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Background (Section 1)
Genome-wide association studies (GWASs) have identified thousands of genetic vari-
ants associated with human traits or diseases [1–4]. However, the majority of GWAS 
variants are located in non-coding regions of the genome, making it challenging to 
interpret the GWAS associations [5, 6]. In response to this, molecular quantitative trait 
locus (molecular QTL, henceforth “QTL”) analysis has emerged as an important field in 
human genetics, interrogating the relationship between genetic variants and intermedi-
ate, molecular traits and potentially explaining GWAS findings [7, 8].

Based on the type of molecular phenotype studied, QTL analyses can be catego-
rized into gene expression QTL (eQTL) analyses [9, 10], alternative splicing QTL 
(sQTL) analyses [10], three prime untranslated region alternative polyadenylation 

Abstract 

Background:  Estimating and accounting for hidden variables is widely practiced as an 
important step in molecular quantitative trait locus (molecular QTL, henceforth “QTL”) 
analysis for improving the power of QTL identification. However, few benchmark stud-
ies have been performed to evaluate the efficacy of the various methods developed 
for this purpose.

Results:  Here we benchmark popular hidden variable inference methods including 
surrogate variable analysis (SVA), probabilistic estimation of expression residuals (PEER), 
and hidden covariates with prior (HCP) against principal component analysis (PCA)—a 
well-established dimension reduction and factor discovery method—via 362 synthetic 
and 110 real data sets. We show that PCA not only underlies the statistical methodol-
ogy behind the popular methods but is also orders of magnitude faster, better-per-
forming, and much easier to interpret and use.

Conclusions:  To help researchers use PCA in their QTL analysis, we provide an R pack-
age PCAForQTL along with a detailed guide, both of which are freely available at 
https://​github.​com/​heath​erjzh​ou/​PCAFo​rQTL. We believe that using PCA rather than 
SVA, PEER, or HCP will substantially improve and simplify hidden variable inference in 
QTL mapping as well as increase the transparency and reproducibility of QTL research.

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Zhou et al. Genome Biology          (2022) 23:210  
https://doi.org/10.1186/s13059-022-02761-4

Genome Biology

*Correspondence:   
lijy03@g.ucla.edu

1 Department of Statistics, 
University of California, Los 
Angeles, Los Angeles, CA 90095, 
USA
2 Institute of Systems 
and Physical Biology, 
Shenzhen Bay Laboratory, 
Shenzhen 518055, China
3 Division of Computational 
Biomedicine, Department 
of Biological Chemistry, 
School of Medicine, University 
of California, Irvine, Irvine, CA 
92697, USA
4 Department of Human 
Genetics, University of California, 
Los Angeles, Los Angeles, CA 
90095, USA
5 Department of Computational 
Medicine, University of California, 
Los Angeles, Los Angeles, CA 
90095, USA
6 Department of Biostatistics, 
University of California, Los 
Angeles, Los Angeles, CA 90095, 
USA

http://orcid.org/0000-0001-9869-4896
http://orcid.org/0000-0003-3924-2544
http://orcid.org/0000-0003-3538-6268
http://orcid.org/0000-0001-9931-5990
http://orcid.org/0000-0002-9288-5648
https://github.com/heatherjzhou/PCAForQTL
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02761-4&domain=pdf


Page 2 of 17Zhou et al. Genome Biology          (2022) 23:210 

QTL (3′aQTL) analyses [11], and so on [7, 8]. Among these categories, eQTL analy-
ses, which investigate the association between genetic variants and gene expression 
levels, are the most common. To date, most (single-tissue) QTL studies are carried 
out using regression-based methods such as Matrix eQTL [12] and FastQTL [13].

In QTL analysis, a major challenge is that measurements of gene expression lev-
els and other molecular phenotypes can be affected by a number of technical or bio-
logical variables other than the genetic variants, such as batch, sex, and age. If these 
variables are known, then they can be directly included in the QTL pipeline as covari-
ates. However, many of these variables may be unknown or unmeasured. Therefore, 
it has become standard practice to first infer the hidden variables and then include 
the inferred variables as covariates or otherwise account for them in the QTL pipe-
line  [9–11, 14–23] (see Section 5.3 for a numerical example). This type of approach 
has been shown to both improve the power of QTL identification in simulation set-
tings [24] and empirically increase the number of discoveries in QTL studies [9, 10, 
16, 21–23].

Surrogate variable analysis (SVA) [25, 26] is one of the first popular hidden variable 
inference methods for large-scale genomic analysis. Although initially proposed as a hid-
den variable inference method for both QTL mapping and differential expression (DE) 
analysis, currently SVA is primarily used in DE and similar analyses as opposed to QTL 
mapping [27–30]. We believe this is partly because the SVA package [31] is difficult to 
apply in QTL settings in that it requires the user to input at least one variable of inter-
est and using too many variables of interest causes the package to fail (Fig. 1; Additional 
file  1: Section  S4); while there are usually at most a few variables of interest in a DE 
study, there are often millions of single nucleotide polymorphisms (SNPs; variables of 
interest) in a QTL study. Historically, there have been two versions of the SVA method: 

