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Abstract. Most programming languages provide abstractions for non-local con-
trol flow and access to the stack by using continuations, coroutines, or generators.
However, their unrestricted use breaks the local reasoning capability of a pro-
grammer. Gradual typing exacerbates this problem because typed and untyped
code co-exist. We present a contract system capable of protecting code from con-
trol flow and stack manipulations by unknown components. We use these con-
tracts to support a gradual type system, and we prove that the resulting system
cannot blame typed components for errors.

1 Ubiquitous Continuations

Delimited continuations [6, 10, 12, 18, 19, 26, 27] enable the expression of many useful
programming constructs such as coroutines, engines, and exceptions as libraries. Their
expressive power stems from three key operations on the control stack: (1) marking a
stack frame with a prompt; (2) jumping to a marked frame, discarding the context in
between; and (3) re-attaching the slice of the control stack that the jump discarded.
Continuations are not the only operations that manipulate the stack. In particular, con-
tinuation marks [4] provide the ability to (4) annotate a stack frame with data that
can be dynamically accessed and updated from subsequent frames. They are used to
implement features like general stack inspection for debugging, dynamic binding, and
aspect-oriented programming as libraries [4, 22, 23].

Many dynamically-typed languages support delimited continuations and related con-
trol operators such as coroutines or generators [15, 20], and some also support contin-
uation marks [5, 15]. Their lack of static typing, however, implies that a programmer
could easily misuse manipulations of the stack to jump to the wrong place or anno-
tate a frame with the wrong kind of data. Gradual typing addresses just these kinds
of problems. Gradually typed languages allow programmers to type parts of their pro-
grams statically but leave other parts untyped. Even better, they provide strong dynamic
guarantees about the safety of the combination of typed and untyped code [24, 32]. In
particular, a gradually typed language does not allow untyped code to cause a run-time
violation of the type invariants in the typed code.

Unfortunately, naively combining delimited continuations, continuation marks, and
gradual typing fails to maintain the benefits of gradual typing. The numerous type sys-
tems proposed for delimited continuations [2, 6, 11, 18, 20, 21] can prevent an ill-typed
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re-attachment of a continuation or an ill-typed continuation jump. However, these type
systems alone are not sufficient for gradual typing, because of the need for dynamic
enforcement. Ordinarily, gradual type systems dynamically protect a typed component
from its untyped context with a contract [14] that monitors the flow of values across
the boundary [31]. Continuations, however, allow an untyped component to bypass the
contract protection at the component boundary by jumping over the contract. After the
jump, the untyped code could arrive in the middle of a typed component on the con-
trol stack and deliver an ill-typed value. Similarly, a continuation mark allows untyped
code to update a stack annotation in typed code with an ill-typed value. In other words,
continuations and continuation marks establish illicit communication channels between
components. For the invariants of the typed language to hold, these channels require
additional protection [9].

In this paper, we equip a gradually typed language with typed delimited control op-
erators and continuation marks while maintaining the soundness of the entire system.
To support this gradual type system, we introduce and formalize control contracts that
mediate continuation jumps between prompts and their clients. We implement them in
the Racket programming language [15] using control chaperones based on Strickland
et al. [28]’s chaperone framework. Control chaperones allow a programmer to redirect
communication between a prompt and a corresponding jump, inserting contract checks
in between. For continuation marks, we offer an analogous pair of continuation mark
key contracts and continuation mark key chaperones.

We also prove a soundness theorem for the combined language using Dimoulas et
al’s complete monitoring [9] technique. The key idea is to split a program into typed
and untyped components via ownership annotations on values. Using these annotations,
we impose a single owner policy which ensures that, at any given point, all of the
values in the program are owned only by the typed or untyped portion of the program.
Components may transfer ownership of a value only through the use of a contract,
guaranteeing that no value changes hands without being checked. We prove that our
contract system is a complete monitor and use this result to show that the gradual type
system is sound.

2 Types and Contracts for Control Operators

To illustrate how delimited continuations and continuation marks cause problems for
gradual typing, we present a series of examples using Sitaram’s % and fcontrol oper-
ators [26]. The following example illustrates a simple use of the % operator to install a
prompt and then a use of fcontrol to jump to that prompt, aborting part of the stack.
The diagram on the right depicts the control flow of the example on the stack:

(+21[D
> (+ 2 (% (+ 1 (fcontrol 7)) (% [] (A (nat con) nat))
(A (nat con) (+ 1 nat))))
10 +11[D

(fcontrol 7)
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The evaluation of this example starts at (fcontrol 7), which immediately discards
the current continuation up to the prompt (i.e., the third frame in the diagram). After
discarding the continuation, fcontrol calls the handler, the A expression argument
to %, with two arguments: the value passed to fcontrol (i.e., 7) and the discarded
continuation reified as a function, i.e., (A (x) (+ 1 x)).In this case, the handler just
increments the first argument by one and returns, ignoring the reified continuation. The
% operator then returns the result of the handler to its context.

The handler in this example is simple, but in general prompt handlers allow the pro-
grammer to specify arbitrary computations. The correspondence between the prompt
handler and fcontrol matches the correspondence between exception handlers and
throwing an exception [26]. In other words, continuation operators like fcontrol gen-
eralize exceptions [18].

