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Abstract. Image registration is an important tool for imaging valida-
tion studies investigating the effect of underlying focal disease on the
imaging signal. The strength of the conclusions drawn from these anal-
yses is limited by statistical power. Based on the observation that in
this context, statistical power depends in part on uncertainty arising
from registration error, we derive a power calculation formula relating
registration error, sample size, and the minimum detectable difference
between normal and pathologic regions on imaging. Statistical mappings
between target registration error and fractional overlap metrics are also
derived, and Monte Carlo simulations are used to evaluate the derived
models and test the strength of their assumptions.
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1 Introduction

Registration of medical images can enable complex analyses of medical data as
well as image-guided diagnosis and treatment, provided the registration is per-
formed with sufficient accuracy. There can be tradeoffs associated with achieving
higher accuracy [1], including greater human interaction to guide registration
algorithms to correct solutions, higher required image quality, and higher com-
putational cost. Thus, for each study, it is important to identify the maximum
acceptable level of registration error. This threshold is application-dependent [2],
and establishing application-specific thresholds for maximum acceptable error
has been identified as a key challenge in the field [1,2].

In image-guided interventions (IGI), registration can be used to guide a tool
tip to a target region. Studies of such systems usually involve quantifying either
the distance from the tool tip to the target or the overlap of the tool’s treatment
volume with the target. In some IGI applications (e.g. aortic aneurysms [3] and
prostate cancer biopsy [4]), acceptable registration error thresholds have been
identified for specific anatomy and imaging modalities. However, in some IGI
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contexts (e.g. keyhole brain surgery for ablation of epileptogenic foci [5]), it
is currently unclear how to localize the targets on preoperative imaging. This
motivates the need for studies to address this question.

In studies of the utility of medical imaging for disease localization (henceforth,
imaging validation studies), registration can be used to align images of the medi-
cal imaging modality to be studied (study images) with reference images wherein
ground truth regarding localized disease is defined (e.g. on pathologist-contoured
digital pathology images). Such studies involve the measurement of the effect of
the presence of disease features of interest (e.g. cancerous tissue) on image inten-
sity (or other derived quantities) on the corresponding region of interest on the
study image. Each ground truth delineation of disease features of interest on the
reference image is mapped by an ideal (0 error) registration to a region of inter-
est on the study image (denoted as R hereafter). We denote as R̃ such a region
determined by a non-ideal (> 0 error) registration. Thus, in contrast to the IGI
scenario, for imaging validation studies, the fidelity of the R− R̃ regional overlap
is paramount. Mapping errors that result in smaller overlap may lead to larger
required sample sizes to achieve a given minimum detectable difference (MDD)
on imaging between pathologic and benign regions. This observation leads to
three key questions affecting study design. (1) What is the maximum ac-
ceptable registration error? For a fixed sample size and desired MDD, what
is the maximum acceptable image registration error? (2) How many subjects
are needed? For a known image registration error and desired MDD, what is
the required sample size? (3) What is the minimum detectable difference?
For a fixed sample size and known image registration error, what is the MDD?
To the best of our knowledge, there has been no previous work in the literature
addressing these questions in the context of imaging validation studies based on
image registration.

As a first step toward fully answering these questions, in this paper, we pro-
vide a derivation that yields the relationship between image registration error,
sample size, and MDD, where image registration is used to determine whether
the presence of particular anatomy, pathology or other features of interest in the
underlying tissue is reflected in a change in the mean intensity of study image
voxels containing the features of interest. The derivation of a statistical power
calculation that incorporates uncertainty due to registration error yields a set
of three equations that can be used to answer the three questions enumerated
above. Statistical power is a measure that describes the probability of a study
finding a statistically significant result when there is an underlying difference to
be found. Thus, for studies to determine whether focal disease affects study im-
age intensity, the acceptable registration error is defined relative to the study’s
statistical power. The statistical power is a relationship between the size of the
study, the acceptable levels of type I error (false positive results from the study)
and type II error (false negative results from the study), the intensity distribu-
tions in R and in the background, and the registration error. This statistical
power is commonly expressed in the form of a sample size calculation that re-
lates how many subjects to recruit for a particular study design or an MDD
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calculation that relates how small a difference can be detected for a particular
study design. To the best of our knowledge, this work represents the first deriva-
tion of a statistical power calculation for medical imaging validation studies that
incorporates uncertainty in the overlap of R and R̃ due to registration error.