Fig. 1  Overall comparison of PCA, SVA, PEER, and HCP and summary of their inputs and outputs. In this 
work, we use K to denote the number of inferred covariates, which are called PCs, SVs, PEER factors, and HCPs 
in PCA, SVA, PEER, and HCP, respectively. a PCA is faster, better-performing, and much easier to interpret 
and use. For speed and performance comparison, see Section 2.1 (and to a lesser extent, Sections 2.2 and 
2.3). For interpretability and ease of choosing K, see Sections 2.4 and 2.5, respectively. In terms of software 
usability, SVA is difficult to apply in QTL settings (Additional file 1: Section S4), PEER is difficult to install, and 
HCP is poorly documented. In addition, PEER suffers from the disadvantage that there is no consensus in the 
literature on how it should be used (Additional file 1: Section S4). b Inputs (green boxes) and outputs (brown 
boxes) of the four methods. The fully processed molecular phenotype matrix (after the effects of the known 
covariates are regressed out in the case of PCA_resid; Table 1) is a required input for all four methods and is 
thus omitted in the diagram. Dashed arrows indicate optional inputs. PEER outputs both inferred covariates 
and residuals of the inputted molecular phenotype matrix [32]



Page 3 of 17Zhou et al. Genome Biology          (2022) 23:210 	

two-step SVA [25] and iteratively reweighted SVA (IRW-SVA) [26]; the latter supersedes 
the former. Therefore, we focus on IRW-SVA in this work.

Probabilistic estimation of expression residuals (PEER) [24, 32] is currently the most 
popular hidden variable inference method for QTL mapping by far. It is used in the 
Genotype-Tissue Expression (GTEx) project [9, 10] and many other high-impact stud-
ies [11, 14–21]. The PEER method has two main perceived advantages: (1) it can take 
known covariates into account when estimating the hidden covariates, and (2) its per-
formance does not deteriorate as the number of inferred covariates increases (i.e., it does 
not “overfit”). One drawback of PEER, though, is that there is no consensus in the litera-
ture on how it should be used. For example, when there are known covariates available, 
PEER can be run with or without the known covariates—Stegle et al. [32] do not give an 
explicit recommendation as to which approach should be used, and both approaches are 
used in practice (e.g., [9, 10] vs. [11, 16]). Further, PEER outputs both inferred covariates 
and residuals of the inputted molecular phenotypes (Fig. 1), so the user needs to decide 
which set of outputs to use (Additional file 1: Section S4; we refer to the approach using 
the inferred covariates as the “factor approach” and the approach using the residuals as 
the “residual approach”). Such “flexibility” of PEER could be considered a benefit, but 
we believe it not only leads to confusion for practitioners who try to use the method but 
also reduces the transparency and reproducibility of published QTL research.

Hidden covariates with prior (HCP) [33] is another popular hidden variable infer-
ence method for QTL mapping. Though less popular than PEER, it has also been used in 
some high-impact studies [22, 23]. To determine which method is the best and whether 
PEER indeed has the perceived advantages, we thoroughly evaluate SVA, PEER, and 
HCP for the first time in the literature. Given that principal component analysis (PCA) 
[34–38] underlies the methodology behind each of these methods (Section 2.4) and has 
indeed been used for the same purpose [39, 40], we also include PCA in our evalua-
tion. Through simulation studies (Section 2.1) and real data analysis (Sections 2.2, 2.3 
and 2.5), we show that PCA is orders of magnitude faster, better-performing, and much 
easier to interpret and use (Fig. 1).

Results (Section 2)
Comprehensive simulation studies show that PCA is faster and better‑performing 

(Section 2.1)

We compare the runtime and performance of 15 methods (Table  1), including Ideal 
(assuming the hidden covariates are known), Unadjusted (not estimating or account-
ing for the hidden covariates), and 13 variants of PCA, SVA, PEER, and HCP, based on 
two simulation studies. In the first simulation study (Simulation Design  1; Additional 
file 1: Section S2), we follow the data simulation in Stegle et al. [24]—the original PEER 
publication—while addressing its data analysis and overall design limitations (Additional 
file 1: Section S1). In the second simulation study (Simulation Design 2; Additional file 1: 
Section S3), we further address the data simulation limitations of Stegle et al. [24] (Addi-
tional file 1: Section S1) by simulating the data in a more realistic and comprehensive 
way, roughly following Wang et  al. [41]—the SuSiE publication—but introducing the 
existence of known and hidden covariates. A summary of the main differences between 
the two simulation designs is provided in Additional file 1: Table S1. The key difference 
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is that in Simulation Design 1, the gene expression levels are primarily driven by trans-
regulatory effects rather than cis-regulatory effects or covariate effects (Additional file 1: 
Table S2), inconsistent with the common belief that trans-regulatory effects are gener-
ally weaker than cis-regulatory effects. In contrast, in Simulation Design 2, we focus on 
cis-QTL detection and carefully control the genotype effects and covariate effects in 176 
experiments with two replicates per experiment (Additional file 1: Section S3).

The details of the 15 methods are described in Additional file 1: Section S4, and the 
evaluation metrics are described in Section 5.1. For convenience, we refer to the simu-
lated molecular phenotypes as gene expression levels throughout our simulation studies; 
however, they can be interpreted as any type of molecular phenotype after data preproc-
essing and transformation, e.g., alternative splicing phenotypes and alternative polyade-
nylation phenotypes (Additional file 1: Table S3).