One major difference between fcontrol and most exception interfaces is that in-
stead of throwing the continuation away, the handler can also re-install the continuation:

> (% (+ 1 (fcontrol 2)) (% [1 (A (vK) (+Vv(k8)))
AN (vk) (+v (k 8))) +1M

1 (fcontrol 2)
Here the handler calls its second argument, the reified continuation, instead of ignoring
it. Since the continuation is a value, the handler just calls it like any other function. In
fact, the handler could choose to return the continuation or apply it multiple times. The
presence of the reified continuation makes fcontrol a higher-order control operator,
as opposed to exceptions, which usually only provide first-order control

2.1 Types for Delimited Control

To implement a type system for delimited control, we must provide a means to type-
check % and fcontrol. Each handler, however, may provide a different interface to its
corresponding fcontrol. That is, they expect different types of input from a jump. In
order to give a precise type for these handlers, we need to keep different logical uses of
fcontrol separate and type-check them separately

To distinguish prompts with conflicting uses, control operators in the literature of-
ten allow the programmer to annotate prompts with prompt tags [11, 16, 18, 26]. For
example, an implementation of coroutines and an implementation of exceptions might
both install prompts on the stack. However, the stack changes coordinated by these li-
braries are “logically different” [26], even if they use the same operators, and should
not interfere with one another.

Prompt tags also provide a convenient means to type-check separate uses of fcon-
trol [18]. The type of a prompt tag determines the valid types of values that an ap-
plication of fcontrol can send to the corresponding prompt’s handler. The prompt
tag type also specifies the return type of the handler and the prompt’s body. The % and
fcontrol operators can be used with prompt tags to allow fine-grained control over
what prompt is targeted:

! A type and effect system for delimited control [2, 6] could provide more precise types. How-
ever, an effect system would require intrusive run-time monitoring to enforce with contracts.
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(define handler-1 (A (v k) (string-append v "0")))
(define handler-2 (A (v k) (k 1)))

> (% (number->string (% (+ 1 (fcontrol "10" prompt-tag-1))
handler-2 prompt-tag-2))
handler-1 prompt-tag-1)
n 100 n

Since the call to fcontrol uses prompt-tag-1, the jump arrives at the outermost
prompt, which is tagged with prompt-tag-1. The jump triggers handler-1, associ-
ated with the outer prompt. Notably, the jump does not invoke handler-2. It is vital
that the programmer does not use the wrong prompt tag here, because the handlers
expect different types: a string for handler-1 and an integer for handler-2.

Using a type system for prompt tags, we could declare that prompt-tag-1 has the
type (Prompt String (Integer -> String) String). The first two types mean
that the handler expects to receive a string and a function that takes integers and returns
strings. The third type corresponds to the return type of the body and handler. This
matches our example, since fcontrol sends the string "10" and the continuation from
fcontrol to the outer prompt expects an integer and produces a string. Both the body
(using number->string) and the handler clearly produce strings as well.

2.2 Gradual Typing, the Broken Variant

In a language with gradual typing, a typed component may import unknown functions
from an untyped component:

#lang typed/racket
(require/typed [g : Integer -> String] from "untyped.rkt")

(% (string-length (g 2))
(A ([v : Integer] [k : Integer -> Integer])
(+ v (k 8))))

In this example, the typed component imports a function g that is specified to have the
type Integer -> String, which is valid for its use in the prompt expression. The
gradual type system enforces the type for g with the generated contract (-> integer?
string?). It blames the untyped component if its export fails to uphold the contract.
Imports from untyped components and exports to untyped components are always pro-
tected with contracts translated from the corresponding type [31]. The type system pre-
vents the typed component from misapplying the function.

Unfortunately, this naive model of interaction fails in the presence of control opera-
tors, as demonstrated by the following untyped component:

#lang racket
(provide g)
(define (g x) (fcontrol "bad"))
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The use of the fcontrol operator in the body of g immediately transfers control to the
handler function when the typed module invokes g. Since this control transfer bypasses
the contract boundary, the string "bad" is passed to the + operation, which causes a
run-time failure that the type system should have prevented. The failure stems from the
lack of protection on the communication channel between fcontrol and %.

(% [1 (A (vK) (+V (k 8))))

typed
(string-length []) ype
contract: String
(fcontrol “bad”) untyped

Generally speaking, the usual strategy of applying contracts to just the component im-
ports and exports does not adequately protect the typed code from invalid uses of control
operators within untyped code. In particular, the abort-like behavior of fcontrol al-
lows it to directly communicate with the handler in the typed code, without first passing
through a contract check at the component boundary.

With higher-order programming, the illicit communication may also take place using
control operators in the opposite direction, as in the following pair of components:

#lang typed/racket
(provide g)

(define: (g) : Void (fcontrol h))
(define: (h [y : Integer]) : Integer (+ 1 y))

#lang racket
(require g from "typed.rkt")
G+ 1 () (A (v k) (v "bad")))

Here, the typed component exports a function g that uses a control operator to jump to
the prompt, passing its handler a function. The untyped component calls g inside of a
prompt whose handler misapplies the returned function to the string "bad" instead of
an integer. Again, we depict this situation with a diagram:

(% [] (A (v) (v “bad”)))
+11[D

contract: Void
(fcontrol (A (y) (+y 2)))| typed

untyped

This stack illustrates a situation similar to the last diagram except that the typed and
untyped components have swapped roles. Furthermore, notice that the contract on the
stack is Void because the contract system checks the return value of g, because exports
from typed components are wrapped with a contract.

