconds)
and 1,421 times than PhyloCSF (181,925 seconds)
(Table 3). Additionally, PLEK could be easily config-
ured for multi-threading parallel computing, which
will further save computation time. Thus, PLEK is es-
pecially suitable for classifying a large number of tran-
scripts conducted by RNA-seq technologies.

Discussion
Several studies have identified numerous lncRNAs from
RNA-seq data [43,45,47-51]. However, the transcriptomes
of many species, with partial or missing reference ge-
nomes, have been studied using PacBio or 454 sequencing
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Protein−coding tr
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B

Figure 2 Results of PLEK, CPC, CNCI and PhyloCSF on mouse datasets
non-coding. (B) The fraction of non-coding transcripts classified as coding or
transcripts (release 60) and GENCODE mouse long non-coding transcripts (vM
by each tool. All these tools performed well on protein-coding transcripts. PLE
transcripts.
techniques [32-38]. PacBio and 454 platforms generate
longer read lengths than Illumina, which make it easier
to assemble de novo transcripts without reference ge-
nomes [31,38]; however, transcripts generated by these
platforms have relatively higher indel sequencing error
rates [19,39]. Furthermore, an increasing number of
RNA-seq data have been generated and the data scale is
expanding rapidly with advances in high-throughput se-
quencing technologies. Therefore, it is necessary to de-
velop a tool independent of known annotations and
suitable for cross-species prediction that is robust to
indel sequencing errors and fast enough to be affordable
for large-scale data.
Appropriate computational features are very important

for classification. Although conventional k-mer feature has
been employed in several studies, such as gene identifica-
tion [52], piRNA prediction [53], class-specific motif de-
tection [54] and miRNA classification [55], we found that
the proposed improved k-mer usage frequencies were
good features to identify lncRNAs.
0.75 1.00

cripts
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anscripts

0.75 1.00

cripts
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. (A) The fraction of protein-coding transcripts classified as coding or
non-coding. Data were collected from RefSeq mouse protein-coding
2). Shown is the fraction of transcripts classified as coding or non-coding
K and CNCI outperformed CPC and PhyloCSF on long non-coding



Table 3 Comparison of computational performances of
PLEK, CNCI, CPC and PhyloCSF

Performance PLEK CNCI CPC PhyloCSF

Run timea (seconds) 128 1048 31247 181925e

Multi-threadingb Yes Yes Nod No

Online runningc No No Yes No

Computational time was tested on 1,000 human mRNA transcripts and 1,000
human lncRNA transcripts.
aComputation time consumed when run in a single-threading manner.
bCan the software tool run in a multi-threading manner?
cDoes the software tool provide a website for users to run online?
dCPC improves its computational performance using a page-cache method on
its website.
eBed files were load onto the Galaxy webserver (http://galaxy.nbic.nl/) and the
tool ‘Stitch Gene Blocks’ was used to retrieve multiple alignment files with
sequence entries for the following genome builds based on the 10-way Multiz
alignment to hg19: hg19, panTro2, tarSyr1, micMur1, otoGar1 and rheMac2.
PhyloCSF was run using the options: –removeRefGaps.
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More features would be used for prediction with in-
creasing k. For example, 340 features are used when k
ranges from 1 to 4, 1,364 features when k ranges from 1 to
5, and so on. Prediction accuracy increases with the in-
creasing k; however, this is accompanied by an increasing
computation load (Figure 3). As we increased k, and thus
added more sequence features, we were able to better dis-
criminate between lncRNA and mRNA sequences. K-mers
with lengths greater than five do not significantly change
the discrimination power of the SVM. Thus, for a trade-
off between computational time and accuracy, we deter-
mined the range of k as 1 to 5. The model, PLEK, which
uses these features, attained high prediction accuracy in
10-fold cross-validation on a human training dataset.
PLEK runs faster than previous tools, CPC and CNCI, be-
cause CPC is an alignment-based tool and CNCI is
obliged to calculate Hexamer (k = 6) usage.
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Figure 3 Performance comparison of various ranges of k.
On the x-axis, ‘5’ means that k ranged from 1 to 5. Training data
comprised 22,389 human RefSeq mRNA transcripts and 22,389
GENCODE lncRNA transcripts. SVM classifiers were trained using
10-fold cross-validation on the training datasets. The figure indicates
that the computation load rises and the accuracy increases along as
k increases.
We multiplied the k-mer usage frequencies by various
calibration factors (formula 3), which gave more weightage
to those k-mer strings that are longer in length. Intuitively,
k-mer usage frequencies generally decrease with the in-
crease of the size of k-mer strings. For instance, the fre-
quency of nucleotide G is theoretically around 0.25, while
that of GGGGG is about 0.001. However, longer k-mer
strings may contain more information than shorter ones:
several studies indirectly use Hexamer and ANT (k = 6)
usage as features to classify coding from non-coding
RNAs [17,56]. We multiplied usage frequencies of longer
k-mer strings by relatively larger factors for calibration,
hence outweighing longer k-mer strings, and thereby im-
proving the weights of the corresponding features.
The step-lengths of sliding-windows in a previous tool,