The results from our simulation studies are summarized in Figs.  2 and 3 and Addi-
tional file 1: Figs. S1, S3, and S4. We find that PCA and HCP are orders of magnitude 

Table 1  Summary of the 15 methods we compare based on simulation studies, including Ideal, 
Unadjusted, and 13 variants of PCA, SVA, PEER, and HCP (Additional file  1: Section  S4). Out of the 
15 methods, we select a few representative methods (Section  5.2) for detailed comparison in 
Simulation Design 2, the abbreviations of which are shown in (D). Y denotes the gene expression 
matrix, Yresid denotes the residual matrix outputted by PEER, X1 denotes the known covariate matrix, 
and X2 denotes the hidden covariate matrix. In Line 3, PCA is run on Y directly; in Line 4, PCA is run 
after the effects of X1 are regressed out from Y (Additional file 1: Section S4). The addition signs in 
(C) denote column concatenation. “filtered” means that we filter out the known covariates that are 
captured well by the inferred covariates (unadjusted R2 ≥ 0.9 ); this filtering is only needed when the 
hidden variable inference method in (A) does not explicitly take the known covariates into account

Inference method Method Response, covariates Method abbr. (if 
selected)

(A) (B) (C) (D)

1 Ideal Y, X1 + X2 Ideal

2 Unadjusted Y, X1 Unadjusted

3 PCA_direct PCA_direct_screeK Y, X1 (filtered) + top PCs PCA

4 PCA_resid PCA_resid_screeK Y, X1 + top PCs

5 SVA_trueK SVA_trueK Y, X1 + SVs

6 SVA_BE SVA_BE Y, X1 + SVs SVA

7 PEER_noCov_trueK PEER_noCov_trueK_fac-
tors

Y, X1 (filtered) + PEER 
factors

8 PEER_noCov_trueK PEER_noCov_trueK_
residuals

Yresid , NULL

9 PEER_noCov_largeK PEER_noCov_largeK_fac-
tors

Y, X1 (filtered) + PEER 
factors

10 PEER_noCov_largeK PEER_noCov_largeK_
residuals

Yresid , NULL

11 PEER_withCov_trueK PEER_withCov_trueK_
factors

Y, X1 + PEER factors PEER, true K, factors

12 PEER_withCov_trueK PEER_withCov_trueK_
residuals

Yresid , NULL

13 PEER_withCov_largeK PEER_withCov_largeK_
factors

Y, X1 + PEER factors

14 PEER_withCov_largeK PEER_withCov_largeK_
residuals

Yresid , NULL PEER, large K, residuals

15 HCP_trueK HCP_trueK Y, X1 + HCPs HCP
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faster than SVA, which in turn is orders of magnitude faster than PEER, and that PCA 
outperforms SVA, PEER, and HCP in terms of the area under the precision-recall curve 
(AUPRC) of the QTL result (Figs. 2 and 3). On a dataset-by-dataset basis, PCA outper-
forms the other methods in terms of AUPRC in 11% to 88% of the simulated data sets 
and underperforms them in close to 0% of the simulated data sets in Simulation Design 2 
(Additional file  1: Fig.  S3d). In addition, PCA has the highest average concordance 
scores, a metric for the concordance between the true hidden covariates and the inferred 

Fig. 2  Runtime and AUPRC comparison of all 15 methods (Table 1) in Simulation Design 1 and Simulation 
Design 2. a, c PCA and HCP each takes within a few seconds, SVA takes up to a few minutes, and PEER takes 
up to about 1000 min, equivalent to about 17 h. In particular, PEER takes longer to run when K is larger (dark 
orange vs. light orange boxes). b, d PCA outperforms SVA, PEER, and HCP in terms of AUPRC. The height 
of each bar represents the average across simulated data sets. For ease of visualization, in d, the y-axis 
displays AUPRC− AUPRCUnadjusted /AUPRCUnadjusted . In this work, error bars indicate standard errors unless 
otherwise specified (whiskers in box plots are not considered error bars)

Fig. 3  Detailed runtime and AUPRC comparison of the selected representative methods (Table 1) in Simulation 
Design 2. Each point represents the average across simulated data sets. The x-axes are: number of effect SNPs 
per gene (numOfEffectSNPs), number of simulated covariates (numOfCovariates; including known 
and hidden covariates), proportion of variance explained by genotype (PVEGenotype), and proportion 
of variance explained by covariates (PVECovariates) (Additional file 1: Section S3). a PCA and HCP are 
orders of magnitude faster than SVA, which in turn is orders of magnitude faster than PEER. b PCA outperforms 
SVA, PEER, and HCP in terms of AUPRC across different simulation settings. For ease of visualization, the y-axis 
displays (AUPRC− AUPRCIdeal)/AUPRCIdeal . Consistent with our expectation, the performance gap between 
Unadjusted and Ideal is the largest (and thus accounting for hidden covariates is the most important) when 
numOfCovariates is small, when PVEGenotype is small, and when PVECovariates is large
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covariates (Section 5.1; Additional file 1: Figs. S1 and S4), which explains why PCA per-
forms the best in terms of AUPRC.