On the surface, this may not seem like a problem; after all, the untyped component
is free to do anything it likes with values since it is not beholden to a type system.
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Unfortunately, fcontrol has smuggled the function h across the contract boundary.
Since h originates from typed code, applying it should not cause an error that the type
system could prevent. In the top frame, however, the untyped component applies h to
a value "bad" that the function does not expect, causing the addition (+ 1 y) to fail.
This shows that higher-order programming requires protection for communication in
both directions between typed and untyped components. To make gradual typing work,
we must account for and protect all extra channels of communication.

2.3 Gradual Typing, Fixed

In order to fix our naive gradual type system, we reuse the key insight from the gradual
typing literature: the dynamic semantics must protect all possible channels of communi-
cation between typed and untyped components [9]. We instantiate this research insight
for stack abstractions by installing contract checks on prompt tags that activate when
control operators cross component boundaries. A prompt tag is a capability for com-
municating between two stack frames in a program. Thus, only components that have
access to a given tag are allowed to communicate with the matching prompt, enabling
the programmer to leverage lexical scope to limit access. However, the capability nature
of prompt tags only determines who can communicate over the channel, but not what
can be communicated across the channel.

To enable prompt tags to protect the data communicated via control operators, we
equip prompt tags with contracts that trigger when a control operator transfers a value
to the matching prompt. Since prompt tags function as capabilities, a component can be
assured that only components with access to the corresponding prompt tag can jump to
its prompts. Thus, as long as typed prompt tags are always exported with appropriate
contracts, other components cannot jump to them without incurring contract checks.
We formally characterize the translation of types to contracts in section 4.

For the problematic example from before, we revise the typed component to create
and export a prompt tag. The untyped component can import and use the tag to jump to
the typed component’s prompt:

#lang typed/racket
(require/typed [g : Integer -> Integer] from "untyped.rkt")
(provide pt)

(pt : (Prompt Integer (Integer -> String) Integer))
(define pt (make-prompt-tag))

(% (string-length (g 2))
(A ([v : Integer] [k : Integer -> Integer])
(+ v (k 8)))
pt)

As before, the prompt tag type describes the type of the two values that fcontrol
sends to the handler and the result type of the handler. In the untyped code, the call to
fcontrol uses the prompt tag from the typed code:
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#lang racket

(require pt from "typed.rkt")
(provide g)

(define (g x) (fcontrol "bad" pt))

Now, the type system installs a contract on uses of the exported tag in untyped code
that corresponds to the type (Prompt Integer (Integer -> Integer)). When
the function g aborts the continuation using the fcontrol operator, the "bad" value
is checked with the Integer contract. The contract check fails and blames the un-
typed component for not providing an Integer to the prompt’s handler. Pictorially, the
fix adds a second contract boundary between the use of fcontrol and its matching
prompt:

(% [1 A (vE) (+ Vv (k 8)))

. typed
(string-length [1) yp
contract: Int contract: String
(fcontrol “bad”) untyped

With the second contract boundary, all possible paths between the untyped and typed
components are protected. This ensures that no unmonitored communication can occur
between the components. In other words, the contract system completely monitors all
communication between components, thus ensuring the safety of typed code that uses
continuation operations.

2.4 Continuation Marks

The stack also offers non-local data storage to the programmer. Continuation marks are
a language feature that enables this view, allowing the association of a key-value storage
cell with each of the continuation frames that make up the stack. In turn, continuation
marks enable other language features and tools such as debuggers, dynamic binding,
and aspect-oriented programming [3, 4, 33].

A continuation mark is added to the current continuation frame with the wem form
(short for with-continuation-mark) and accessed with the ccm form (short for
current-continuation-marks):

> (wem ’key 7 (+ 1 (first (ccm ’key))))
8

Continuation marks consist of a key and an associated value, which are passed to the
wcm operation. The ccm operation returns a list of the marks stored in the continuation
associated with some key. The previous example demonstrates a simple case of setting
and accessing a mark. As with continuations, continuation marks allow non-local com-
munication of data through the stack, and thus require new forms of protection from the
contract system. More concretely, continuation marks can be set in an untyped compo-
nent and then accessed later in a typed component:
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#lang racket

(require g from "typed.rkt")

(define key (make-continuation-mark-key))
(wem key "bad" (g 7))

#lang typed/racket

(require/typed [key : (Mark Integer)] from "untyped.rkt")
(provide g)

(define (g x) (+ x (first (ccm key))))

In this example, the untyped component stores a string in the continuation mark with
a new continuation mark key. The typed component imports the key with a type that
requires integers in the mark storage for the key. However, the untyped component has
already violated this assumption by storing a string in the mark. This demonstrates
another example of an unprotected stack-based channel of communication.