The remainder of this paper outlines the derivation of the relationship between
registration error and statistical power for one study design (Section 2), describes
simulations used to validate components of the derivation (Section 3), presents
the results of these simulations (Section 4) and discusses the implications of
these relationships (Section 5).

2 Derivation of MDD and Sample Size Relative to
Registration Error

The statistical power calculation depends in part on the type of statistical anal-
ysis used in the study. In this paper, we addressed a specific analysis that statis-
tically compares a pool of samples drawn from multiple identified R̃ to another
pool drawn from background regions B using a t-test on the sample intensities.
For imaging validation studies, image registration error is preferably measured
as the target registration error (TRE), since a post-registration comparison of
accurate segmentations is not feasible due to the absence of knowledge of the
boundary of R on the study image. To derive the relationship between the TRE
and inferential power, we utilize an intermediate metric, fractional overlap (FO),
which is the ratio of the volume of the intersection of R and R̃ to the volume
of R̃. The following two sections will derive the relationships between the MDD,
sample size and the FO, and the relationship between TRE and FO.

2.1 Mapping Registration Error to Fractional Overlap

Fractional overlap (
|R̃∩R|
|R̃| ) of two registered spherical regions R and R̃ can be

expressed as a function of the radius of the regions r and the 3D registration

error x between their centers: f = π(4r+ry)(2r−ry)2/12
4πr3/3 = (y3 − 12y + 16)/16 for

y ≤ 2 otherwise f = 0, where y = ||x||/r is the relative error.
The probability density function (PDF) F of FO can be derived as a function

of the PDF Y of the relative error under certain assumptions: (1) each R and R̃
are spherical and of a fixed size, and (2) the registration error can be modeled
as a 3D Gaussian. For f = 0, p(F = 0) = p(Y >= 2). For f > 0, we use the
relation for functions of random variables, p(F = f) = p(Y = y(f))/|f ′(y(f))|.
The derivative df

dy = (3y2−12)/16. As (y3−12y+16)/16−f = 0 has 3 real roots
for 0 ≤ f ≤ 2, we can express the inverse using the trigonometric expressions
for cubic roots. There is one solution in the range 0 ≤ y ≤ 2: f−1(y) = y(f) =

4cos(acos(1−f)+π
3 ). Combining these intervals,

p(F = f) = δ(f)p(Y >= 2) +
16p(Y = 4cos(acos(1−f)+π

3 ))

|3(4cos(acos(1−f)+π
3 ))2 − 12|

. (1)
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For a registration error vector x that is distributed as a 3D Gaussian with
component-wise variance a2, (i.e. X ∼ N3(0, a

2I)), the registration error x =
||x|| has a Maxwell-Boltzmann distribution. By a change of variables, p(Y =
y) = rp(X = yr), and, p(Y > 2) = p(X > 2r), which can be substituted into
Equation 1, yielding the FO as a function of registration error

p(F = f) = δ(f)(1− (erf(
2r√
2a

)−
√

2

π

2rexp(− (2r)2

2a2 )

a
))+

16r
√

2
π (4cos(

acos(1−f)+π
3 )r)2exp(−(4cos(acos(1−f)+π

3 )r)2/(2a2))/a3

|3(4cos(acos(1−f)+π
3 ))2 − 12|

. (2)

For FO, the mean μF (
a
r ) =

∫ 1

0
fp(F = f)df and standard deviation σ2

F (
a
r ) =∫ 1

0 (f − μF (
a
r ))

2p(F = f)df vary with the ratio of the TRE scaling parameter
to the radius of R, and are invariant to specific choices of a and r. Integrating
numerically yields the relationships shown in Figure 1.
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Fig. 1. Mean (left) and std. (right) fractional overlap as a function of the ratio a/r of
the target registration error scaling factor to the radius of R.

2.2 Relationship between MDD, Sample Size and Fractional
Overlap

The derivation is made under assumptions that (1) intensities of voxels con-
taining the features of interest and background are independently distributed
as IR ∼ N(μR, σ

2
R) and IB ∼ N(μB, σ

2
B), respectively; (2) statistical analysis

will be performed by an unpaired two-sample heteroscedastic T-test of the null
hypothesis that μR = μB against the alternative hypothesis that μR �= μB; (3)
the number of measurements from each R̃ is constant across samples; (4) the
number n of regions R̃ is large enough that the mean FO approximates a normal
distribution (by the central limit theorem); and (5) the number of voxels v in
each R̃ is large enough that discretizing error can be ignored.