To contrast the results in Stegle et  al. [24], we also compare the powers of the dif-
ferent methods in Simulation Design 1 (Additional file 1: Fig. S1). We find that PCA is 
more powerful than SVA, PEER, and HCP. Notably, SVA and PEER have very low power 
in identifying trans-QTL relations—an especially unfavorable result for SVA and PEER, 
considering that the gene expression levels are primarily driven by trans-regulatory 
effects in Simulation Design 1 (Additional file 1: Table S2).

Incidentally, Fig.  2 and Additional file  1: Fig.  S3 also provide us with the following 
insights into the different ways of using PEER (Additional file 1: Section S4). First, run-
ning PEER with the known covariates has no advantage over running PEER without the 
known covariates in terms of AUPRC, given the choice of K (the number of inferred 
covariates) and the choice between the factor approach and the residual approach. In 
fact, running PEER with the known covariates significantly increases the runtime of 
PEER in real data (Section 2.3). Second, contrary to claims in Stegle et al. [24, 32], the 
performance of PEER does deteriorate as the number of PEER factors increases. The 
only exception is when the residual approach is used in Simulation Design  1 (Fig.  2). 
But given that Simulation Design 2 is more realistic than Simulation Design 1 and that 
the factor approach is more popular than the residual approach [9–11, 17–20], the take-
home message should be that in general, the performance of PEER is worse when we 
use a large K rather than the true K. Third, whether the factor approach or the residual 
approach performs better depends on the choice of K. When we use the true K, the fac-
tor approach performs better, but when we use a large K, the residual approach performs 
better. All in all, PCA outperforms all different ways of using PEER in both of our simu-
lation studies (Fig. 2).

PEER factors sometimes fail to capture important variance components of the molecular 

phenotype data (Section 2.2)

For our real data analysis, we examine the most recent GTEx eQTL and sQTL data [10] 
(Sections 2.3 and 2.5) and the 3′aQTL data prepared by Li et al. [11] from GTEx RNA-
seq reads [9] (Section 2.2). While the exact data analysis pipelines are different (Addi-
tional file 1: Table S3), these studies all choose PEER as their hidden variable inference 
method.

Unlike PCs, which are always uncorrelated (Additional file 1: Section S5.1), PEER fac-
tors are not guaranteed to be uncorrelated. Here we show through the above-mentioned 
3′aQTL data that PEER factors can be highly correlated with each other (to the extent 
that many or all of them are practically identical) and thus fail to capture important vari-
ance components of the molecular phenotype data.

Given a post-imputation alternative polyadenylation phenotype matrix (each entry is 
between zero and one, representing a proportion), Li et al. [11] run PEER without fur-
ther data transformation using the number of PEER factors chosen by GTEx [9] (Addi-
tional file 1: Table S3). To assess the impact of data transformation on the PEER factors, 
we also run PEER after transforming the data in three ways: (1) center and scale (to 
unit variance) each feature, (2) apply inverse normal transform (INT) [42] to each fea-
ture (“INT within feature”), and (3) apply INT to each sample (“INT within sample”). 
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Among these methods, GTEx [9, 10] uses “INT within feature” for its eQTL data and 
“INT within sample” for its sQTL data (Additional file  1: Table  S3). To quantify how 
many “distinct” or “nonrepetitive” PEER factors there are, given a set of PEER factors, 
we group them into clusters such that in each cluster, the correlation between any two 
PEER factors is above a pre-defined threshold (0.99, 0.9, or 0.8) in absolute value (this is 
done via hierarchical clustering [43] with complete linkage and the distance defined as 
one minus the absolute value of the correlation). Therefore, the number of PEER factor 
clusters can be interpreted as the number of distinct or nonrepetitive PEER factors.

Our results show that in many cases, the number of distinct PEER factors is consider-
ably smaller than the number of PEER factors requested (Fig.  4), and when this issue 
is severe (e.g., “No transformation” and “INT within sample”), the PEER factors fail to 
capture important variance components of the molecular phenotype data (Additional 
file 1: Fig. S5). Since the numbers of discoveries increase substantially with the numbers 
of PEER factors in GTEx’s eQTL analyses [9, 10], where the PEER factors are essentially 
identical to PCs (Section 2.3), it is possible that replacing the nearly-all-identical PEER 
factors with appropriate numbers of PCs in Li et al. [11]’s 3′aQTL analysis can lead to 
more discoveries. This is a potential direction for a future study.

Fig. 4  In the 3′aQTL data prepared by Li et al. [11] from GTEx RNA-seq reads [9], PEER factors can be highly 
correlated with each other to the extent that many or all of them are practically identical. a Correlation 
heatmaps of PEER factors for Brain_Hippocampus. For ease of visualization, the PEER factors are reordered 
based on results from hierarchical clustering (Section 2.2) in each heatmap. b The x-axis shows 12 randomly 
selected tissue types with increasing sample sizes. The y-axis shows the number of PEER factors requested 
(orange line) or the number of PEER factor clusters. Given a set of PEER factors, we group them into clusters 
such that in each cluster, the correlation between any two PEER factors is above 0.99, 0.9, or 0.8 in absolute 
value (Section 2.2). Therefore, the number of PEER factor clusters can be interpreted as the number of distinct 
or nonrepetitive PEER factors. We find that in many cases, the number of distinct PEER factors is considerably 
smaller than the number of PEER factors requested, and when this issue is severe (e.g., “No transformation” 
and “INT within sample”), the PEER factors fail to capture important variance components of the molecular 
phenotype data (Additional file 1: Fig. S5)
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PEER factors are almost identical to PCs but take three orders of magnitude longer 

to compute in GTEx eQTL and sQTL data (Section 2.3)