Our solution for continuation mark protection is similar to the solution for delimited
continuations. First, instead of allowing any value as a key for marks, we require the use
of a prompt-tag-like key type, which we call a continuation mark key. This key acts as
a capability for accessing the data contained in the mark. Using the same technique as
prompt tags, we attach contracts to this key so that the continuation mark operations can
introduce contract checks based on the key’s contract. The following diagram illustrates
the example above (on the left) and our solution (right):

® — (wcm (...) []) untyped TO (wem (...) [J) | untyped
contract: Int contract: Int contract: Int
GXD | yneq GxD e
(ccm key) (ccm key)

The new circle attached to the top stack frame illustrates a storage cell for the continua-
tion mark on that frame. The cell might store many values, up to one for each key. The
arrow from the cell depicts the flow of a value from the cell to the continuation frame
that requests it using the ccm operation. As with continuations, this flow bypasses the
ordinary contract boundary on the stack. The diagram on the right shows the fix in the
form of an extra contract boundary that is established for accesses to the continuation
mark store. In short, the contract system must protect all possible channels of interaction
between the typed and untyped portions of the program.

From a contract system design perspective, continuation marks are similar to mutable
reference; both enable non-local communication. Moreover, contracts for references
and marks have related semantics. Mutable references need specialized support from
the contract system to ensure that all access to the reference is protected by a contract [9,
28]. This extra protection amounts to wrapping the reference with a guard that redirects
reads or writes to the reference and injects appropriate contract checking. Similarly,
continuation mark key contracts wrap the key with a guard that redirects reads or writes
to the continuation mark. Our formal model characterizes these guards and contracts
more precisely.
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3 Formalizing Contracts for Stack Abstractions

To explain our design and to validate its soundness, we present a formal model of a
gradually typed A-calculus extended with low-level operations on stacks. The low-level
operators faithfully macro-express [13] the high-level operators. We chose our model’s
operators to match the production libraries used in both Racket [16] and in Guile [17]
in order to demonstrate the model’s practical applicability. Further details are available
in a technical report [30].

Dybvig et al. [11] identify a template of five key operations that are necessary for
delimited continuations: (1) construction of a delimiter, (2) delimiting a continuation,
(3) capturing a continuation, (4) aborting a continuation, and (5) re-instating a continu-
ation. Our model provides each of the elements in the template above. In our case, (1)
corresponds to prompt tag creation and (5) to function application. The remaining three
are provided as distinct operations %, call/comp, and abort, detailed below.

Our language is Dimoulas et al’s CPCF [8], extended with Flatt et al’s continuation
operators [16]. We augment this model with an adaptation of Gunter et al. [18]’s type
system for delimited control and a type system for continuation marks based on similar
ideas. For dynamic invariant enforcement, we add contracts for delimited continuations
and continuation marks.

Figure 1 presents the core grammar of the model. Programs consist of a tuple with an
expression and a store. The store tracks the allocation of prompt tags and continuation
mark keys. Expressions include straightforward PCF operations, list operations, and a
set of control operators. The language is parameterized over a set of basic data types
and primitive unary and binary operations such as addition, subtraction, and so on.

The key control operators are (% e; ez v), (aborte; ez2), and (call/comp v e), which
correspond to delimiting the continuation, aborting the continuation, and capturing the
continuation respectively. For continuation marks, the (call/cm e; ez e3) and (ccme) op-
erations model the setting of continuation marks and access of marks respectively.

P .= <e, o> t:=B| (-tt)| (Prompt tt)
o= 2| (key 0) | (tag 0) | (Mark t) | (List t)
ex=x|v|(ee)| (ifeee)| (UW(x:t)e) pt ::= tag
| (unop e) | (binop e e) | (cons e e) mk ::= key
| (case e (null = e) ((cons X X) =e)) E ::= M| (wem w M)
| (prompt-tag) | (cm-key) M:=[]1|(ifEee)|(Ee)| (VE)
| (5eev) | (aborte e) | (unop E) | (binop E e) | (binop v E)
| (wemw e) | (ccme) | (case E (null = e) ((cons X X) =e))
| (call/comp e e) | (call/cme e e) | (cons E e) | (cons V E)
| (update mk e); e | (update mk E); e
| Cerror) | (4eEv)| (%E ptv)
va=b| (A (x:t)e)|pt| mk | (abort E e) | (abortv E)
| (cons v v) | null | (call/comp E e) | (call/comp v E)
| call/comp | call/cm | (call/cmE e e) | (call/cmV E e)

Fig. 1. Core grammar and evaluation contexts
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I'lXtFe;:t; T'|XFer: (> (~tstz) ts)
I'|XFe;: (Prompt t; t2) I'|XFez: (Prompt t; t2)
[TAbort] [TCallComp]
I'| 2} (aborte;ez) : t I'| 2} (call/comp e; e2) : t3

I'|XFe;: (Mark t;) [ISke: (Mark b

I'XtFey:t; I'|Ztes:t [TCCM]
[TCallCM] T |ZF (ceme) : (List b)

I'| 2F (call/cmes ez e3) : L2

C|Zte :t TC|Zte:t
C|ZFv: (bt T|ZFmk: Mark t;)
I'| X Fe;: (Prompt t; t2) r'Xtv:t
[TPrompt] [TWCM]
|2k @eiev): t I'|X2F (wem ((mkv) ..)e):t

Fig. 2. Typing rules

Our continuation operators suffice to encode high-level operators such as % and
fcontrol. For example, here is a macro encoding of fcontrol:

(fcontrol v p) = (call/comp (A (k) (abort v k)) p)

The static semantics of the model is straightforward. For delimited continuations, we
adapt the prompt types of Gunter et al.’s cupto system [18]. The major type judgments
are shown in figure 2. A judgment I | £ } e : t separates the environment typing ' from
the store typing . The store typing straightforwardly keeps track of the types of al-
located prompt tags and mark keys. Prompt tag types (Prompt t; ;) are parameterized
by two types: t; for the argument type expected by the handler function and t, for the
body of the prompt. The rule for prompt expressions requires that, given an appropriate
prompt tag, the body and the handler both produce a result of type t; and that the han-
dler accepts an argument of type t;. Conversely, an abort must carry a value of type t.
for a given prompt tag and may result in any type, since control never returns.