When there is no registration error, the minimal detectable difference
μd between μR and μB using a two sample t-test can be expressed as μd =
T
√
(σ2

R + σ2
B)/(nv), where T is a statistical threshold tα{2},nv + tβ{1},nv, where

tα{2},nv and tβ{1},nv are taken from two- and one-tailed t-tables with nv degrees
of freedom, constraining type I error to α and type II error to β.

When there is misregistration of the i-th region, the measurements in R̃
may contain samples from the background. Given FO fi, the sample mean is
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∑
i(
∑fiv

j=1(Ij,i,R)+
∑(1−fi)v

j=1 (Ij,i,B))/(vn). As each Ij,i,R and Ij,i,B is a Gaussian
random variable, the distribution of the mean is:

N(
∑
i

(fiμi,R + (1− fi)μi,B)/n, (
∑
i

(fiσ
2
i,R + (1− fi)σ

2
i,B)/(n

2v)), (3)

or, by substituting μd = μR − μB and σ2
d = σ2

R − σ2
B ,

N(μd

∑
i

(fi)/n+ μB, (σ
2
d

∑
i

(fi)/n+ σ2
B)/(nv)). (4)

Because the FOs fi are random variables contributing to both the mean and
standard deviation of the distribution, the mean distribution is not Gaussian.
To simplify the model, we introduce two approximations. First, we approxi-
mate

∑n
i=1(fi)/n with a random variable ∼ N(μF , σ

2
F /n) in the mean, using

the central limit theorem approximation for sufficiently high n. Second, we ap-
proximate

∑n
i (fi)/n as μF in the standard deviation. The resulting distribution

N(μdN(μF , σ
2
F /n) + μB, (μFσ

2
d + σ2

B)/(nv)) can be simplified to N(μdμF +
μB, (μFσ

2
d + σ2

B)/(nv) + μ2
dσ

2
F /n).

Because this model for the distribution of the mean is Gaussian, as in the er-
rorless case, we can incorporate this into the normal power analysis framework
by constructing a hypothetical population that would have the same mean distri-
bution: N(μdμF +μB, μFσ

2
d+σ2

B+μ2
dσ

2
F v). The pooled variance for this analysis

will be (σ2
B + μFσ

2
d + σ2

B + μ2
dσ

2
F v)/2 or, simplified, μFσ

2
d/2 + σ2

B + σ2
Fμ

2
dv/2.

The MDD between the R̃ and background can be expressed in terms of μd as

μdμF + μB − μB =

√
μFσ2

d + 2σ2
B + σ2

Fμ
2
dv

nv
T. (5)

Solving for mean FO μF yields

μF =
σ2
dT

2 ± T
√
σ4
dT

2 + 8nσ2
Bμ

2
dv + 4nv2μ4

dσ
2
F

2μ2
dnv

. (6)

Solving for the sample size yields

n = T 2

(
2σ2

B + μFσ
2
d

μ2
dvμ

2
F

+
σ2
F

μ2
F

)
. (7)

Solving for the MDD yields

μd =

√
2σ2

B + μFσ2
d

nv(μ2
F − T 2σ2

F /n)
T. (8)

3 Simulations

We performed Monte Carlo simulations to assess the accuracy of the derived
statistical model, and the sensitivity of the model to assumption violations.
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Table 1. Power simulation parameters. Values were specified as [a,b,c], ranges as [a..b],
and values sampled once per R̃ from a normal distribution as N(mean, std.).

IR − IB n v a/r α β σ2
R σ2

B

S1 MDD 30 30 [0.1,0.5,1] 0.05 0.8 [1..100] [1..100]
S2 MDD [1..30] 30 1 0.05 0.8 10 10
S3 MDD 30 [1..30] 1 0.05 0.8 10 10
S4 MDD 30 N(30,[0..10]) 1 0.05 0.8 10 10

To assess the model relating MDD, sample size and FO, we sampled N sets
of image intensities from the background and R̃ intensity distributions and per-
formed two sample T-tests of the null hypothesis that sample mean intensities
were equal. In each simulation, μR − μB was set to the MDD predicted by the
model, and N=160,000 samples were taken (to yield a 95% confidence interval of
width 0.5% on β). The proportion of positive t-test results from the simulation
should match the model’s type II error of 1− β. We assessed (S1) the accuracy
of the model under the assumptions, as well as the sensitivity of the model to
violations of the assumptions regarding (S2) the number of regions R̃ sampled,
(S3) the number of voxels per R̃, and (S4) the constancy of the R̃ volume. The
parameters varied in these simulations are described in Table 1.