We report the surprising finding that in both GTEx eQTL and sQTL data [10], the 
PEER factors obtained by GTEx and used in its QTL analyses are almost identical to 
PCs. Specifically, given a fully processed molecular phenotype matrix, there is almost 
always a near-perfect one-to-one correspondence between the PEER factors and the top 
PCs (Fig. 5). This means that after the variational Bayesian inference in PEER initializes 
with PCs [24], it does not update the PCs much beyond scaling them (see Section 2.4 for 
an explanation). Therefore, it is no surprise that replacing the PEER factors with PCs in 

Fig. 5  PEER factors are almost identical to PCs in GTEx eQTL and sQTL data [10]. a The y-axis shows all 49 
tissue types with GTEx QTL analyses ordered by sample size (from small to large). Given a fully processed 
molecular phenotype matrix, we summarize the correlation matrix (in absolute value) between the PEER 
factors obtained and used by GTEx and the top PCs into two numbers: the average of the diagonal entries 
and the average of the off-diagonal entries. With the exception of Kidney - Cortex sQTL data, the diagonal 
entries have averages close to one, and the off-diagonal entries have averages close to zero (both have 
minimal standard errors). b A typical correlation heatmap showing near-perfect one-to-one correspondence 
between the PEER factors and the top PCs. c In Kidney - Cortex sQTL data, the PEER factors and the top 
PCs do not have a perfect one-to-one correspondence. The reason is because the PEER factors are highly 
correlated with each other (d), while PCs are always uncorrelated (Additional file 1: Section S5.1). The 
numbers in parentheses represent sample sizes. To produce this figure, we reorder the PEER factors based 
on the PCs (Additional file 1: Algorithm S1), although in almost all cases, this reordering does not change the 
original ordering of the PEER factors because PEER initializes with PCs [24]
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GTEx’s FastQTL pipeline [10, 13] does not change the QTL results much (Additional 
file 1: Figs. S6 and S7) because in linear regressions (the basis of both Matrix eQTL [12] 
and FastQTL [13]), scaling and/or shifting the predictors does not change the p-values 
of t-tests for non-intercept terms (neither does scaling and/or shifting the response, for 
that matter).

However, PEER is at least three orders of magnitude slower than PCA (Additional 
file 1: Fig. S6). For a given expression matrix, running PEER without the known covari-
ates (GTEx’s approach) takes up to about 32 hours, while running PCA (with centering 
and scaling; our approach) takes no more than a minute.

To draw a connection between our simulation results and real data results, we analyze 
them jointly in Additional file 1: Fig. S8 and make the following two key observations. 
First, we find that in the simulation studies, PCA almost always outperforms PEER in 
terms of AUPRC (confirming our results in Section 2.1), and the percentage of QTL dis-
coveries shared between PEER and PCA is a good predictor of the relative performance 
of PEER versus PCA—the higher the percentage of QTL discoveries shared, the smaller 
the performance gap between PEER and PCA. Second, the percentages of QTL discov-
eries shared between the two methods in GTEx eQTL data [10] fall comfortably within 
the range of percentage of QTL discoveries shared in Simulation Design 2. These two 
observations together suggest that PCA likely outperforms PEER in GTEx eQTL data 
[10] even though the results largely overlap.

PCA, SVA, PEER, and HCP are closely related statistical methods (Section 2.4)

We report that PCA, SVA, PEER, and HCP are closely related statistical methods despite 
their apparent dissimilarities. In particular, the methodology behind SVA, PEER, and 
HCP can all be traced back to PCA (Fig. 6). We have previously reviewed these meth-
ods in detail in Zhou [44]. Here we aim to provide a brief summary and highlight their 
connections.

PCA [34–38] is traditionally derived by optimizing some objective functions (either 
maximum variance or minimum reconstruction error; Additional file 1: Section S5.1), 
but more recently, it is shown that PCA can be derived as a limiting case of probabilis-
tic principal component analysis (PPCA) [45], which in turn is a special case of factor 
analysis [35, 46]—a dimension reduction method commonly used in psychology and the 
social sciences that is based on a frequentist probabilistic model.

PEER [24, 32] is based on a Bayesian probabilistic model and can be considered a 
Bayesian version of factor analysis (with the not-very-useful ability to explicitly model 
the known covariates; see Section 2.1 for why we do not find this ability useful). Infer-
ence is performed using variational Bayes and initialized with the PCA solution [24]. 
Given that PCA underlies the PEER model (Fig. 6) and PEER initializes with PCs, it is 
not surprising that PEER factors are almost identical to PCs in GTEx eQTL and sQTL 
data [10] (Section 2.3).