CNCI, are fixed at three [17,53]. A single-base indel se-
quencing error in a protein-coding sequence may result in
a false shift in reading frame [57], which can dramatically
affect the performance of CNCI (Figure 1). In contrast,
PLEK uses a sliding-window of size k, where k ranges from
1 to 5, to slide along a nucleotide sequence from its 5′ to
3′ end to count the occurrence number of k-mer strings.
Frameshifts do not exert a strong influence on the calcula-
tion of k-mer usage when using a sliding-window of one-
nucleotide step-length. This is why the results showed that
our approach deals with indel sequencing errors robustly.
This feature was also confirmed by the test on the real
PacBio and 454 datasets (Table 2). On these datasets, the
specificity of PLEK was the highest among these tools.
Moreover, PLEK achieved an optimal balance between
high specificity and high sensitivity (0.946 and 0.942 on
PacBio, 0.955 and 0.925 on 454). PLEK thoroughly out-
performed CNCI. Although CPC produced the highest
sensitivity, it suffered from poor specificity (0.190 on Pac-
Bio, 0.472 on 454). CPC was more likely to misclassify
lncRNAs as mRNAs, with high false-positive rates. There
were large amount of mRNAs (96.3% in PacBio and 98.3%
in 454) and few lncRNAs (3.7% in PacBio and 1.7% in
454) in these datasets, in conjunction with CPC’s high sen-
sitivity, which led to the high accuracy of CPC on the test
data.
Compared with CPC, the sensitivity and specificity of

PLEK is well balanced (Table 2). On the real mouse
datasets including the same number of mRNA and
lncRNA transcripts, PLEK could obtain high PPV and
NPV (Figure 2). However, NPV of PLEK is probably low
on highly imbalanced datasets or organisms with com-
pact genomes. The number of coding RNAs is at least
two orders of magnitude greater than that of non-coding
RNAs on the real PacBio and 454 datasets we used in
this study. In this situation, as most of the transcripts
are coding, the prediction value over the transcripts
called as non-coding is very low. Even quite a small por-
tion, say 1%, of misclassification of mRNAs is likely to

http://galaxy.nbic.nl/
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result in remarkable decrease of NPV (Table 2). PLEK pro-
duces a decision value for each transcript and then labels
it according to this criterion: the cut-off of discriminating
transcripts is 0 by default, those with >0 decision values
are labelled as mRNAs, and <0 as lncRNAs. Generally,
greater absolute decision values indicate greater confi-
dence in the prediction. Therefore, we can apply various
criteria in different conditions to achieve satisfactory per-
formance (high PPV or NPV). Similar criteria were also
used or established in several researches using CPC and
PhyloCSF [49,51,58]. Another method of transcending this
limitation of PLEK is to perform additional analyses, such
as orthology analyses of the ORFs contained in transcripts,
scanning for known protein domains, etc. [45,49,58].
The classifier we currently released on Sourceforge

was built on human training data. Although it obtained
well performance on most vertebrates (Table 1), it might
not be directly suitable to other species with very differ-
ent sequence composition to human, such as Drosophila
melanogaster, Caenorhabditis elegans and Arabidopsis
thaliana. Therefore, we provided a Python script, named
‘PLEKModelling.py’, to assist users to build new classi-
fiers. For the species that have not been well-explored,
no sufficient reliable lncRNA transcripts are now avail-
able to build classifiers in most cases. We encourage
users to use as many reliable transcripts of their relatives
as possible to build classifiers. For instance, we trained a
classifier using Zea mays Ensembl mRNA transcripts
and lncRNA transcripts identified by Li et al. [59], and
this classification model performed well on Arabidopsis
thaliana and Oryza sativa datasets (Additional file 4).
Therefore, PLEK is a valuable alignment-free tool, which

is accurate, robust and fast, to identify lncRNAs in de novo
assembled transcripts without reference genomes.

Conclusions
Long non-coding RNAs are receiving increasing atten-
tion, and distinguishing lncRNAs from mRNAs in de
novo sequencing data without reference genomes repre-
sents a challenge. To solve this problem, we designed an
alignment-free tool, PLEK, which is based on an im-
proved k-mer scheme. The computation of k-mer usage
is different from that used in previous studies [53,55]:
the step-lengths of the sliding-windows are one nucleo-
tide, and the k-mer usage is calibrated according to the
size of k-mer strings. PLEK worked well on human train-
ing data and in a cross-species manner on other verte-
brates using the model built from human training data.
It also performed well on simulated transcripts and real
de novo assembled PacBio and 454 transcriptomes, all of
which include relatively high levels of indel sequencing
errors than data generated by Illumina platforms. PLEK
struck a better balance between high specificity and high
sensitivity than CPC on PacBio and 454 sequencing data.
In addition, PLEK runs at least eightfold faster than previ-
ous available tools, CPC and CNCI. The results demon-
strated that PLEK is particularly suited to transcriptome
data with indel sequencing errors and growing large-scale
transcriptome datasets. Thus, PLEK is a useful tool for
distinguishing protein-coding and non-coding sequences
from high-throughput sequencing data of many species
without reference genomes.

Availability and requirements
Project name: PLEK.
Project home page: https://sourceforge.net/projects/plek/
website.
Operating systems(s): Linux.
Programming language: C, Python.
Other requirements: gcc, g++, Python.
License: GNU Public License version 3 (GPLv3).
Any restrictions to use by non-academics: none.
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