Meanwhile, the call/comp operator captures a continuation up to a prompt with the
given prompt tag and passes it to its handler. The return type ts of call/comp is the return
type of its argument function. Since the current continuation has a hole of type t3, and
since the type of the expression up to the prompt is dictated by the prompt tag type
tz, the type rule also requires that call/comp’s argument expects an argument type of
(= ts t2).

Continuation mark keys have a type (Mark t) where t is type of the value to be stored
in the mark. The rule for wem requires that all of the key-value pairs it stores are consis-
tently typed; that is, the value stored is well-typed with respect to the mark key’s type
parameter. Similarly, call/cm requires that the specified mark key and value match and
that its result type is the result type of its body. The ccm operation, used to extract the
mark values, returns a list containing the values of the type stored in the mark.
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e ::=| ( oy tc o) (mon ¥ (flat vy) v) — (check ¥ (vyv) v)
mon; CLC e
| (ctc-errori) (mon ' (i ctc, ctey) v) —
| (checkie v) A X b) y
pt = ... ((A (X2 : t) (monj” cter (V X2)))
| (PG} ctc pt) (mon }* ctca x1)))
mk = ... where v= (A (x : t) )
| (MG} ctc mk) (mon ' (list/c ctc) null) — null
ote o Ef»lg:c(é\té); DO (non ¥ (List/c cte) (cons vy v2)) —>
| (prompt-tag/c ctc) (cons (mon ' ctc v;) (mon ' (list/c ctc) vz))
| (mark/c ctc) (mon}“l (prompt-tag/c ctc) vp) — (PG}"I ctc vp)
¢ =| (List/c cte) (mon ' (mark/c ctc) vim) —> (MG} ctc Vi)
| (Con t) (checkj#tv) —> v
M:= .. ..
| (mon! ctc E) (check | #f v) —> (ctc-error})
| (check |E v)

Fig. 3. Contracts and monitors

We specify the dynamic semantics in an operational style using evaluation con-
texts [12], omitting straightforward rules for conventional operations. The evaluation
contexts, shown in figure 1, follow the form of the expression grammar. The contexts
are stratified into two non-terminals E and M to ensure that adjacent wem frames in the
context are merged before further reduction. These merge steps simplify the rest of the
operational rules and have precedent in the continuation mark literature [4, 16].

The contract system, based on CPCF, adds additional constructs to the language. The
additional constructs and reduction rules for contracts are shown in figure 3. Contracts
are applied using both monitors and guards. A monitor (mon ' ctc e) represents a term
e protected by a contract ctc. The labels k and I indicate the server and client parties,
respectively, that entered into the contract. The final label j indicates the component that
the contract belongs to [9]. Since monitored terms are not values, we need additional
guard terms for prompt tags and continuation mark keys, because guarded tags and keys
may appear in positions that expect values. Guards, like monitors, include a contract and
server, client, and contract labels for the involved parties. A monitor or guard and its
labels delineate the boundary between two components: server and client. Boundaries
play a key role when we prove that no values pass between components (i.e., across a
monitor or guard) without appropriate contract protection.

Monitors with a flat contract, i.e., one that the contract system can immediately
check, reduce to a check expression that runs the contract predicate and either raises a
contract error or returns the checked value. Monitors for functions reduce to a wrapped
function that checks both the domain and range contracts. For prompt tags and mark
contracts, the monitors respectively reduce to a prompt tag or mark key guard.

Figure 4 shows the key rules for continuations and continuation marks, which war-
rant additional explanation. The make-prompt-tag and make-cm-key terms reduce to fresh
prompt tag and mark key values, respectively, allocating them in the store. A prompt
that contains a value reduces to the value itself.
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When a prompt contains an abort, the reduction relation takes the prompt’s handler
and applies it to the aborted value (via [abort]). The notation E,: means that the context E
does not contain a prompt tagged with the prompt tag pt. The rule additionally wraps
the aborted value with any necessary contracts using the wrap+ and wrap- metafunctions.
Respectively, these metafunctions wrap the values with the contract checks that are ne-
cessitated by the prompt tag of the prompt and the tag used by the abort. This rule
only triggers when the prompt tag on the prompt side and the abort side are equiva-
lent modulo any contract guards. An abort where the surrounding context contains no
matching prompt tag gets stuck. Like Gunter et al. [18], we isolate this error case, which
is difficult to rule out without a type and effect system, in our theorems.

Within a prompt, call/comp reifies the continuation as (A (x : t) En[x]) and applies v
to this function. As with aborts, the rule only triggers when the prompt tags on both
sides are the same.