SVA [25, 26] is purely algorithmic and is not defined based on a probabilistic model 
or objective function. The steps of the SVA algorithm are complicated [44], but in a nut-
shell, SVA iterates between two steps: (1) reweight the features of the molecular pheno-
type matrix, and (2) perform PCA on the resulting matrix (with centering but without 
scaling) [26].
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Lastly, HCP [33] is defined by minimizing a loss function that is very similar to the 
minimum-reconstruction-error loss function of PCA (Additional file  1: Section  S5.2). 
The optimization is done through coordinate descent with one deterministic initializa-
tion (see source code of the HCP R package [33]). In short, SVA, PEER, and HCP can all 
be considered extensions or more complex versions of PCA, though we show that the 
complexity is a burden rather than a benefit (Fig. 1).

PCA provides insight into the choice of K (Section 2.5)

Choosing K, the number of inferred covariates in the context of hidden variable infer-
ence or the number of dimensions or clusters in more general contexts, is always a dif-
ficult task. Nonetheless, based on the proportion of variance explained (PVE) by each 
PC (Additional file 1: Section S5.1), PCA offers convenient ways of choosing K such as 
the elbow method and the Buja and Eyuboglu (BE) algorithm [47] (more details below). 
Since SVA is heavily based on PCA (Section 2.4), it is able to adapt and make use of the 
BE algorithm. In contrast, PEER and HCP do not offer easy ways of choosing K; for lack 
of a better method, users of PEER and HCP often choose K by maximizing the num-
ber of discoveries [9, 10, 16, 21–23]. Not only is this approach of choosing K extremely 
computationally expensive and theoretically questionable, here we also show from the 
perspective of PCA that it may yield inappropriate choices of K.

Recall from Section 2.3 that PEER factors are almost identical to PCs in GTEx eQTL 
data [10] (the number of PEER factors is chosen by maximizing the number of dis-
covered cis-eGenes for each pre-defined sample size bin; Additional file 1: Table S3). 
Therefore, for each tissue type, we compare the number of PEER factors selected by 

Fig. 6  PCA, SVA, PEER, and HCP are closely related statistical methods despite their apparent dissimilarities. 
In particular, the methodology behind SVA, PEER, and HCP can all be traced back to PCA. PCA [34–38] 
is traditionally derived by optimizing some objective functions (either maximum variance or minimum 
reconstruction error; Additional file 1: Section S5.1), but more recently, it is shown that PCA can be derived as a 
limiting case of probabilistic principal component analysis (PPCA) [45], which in turn is a special case of factor 
analysis [35, 46]. PEER [24, 32] is based on a Bayesian probabilistic model and can be considered a Bayesian 
version of factor analysis. SVA [25, 26] is purely algorithmic and is not defined based on a probabilistic model or 
objective function. The steps of the SVA algorithm are complicated [44], but in a nutshell, SVA iterates between 
two steps: (1) reweight the features of the molecular phenotype matrix, and (2) perform PCA on the resulting 
matrix (with centering but without scaling) [26]. Lastly, HCP [33] is defined by minimizing a loss function that is 
very similar to the minimum-reconstruction-error loss function of PCA (Additional file 1: Section S5.2)
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GTEx to (1) the number of PCs chosen via an automatic elbow detection method 
(Additional file 1: Algorithm S2) and (2) the number of PCs chosen via the BE algo-
rithm (Additional file 1: Algorithm S3; the default parameters are used). The BE algo-
rithm is a permutation-based approach for choosing K in PCA. Intuitively, it retains 
PCs that explain more variance in the data than by random chance and discards those 
that do not. Hence, based on the statistical interpretation of the BE algorithm and the 
scree plots (examples shown in Fig. 7), we believe that the number of PCs chosen via 
BE should be considered an upper bound of the reasonable number of PCs to choose 
in GTEx eQTL data [10].

Our results show that the number of PEER factors selected by GTEx is almost 
always greater than the number of PCs chosen via BE, which in turn is almost always 
greater than the number of PCs chosen via elbow (Fig. 7). In particular, the number 
of PEER factors selected by GTEx far exceeds the number of PCs chosen via BE for 
many tissue types with sample size above 350, suggesting that the number of PEER 

Fig. 7  PCA provides insight into the choice of K. Recall from Section 2.3 that PEER factors are almost identical 
to PCs in GTEx eQTL data [10]. Therefore, for each tissue type, we compare the number of PEER factors 
selected by GTEx to (1) the number of PCs chosen via an automatic elbow detection method (Additional 
file 1: Algorithm S2) and (2) the number of PCs chosen via the BE algorithm (Additional file 1: Algorithm S3; 
the default parameters are used). a Example scree plots. b This scatter plot contains 49 dots of each color, 
corresponding to the 49 tissue types with GTEx eQTL analyses. The number of PEER factors selected by GTEx 
far exceeds the number of PCs chosen via BE for many tissue types with sample size above 350 (dashed 
line), suggesting that the number of PEER factors selected by GTEx may be too large. c For the eight tissue 
types with the largest absolute differences between the number of PEER factors chosen by GTEx and the 
number of PCs chosen via BE (all eight tissue types have sample size above 350), we replace the PEER factors 
with smaller numbers of PCs in GTEx’s FastQTL pipeline [10, 13] and find that we can reduce the number of 
inferred covariates to between 20% ( 12/60 = 20% , Colon - Transverse) and 40% ( 22/60 ≈ 36.67% , Esophagus 
- Mucosa) of the number of PEER factors selected by GTEx without significantly reducing the number of 
discovered cis-eGenes
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factors selected by GTEx may be too large. This hypothesis is further supported by 
the fact that we can reduce the number of inferred covariates to between 20% and 
40% of the number of PEER factors selected by GTEx without significantly reducing 
the number of discovered cis-eGenes (Fig. 7).