To assess the model relating FO to registration error, we sampled error vectors
x from a 3D Gaussian distribution and calculated the FO ofR and R̃ with centers
offset by x. The resulting empirical PDF was compared to the PDF predicted
by our model. We assessed (S5) the accuracy of the model under the given
assumptions, with a ranging from 2

100 to 350
100 and r = 10.

4 Results

Simulation results from S1 through S4 are summarized in Fig. 2(a-d). The y-
axes indicate the difference between the power predicted by the model and the
simulations. A value of 0% indicates that the model exactly predicted the sim-
ulation results. Values of −x% and +x% indicate that the model under- and
overestimated the power, respectively. Fig. 2(a) shows that when registration
error is large (i.e. high a/r), the model underestimates power, particularly with
small sample sizes. Fig. 2(b) shows that for small sample sizes, the model under-
estimates power, particularly with large registration errors. Fig. 2(c) shows that
the model’s estimate of power is reliable except in cases where small numbers
(< 5) of point samples (e.g. voxels) are taken from each R̃. Fig. 2(d) shows that
the model’s estimate of power is accurate and robust to variance in the number
of point samples taken from each R̃. In simulation S5, the model predicted the
simulated mean and std. FO as a function of a/r (Fig. 1) to within 0.0006.
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Fig. 2. (a) S1: Power vs. registration error a/r for several sample sizes. (b) S2: Power
vs. sample size. (c) S3: Power vs. number of samples (e.g. voxels) / R̃. (d) S4: Power
vs. variance in number of samples (e.g. voxels) / R̃.

5 Discussion

This work provides a derivation of a statistical power calculation incorporat-
ing image registration uncertainty and addressing three central questions in the
design of imaging validation studies. (1) Eq. (6): What is the maximum ac-
ceptable registration error? (2) Eq. (7): How many subjects are needed? (3)
Eq. (8): What is the MDD between normal and pathologic image regions? We
derived the relationship between the scaling parameter of a 3D Gaussian TRE
and the distribution of FO of spherical tumours. We also derived an approxi-
mate relationship between an arbitrary distribution of FO and the statistics of
a study design. The combination of these derivations elucidated a relationship
between registration error, sample size and statistical power, yielding a set of
three equations that are central to the design of imaging validation studies.

These relationships could be used in several applications. During study design,
Eq. (7) or (8) could be used to evaluate or control the power, after estimating
imaging properties and registration errors, while Eq. (6) could be used to guide
the selection of registration algorithms under the constraint of a study design.
During algorithm development, Eq. (6) could be used to assess whether an al-
gorithm has sufficient accuracy for a particular application.

We ran Monte Carlo simulations to test the fidelity of our model both when
our assumptions were met and when some of them were relaxed. Our results
showed that (1) the model predicts statistical power reliably for reasonable reg-
istration error (i.e. not larger than 50% of the radius of R) and the sample size
> 30 (Fig. 2(a-b)); (2) the model predicts power reliably when > 5 samples
(e.g. voxels) are obtained from within each R̃ (Fig. 2(c)); (3) the model predicts
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power reliably regardless of the variability in the number of samples obtained
from within each R̃ (Fig. 2(d)); and (4) the model accurately predicted the FO
as a function of registration error.

The limitations of this work lie mainly in the strong assumptions made by
the derivations. Although we have tested the robustness of the model to the
relaxation of some of these assumptions, our testing in this regard is not exhaus-
tive. Furthermore, extensions of these models may allow some assumptions to
be relaxed (e.g., assumptions of spherical regions, isotropic 3D Gaussian regis-
tration error, and no correlation of voxels within each R). Also, our derivation
is based on a relatively simple (albeit useful) statistical design; because analysis
of statistical power depends on the statistical designs used, it would be valuable
to extend the presented derivations to account for paired tests (to account for
voxel intensity correlations within subjects), cluster randomization (to allow for
intensity correlations within each R), regression (for longitudinal analyses) and
multivariate data.
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