Continuation mark frames (wem w v) are discarded when the body is a value and re-
duce to the value itself. When two continuation mark frames are directly adjacent in the
form (wem w; (wem w2 e)), the frames are merged. The metafunction takes the innermost
value for any given continuation mark key for the resulting store.

For continuation captures and setting a continuation mark, a continuation mark frame
is allocated unless one already exists in the continuation. These are used to ensure that
subsequent updates to the marks can be carried out. A call/cm operation that sets or
updates a continuation mark reduces to an intermediate update term that first applies
any necessary contract checks and then sets or updates the mark value. Continuation
marks are actually updated via the [wem/update/set] and [wem/update/add] rules. The values
stored in a continuation mark are extracted with the ccm expression for a given mark key.
If the key is unguarded, the reduction rule uses a metafunction to retrieve the relevant
values stored in the continuation’s mark frames. If a guard exists, the ccm term reduces
to a contract check wrapped around a new ccm term.

Notice that the only rules that involve both contracts and control operators are those
that potentially cross into another component across a monitor or guard. Specifically,
these are the [abort], [ccm/guard], and [call/lcm] rules. None of the other control rules involve
contracts, demonstrating the one key intuition behind our formalism: only the opera-
tions that set up communication across component boundaries need additional attention
from the contract system. The proof technique in the next section justifies this intuition.

4 Complete Monitoring and the Blame Theorem

To show that our contract system comprehensively protects all of the communication
channels in the language, we prove that the contract system satisfies the complete moni-
toring property [9]. Essentially, this property requires that the values in the language are
always owned and manipulated by a single component at a time. Values only flow to a
different component under the auspices of the contract system. Expressions that attempt
to smuggle values without the contract system’s knowledge would get stuck. We prove
that the reduction relation is a complete monitor in order to show the blame theorem,
which informally states that the contract system does not find the typed component at
fault for any violation of types turned into contracts.
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<E[(prompt-tag)], o> = <Eltag], (tag 0)> [prompt-tag]
where tag ¢ o

(% Vi pt v2) —> Vv [prompt]

(% Epl (abort pt v)1 pt; vi) — (v EL[EIVID [abort]

where E. = wrap+[pt;]l, E. = wrap-[pt, [1]l, pt =, pt:

(% Epl (wem w (call/comp v pt))] — (% Exl(wem w (v (A (X : t) Enlx])))] [call/comp]
pt: vi) pti vn)
where pt =, pt;

<E[(cm-key)], o> = <Elkeyl, (key 0)> [mark-key]
where key ¢ o

(wem w V) —>v [wem/v]

(wem w; (wem W3 e)) —> (wem (W; ® W) e) [wem/mergel]

<E[(call/cmv; v; €)], o> == <E[(wem () (call/cmv; vz e))], o> [wcm/intro/cm]

where E # E;[(wem w [1)]

(wem W (call/cm mk v e)) — (wem w (update mk; e;); e ) [call/cm]
where (mk; e;) = pushl[mk, v]

(wem ((key; Vi) ... —> (wem ((key; Vi) ... [wem/set]
(key: v2) (keys vs) ...) (key: va) (keys vs) ...)
(update key, v4); e ) e)
(wem ((key; vi) ...) — (wem ((key: Vi) ... (key: v2)) €) [wem/add]

(update key: v2); e )
where key. ¢ (key; ...)

<E[(ccmkey)], o> == <E[marks[[E, key, nulllll, o> [ccm]

(cem (MG M ctc mk)) —> (mon ' (list/c ctc) (ccmmk)) [ccm/guard]

wrap+[ (PG ctc pt)] = (mon "' ctc wrap+[ptl) wrap-[[ (PG} ctc pt), E = wrap-[pt, (mon}*ctc E)]
wrap+[[tagll =[] wrap-[tag, E]l =E

Fig. 4. Control reductions

Judgment Description

r,Llke ‘Well-formed source terms

;% ..); d..); I>ctc  Well-formed contracts

I LlEe Loosely well-formed terms
S~0 ‘Well-formed store
S§,S"|Glre:t Well-typed mixed terms (sec. 5)
S5,S"|Gte Well-formed mixed terms (sec. 5)

Fig. 5. Judgments
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I = X(tag) 1 = X(key) 2 lke
——— [WPromptTag] — [WKey] — [WOwn]
3, I 1 tag 3T 1 I- key Z;F;Ill-|e|1

;I klke 2 klFv
3; I (k); (D; jecte 3, I (kD; (kD;jocte
[WMon] [WPromptGuard]
;I LI (mon [ cte |e|*) > 11 (PG cte v)
> lke 3T k I key
3, T; X(key) F v I kIFv I lke
[WWCM] [WUpdate]
35 1 IF (wem ((key v) ...) e) 3; I 1I- (update k key v); e

305 .); (k...); j>ctey

[WCFlat] 25 (k.); ... jocte:

20 (k.D); dnD;j flat |eP) | [WCFun]
(ks g L(flat el 3T (k..); ..D); > (- cte; ctes)