Discussion (Section 3)
Hidden variable inference is widely practiced as an important step in QTL mapping for 
improving the power of QTL identification. Popular hidden variable inference methods 
include SVA, PEER, and HCP. In this work, we show that PCA not only underlies the 
statistical methodology behind the popular methods (Section 2.4) but is also orders of 
magnitude faster, better-performing, and much easier to interpret and use (Fig. 1; relat-
edly, Malik and Michoel [48] have pointed out issues with the optimization algorithm 
used in PANAMA [49]—a variant of PEER, and the computational efficiency of PCA 
has been reported in other settings, including genomic selection [50]). Our conclusions 
are consistent with those from Cuomo et  al. [51], who conclude that PCA is superior 
to alternative hidden variable inference methods for improving the power of single-cell 
eQTL analysis.

On the simulation front, we compare the runtime and performance of PCA, SVA, 
PEER, and HCP via two simulation studies (Section 2.1). In the first simulation study, 
we follow the data simulation in Stegle et al. [24], the original PEER publication, while 
addressing its data analysis and overall design limitations. In the second simulation 
study, we further address the data simulation limitations of Stegle et  al. [24] by simu-
lating the data in a more realistic and comprehensive way. Both simulation studies 
unanimously show that PCA is faster and better-performing. Further, they show that 
running PEER with the known covariates has no advantage over running PEER without 
the known covariates—in fact, running PEER with the known covariates makes PEER 
significantly slower (Additional file  1: Fig.  S6)—and that contrary to claims in Stegle 
et al. [24, 32], the performance of PEER does deteriorate as the number of PEER factors 
increases (Section 2.1). One caveat of our simulation studies, though, is that the geno-
type and covariates all have linear effects on the gene expression levels (consistent with 
Stegle et al. [24] and Wang et al. [41]). But since PCA, SVA, PEER, and HCP are all linear 
methods or assume linearity [44], and so does linear regression, we do not believe our 
conclusions would change qualitatively if we simulated the data in a nonlinear fashion.

On the real data front, we examine the most recent GTEx eQTL and sQTL data [10] 
and the 3′aQTL data prepared by Li et al. [11] from GTEx RNA-seq reads [9]. While the 
exact data analysis pipelines are different (Additional file 1: Table S3), these studies all 
choose PEER as their hidden variable inference method (due to lack of data availability, 
we do not examine more real data sets). Our analysis shows that PEER, the most popu-
lar hidden variable inference method for QTL mapping currently, produces nearly iden-
tical results as PCA at best (Section  2.3), is at least three orders of magnitude slower 
than PCA (Additional file  1: Fig.  S6), and can be full of pitfalls. Specifically, we show 
that in certain cases, PEER factors can be highly correlated with each other and thus 
fail to capture important variance components of the molecular phenotype data, lead-
ing to potential loss of power in QTL identification (Section 2.2). Further, we show from 
the perspective of PCA that choosing the number of PEER factors by maximizing the 
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number of discoveries (a common approach used by practitioners) may yield inappro-
priate choices of K, leading to model overfit and potential loss of power and precision 
(Section 2.5).

Between the two PCA approaches, PCA_direct (running PCA on the fully processed 
molecular phenotype matrix directly and filtering out the known covariates that are 
captured well by the top PCs afterwards) and PCA_resid (running PCA after regressing 
out the effects of the known covariates from the molecular phenotype matrix) (Table 1; 
Additional file 1: Section S4), we recommend PCA_direct because the two approaches 
perform similarly in our simulation studies and PCA_direct is simpler. In addition, 
PCA_direct can better hedge against the possibility that the known covariates are not 
actually important confounders because in PCA_direct, the known covariates do not 
affect the calculation of the PCs. We also advise the users to make sure to center and 
scale their data when running PCA unless they are experts and have a good reason not 
to.

In addition to the benefits discussed so far, using PCA rather than SVA, PEER, or HCP 
has another conceptual benefit. While SVA, PEER, and HCP are hidden variable infer-
ence (i.e., factor discovery) methods, PCA can be interpreted and used as both a dimen-
sion reduction and a factor discovery method. Therefore, PCs of the molecular phenotype 
data need not be considered inferred covariates; instead, they can be considered a 
dimension-reduced version of the molecular phenotype data—by including them as 
covariates, we are controlling for the effect of the overall gene expression profile on the 
expression level of any individual gene (taking expression phenotypes as an example). 
With this perspective, including phenotype PCs as covariates is analogous to including 
genotype PCs as covariates (which is commonly done to correct for population stratifi-
cation [9, 10]). This perspective solves the conundrum that inferred covariates such as 
PEER factors are often difficult to interpret using known technical and biological vari-
ables [52].