2 Gjlke

Fig. 6. Selected well-formed source program and contract rules

A proof of complete monitoring requires an annotation of values and expressions
with ownership labels, using the component labels that contracts already use. In addi-
tion, we annotate contracts with obligation labels to show which components are re-
sponsible for which parts of the contract:

eu= ... V=L, ctc = .. ..
| lel! | v| | L(flat (A (x : &) e
| (update I mk e); e

The proof that our reduction relation is a complete monitor utilizes the traditional sub-
ject reduction technique. First, we describe how to set up the subject. We use several
judgments, listed in figure 5, to enforce the necessary properties from the contract sys-
tem. The judgmentT; %; I I+ e checks that source programs are well-formed with respect
to the ownership annotations. We omit the details of several judgments; see the sepa-
rate appendix for additional rules. Figure 6 presents a key subset of the rules for our
model. Essentially, the judgment ensures that terms that set up a contract boundary, i.e.,
monitors, guards, and so on, contain sub-terms with matching ownership. For example,
a monitor must be well-formed under its server label and its sub-term must be well-
formed under the monitor’s client label with an appropriate annotation. Guards set up a
contract boundary in a similar fashion.

The judgment also features a store environment . We use this environment to stati-
cally track the ownership of prompt tags and continuation mark keys. Since these values
are unique and originate in a single component, we say that their ownership is deter-
mined purely by their mapping in the store. This ensures that any given tag or mark key
appears only in the component that created them unless transported to another compo-
nent via a contract.
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A oo el Ivlh — letx := v [B]

(% Eju (wem w (call/comp [[v]|* [pt]*))] —> (% Epl (wem w (Jv]* |(cont E)|*))] [call/comp]
Ipt: 0" Ivallhy Ipt: I Ivallhy
where pt =, pt;

(% E[(abort | pt VI Iptall' vally — (Jval' EXLES V1D [abort]
where F'; = wrap+[pt]l, E* = wrap-l[pt, [11l, pt =x pt:

(wem w (call/em |mKk]|" |v]' €)) — (wem w (update k key e;); e ) [call/cm]
where (key e; k) = pushl[mk, v]l

Fig. 7. Select reduction rules with annotations

In the case of monitors and guards, we also require that their contract is well-formed
using the judgmentT; %; (k ...); (I ...); j > cte. The third and fourth parts of the judgment
indicate the components that should be responsible for the positive and negative parts
of a contract, respectively. The fifth label indicates the component that should own
the contract. Flat contracts are well-formed when their obligations match up with the
positive parties and their code matches the contract party. Function contracts swap the
positive and negative obligations for the domain contract. In all other cases, we require
that sub-contracts are appropriately well-formed.

For some terms in a reduction sequence, the well-formedness condition is too strict.
Most commonly, terms that reduce to monitored expressions can cause well-formedness
to fail, even though a few additional steps of reduction corrects this failure. To han-
dle this situation, we extend well-formedness to a loose well-formedness judgment
I; %; 1 = e, which is preserved by reduction.

Finally, we require with the judgment ¥ ~ o that the program store is well-formed
with respect to the store environment, meaning all of the statically known tags and
keys are allocated with the correct owners. This requirement prevents a situation where
unallocated tags or keys appear in an expression or where the environment records the
wrong ownership.

To guarantee that the preservation lemma actually holds, we also modify the reduc-
tion rules to propagate the ownership annotations appropriately. Figure 7 shows a subset
of the revised reduction rules. We rely on the notation ||v||', which means the value v may
be wrapped with zero or more ownership annotations, all with the label 1. In the rules,
we take any possibly annotated values and replace them in the contractum with the
value wrapped in a single annotation, ensuring the annotation remains in future steps.
One interesting case is the [cal/cm] rule. The rule utilizes a modified push metafunction
that guides the value v through several contract boundaries to reach the component that
the mark key lives in. Each boundary traversal wraps the value with an additional mon-
itor. The modified metafunction additionally returns the final owner of the component
v after wrapping, which we need to annotate the update term.

With the judgments in mind, we formalize the complete monitoring property.
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Definition 1. A reduction relation is a complete monitor if for all well-typed terms eo
such that ¥; @; lo I+ ey,

- <ep, > —* <v, 0>, or

— for all e; and stores o, such that <ey, > —* <e;, 01>, there exists an e; and o
such that <e;, 01> — <ez, 02>, Or

— <eg, > —* <Epf(abortv pt)], 01>, or

- <@y, 2> —* <e;, 01> —* <(ctc-errorf), 02> where e; is of the form
E'[(mon k| (flat v) | [v|" ] and k € (1...).

Theorem 1. The reduction relation — is a complete monitor.

The proof follows a standard subject reduction strategy with two main lemmas: progress
and preservation. We list the key lemmas below but omit details of the proof cases,
which are similar to those presented by Dimoulas et al. [9].

Lemma 1. For all ey, 0o, and X such that >;; o; O« e; and Xy ~ oo, then either

— €=V,

- e = (ctc—error,’-‘ ),

there exists an e; and o such that <e,, 0o> — <ei;, 01>, or
— <ey, 00> = <Epf(abortv pt)], oo>.

Lemma 2. For all <ey, 00> — <ei, 01> and there exists X, such that Zi; @; Q I+ e; and
Yo ~ 0o, then for some ;1 O 3o, 31; 2; 1 I ey.

The culmination of the formalism is the Blame Theorem. Informally, the key idea of
the Blame Theorem is that the contract system never blames the typed components of a
mixed program for a contract error. Again, we first require some setup in order to state
the theorem. The technique that we use here is detailed in Dimoulas et al. [9].