Conclusions (Section 4)
To help researchers use PCA in their QTL analysis, we provide an R package PCA-
ForQTL, which implements highly interpretable methods for choosing the number of 
PCs (Additional file 1: Algorithms S2 and S3), a graphing function, and more, along with 
a detailed tutorial. Both resources are freely available at https://​github.​com/​heath​erjzh​
ou/​PCAFo​rQTL [53]. We believe that using PCA rather than SVA, PEER, or HCP will 
substantially improve and simplify hidden variable inference in QTL mapping as well as 
increase the transparency and reproducibility of QTL research.

Methods (Section 5)
Evaluation metrics (Section 5.1)

Given a simulated data  set, we evaluate each of the 15 methods in Table  1 mainly in 
three ways (when applicable): runtime, AUPRC, and adjusted R2 measures (including 
adjusted R2 , reverse adjusted R2 , and concordance score).

First, we record the runtime of the hidden variable inference step (Additional file 1: 
Section S4; not applicable for Ideal and Unadjusted).

https://github.com/heatherjzhou/PCAForQTL
https://github.com/heatherjzhou/PCAForQTL
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Second, we calculate the area under the precision-recall curve (AUPRC) of the QTL 
result. We use AUPRC rather than the area under the receiver operating characteris-
tic curve (AUROC) because AUPRC is more appropriate for data sets with imbalanced 
classes (there are far more negatives than positives in our simulated data  sets and in 
QTL settings in general). Since AUPRC measures the trade-off between the true posi-
tive rate (i.e., power) and the false discovery rate (i.e., one minus precision), it is a more 
comprehensive metric than power. However, to contrast the results in Stegle et al. [24], 
we also compare the powers of the different methods in Simulation Design 1.

Third, for each simulated data set, each method except Ideal and Unadjusted gets an 
adjusted R2 score (short as “adjusted R2”), a reverse adjusted R2 score (short as “reverse 
adjusted R2”), and a concordance score. The adjusted R2 score summarizes how well the 
true hidden covariates can be captured by the inferred covariates; the reverse adjusted 
R2 score summarizes how well the inferred covariates can be captured by the true hid-
den covariates (a low score indicates that the inferred covariates are invalid or “mean-
ingless”); lastly, the concordance score is the average of the previous two scores and 
thus measures the concordance between the true hidden covariates and the inferred 
covariates. Specifically, given m true hidden covariates and n inferred covariates, first, 
we calculate m adjusted R2 ’s (regressing each true hidden covariate against the inferred 
covariates) and n reverse adjusted R2 ’s (regressing each inferred covariate against the 
true hidden covariates); then, we average the m adjusted R2 ’s to obtain the adjusted R2 
score and average the n reverse adjusted R2 ’s to obtain the reverse adjusted R2 score; 
finally, we define the concordance score as the average of the adjusted R2 score and the 
reverse adjusted R2 score.

Selection of representative methods for detailed comparison (Section 5.2)

Here we describe how we select a few representative methods from the 15 methods for 
detailed comparison in Simulation Design 2 (Table 1). From Fig. 2d and Additional file 1: 
Fig. S3, we see that the two PCA methods perform almost identically, so for simplicity, 
we select PCA_direct_screeK. The two SVA methods perform almost identically as well, 
so we select SVA_BE. For PEER, whether the known covariates are inputted when PEER 
is run has little effect on the AUPRC. Further, we observe that when we use the true 
K, the factor approach outperforms the residual approach, but when we use a large K, 
the residual approach outperforms the factor approach. Therefore, we select PEER_with-
Cov_trueK_factors and PEER_withCov_largeK_residuals as the representative PEER 
methods. In addition, Ideal, Unadjusted, and HCP_trueK are selected.

A numerical example (Section 5.3)

Here we provide a simple numerical example of QTL analysis with hidden variable infer-
ence by summarizing the setup of GTEx’s cis-eQTL analysis for Colon - Transverse [10].

Let Y denote the n× p fully processed gene expression matrix with n = 368 samples 
and p = 25,379 genes. Let X1 denotes the n× K1 known covariate matrix with K1 = 8 
known covariates, which include the top five genotype PCs, WGS sequencing platform 
(HiSeq 2000 or HiSeq X), WGS library construction protocol (PCR-based or PCR-free), 
and donor sex. Let Xinferred denote the n× K  inferred covariate matrix with K = 60 
PEER factors, which are obtained by running PEER on Y (Additional file 1: Table S3). 
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For gene j, j = 1, · · · , p , the relevant genotype data is stored (conceptually speaking) in 
Sj , the n× qj genotype matrix, where each column of Sj corresponds to a local common 
SNP for gene j, and qj is typically under 15,000.

Given these input data, the nominal pass (the first step) of FastQTL [13], or equiva-
lently, Matrix eQTL [12], performs a linear regression for each gene and each of its 
local common SNPs. Specifically, for j = 1, · · · , p , l = 1 · · · , qj , the linear regression 
represented by the following R lm() formula is run:

(where Y [ , j] denotes the jth column of Y, and Sj[ , l] denotes the lth column of Sj ), 
and the p-value for the null hypothesis that the coefficient corresponding to Sj[ , l] is 
zero (given the covariates) is retained. The top five genotype PCs in X1 are included in 
the analysis to correct for population stratification [9, 10] and are typically considered 
known covariates (see Section 3).
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