First, we set up an untyped sister language of our original typed language in order to
have mixed programs. The untyped language shares the syntax and current operational
semantics, but omits type annotations. Second, we isolate any stuck states that occur
due to type errors and reduce them to contract errors blaming the component. For the
contract system, we also require that flat contracts are picked from a pool of built-in
contracts that exactly correspond to the base datatypes we use: integers, strings, etc.

In the mixed language, monitors allow the embedding of expressions from other
components as before. We now limit the server and client labels to T and v for typed
and untyped components. In other words, untyped components are embedded in a typed
component with server and client labels v and T, respectively. For embedding in the
other direction, the labels are reversed.

To ensure that components are well-formed, we require that the typed portions of any
mixed program are well-typed and require that all components respect the ownership
annotations as before. Furthermore, we need to guarantee that all component bound-
aries are protected by the correct contracts. We formalize this notion in the judgments
S,S°|GreandS, S’ | Gt e:twith store typing S, an environment S° for tracking un-
typed locations, and type environment G. Our notion of store consistency requires that
untyped and typed locations are tracked disjointly [7]. These judgments rely on the
mapping between types and contracts, presented in figure 8.

Finally, we can state and prove the Blame Theorem:



Constraining Delimited Control with Contracts 245

TI[(» ctc; ctez)] = (- T[ctc;] Tlcte,1)
T[(prompt-tag/c ctc)] = (Prompt T[ctc])
T[(mark/c ctc)] = (Mark T[ctc])

T[(list/c ctec)] = (List T[ctcl)

Fig. 8. Contract-type translation

Theorem 2. For all untyped terms ey such that @, @ | @ + e, and @; @; v I+ e, <eo, 2>
does not reduce to a configuration of the form <(ctc-error}), o>.

The proof follows by subject reduction, again with two main lemmas [7, 9].

5 Implementing Stack Protection

In addition to demonstrating the theoretical soundness of our design, we also describe
its implementation in a production languageH Our implementation technique builds
on Strickland et al’s chaperone framework [28]. Chaperones act as proxies for values
that behave the same as the originals, modulo additional exceptions. This allows the
enforcement of a desirable property of contracts: a contracted value should behave the
same as the uncontracted value except for the possibility of contract errors.

To implement our control contracts, we modified the Racket runtime system to pro-
vide additional primitive operations such as chaperone-continuation-prompt-tag
and chaperone-continuation-mark-key. Both prompt tag and mark key chaper-
ones take two function arguments that are called when continuation and continuation
mark operations are used, respectively. For the prompt tag case, one function is inter-
posed on the application of a prompt handler and the other is interposed on a continua-
tion abort. For continuation marks, one function is interposed on retrieval from a mark
and the other is interposed on insertion into a mark.

Prompt and mark operations in the runtime coordinate with chaperones by checking
if the prompt tag or mark key, respectively, is a chaperone and then using the appro-
priate interposition function if so. The interposition function receives the aborted value
in the continuation case and the stored mark value in the case of continuation marks.
The result of the interposition function is then used in place of the original value. If the
prompt tag or mark key is not chaperoned, the operation proceeds normally.

6 Related Work

Types for delimited control. We use a variation of Gunter et al. [18]’s type system for
the cupto delimited control operator. Although their type system does not support con-
tinuation marks, it inspired our solution. The main difference is our choice of primitives:

2 Contracts for control are available in Racket 5.3 and higher. A development version of Typed
Racket supports delimited control and continuation marks.
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abort and call/comp are lower-level than cupto [15]. In addition, our type construc-
tors for prompt tags take two arguments instead of one. This allows the handler to return
a different type than its argument.

Many type systems for delimited control, following Danvy and Filinksi, use a type
and effect system [2, 6]. These type systems support result type modification and stat-
ically eliminating continuation jumps to missing prompts. Our design choices make
different compromises, based on two pragmatic considerations: simplicity of the sys-
tem and the difficulty of dynamically enforcing effect typing with contracts.

Gradual typing and the Blame Theorem. Many researchers have constructed models of
gradual typing: both functional and object-oriented [1, 24, 25, 29, 31]. The soundness
theorem for gradual typing originates from Tobin-Hochstadt and Felleisen [31] and was
christened the “Blame Theorem” in Wadler and Findler [34]. Our proof technique for
this central theorem of gradual typing comes from Dimoulas et al. [9]. In general, the
idea of complete monitoring also provides the intuition for the design of a contract
system for gradual typing.

7 Conclusion

Virtually every modern programming language provides facilities for accessing and
manipulating the stack, with exceptions, generators, and stack inspection as just a few
examples. However, these facilities add non-local flows to programs, defeating the in-
variants programmers expect of their code. This problem is particularly acute in gradu-
ally typed languages, where type invariants are enforced with software contracts.

In this paper, we show that contracts, originally designed to mediate between caller
and receiver, extend naturally to these non-local constructs. We equip Racket’s delim-
ited control and continuation mark operations with a gradual type system enforced at
the boundaries by contracts. This system maintains type soundness in arbitrary com-
position with untyped code, as proved via the blame theorem. The implementation of
control contracts in Racket leverages the existing chaperone framework for implement-
ing contracts.
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