
L. Iliadis et al. (Eds.): AIAI 2012, IFIP AICT 381, pp. 37–47, 2012.
© IFIP International Federation for Information Processing 2012

A Multi-objective Genetic Algorithm for Software
Development Team Staffing Based on Personality Types

Constantinos Stylianou1 and Andreas S. Andreou2

1 Department of Computer Science, University of Cyprus
cstylianou@cs.ucy.ac.cy

2 Department of Computer Engineering and Informatics, Cyprus University of Technology
andreas.andreou@cut.ac.cy

Abstract. This paper proposes a multi-objective genetic algorithm for software
project team staffing that focuses on optimizing human resource usage based on
technical skills and personality traits of software developers. Human factors are
recognized as critical aspects affecting the rate of success of software projects,
as well as other properties, such as productivity, software quality, performance,
and job satisfaction. However, managers often rely solely on technical criteria
to staff their projects, which risks overlooking these important aspects of
software development, such as the abilities and work styles of developers. The
behaviour and scalability of the algorithm was validated against a series of hy-
pothetical projects of varying size and complexity, and also through a real-
world project of an SME in the local IT industry. The approach demonstrated a
sufficient ability to generate both feasible and optimal staffing solutions by as-
signing developers most technically competent and suited personality-wise for
each project task.

Keywords: Software Project Management, Team Staffing, Genetic Algorithms,
Personality Type Matching, Five-Factor Model.

1 Introduction

For many years, researchers in the area of software engineering have argued that human
factors should be taken into consideration when developing software since human re-
sources are the most, if not only, crucial resource available for software development
companies. Hence, most research targets software project managers since it is their
responsibility to assign these resources to tasks and their selection directly influences
the success of a software project, especially with respect to critical software develop-
ment issues such as performance, productivity, quality, and job satisfaction.

Assigning software developers to tasks is not a simple process as each developer
has their own strengths and weaknesses, which often extend beyond the “academic”
knowledge acquired from a university degree, for example, or the experience gained
from using a specific tool or technology over a number of years. They also concern
traits and behaviours in the form of abilities and competencies that develop from each

38 C. Stylianou and A.S. Andreou

individual’s personality and psychological processes. For this reason, it is argued that
software project managers need to look beyond technical skill-based and experience-
based methods when selecting developers, as it is equally important to deal with in-
terpersonal relationships and social aspects present in software development processes
and organizations [1]. The goal, therefore, of the proposed approach is to support
software project managers of SMEs in the selection and allocation of the most suit-
able developers to tasks, by attempting to optimize the assignments based on technical
skills and personality traits of developers using a multi-objective genetic algorithm.

The remainder of this paper is organized as follows: Section 2 provides a brief
overview of the most recent research attempts proposed regarding the inclusion of
human factors in software project team staffing. Section 3 describes the method used
to identify the various occupations found in the software development industry to-
gether with their characteristics and requirements in terms of technical skills and per-
sonality traits. In section 4, a description of the methodology is provided, in which
various aspects of the multi-objective optimization approach are described. Next,
section 5 presents the evaluation of the proposed approach, describing the projects
used in the experiments carried out followed by a discussion on the results obtained.
Finally, section 6 concludes the paper with a synopsis and comments on future work.

2 Related Work

One of the most common human factors affecting software development addressed in
literature is the area of personality, with many different investigations carried out over
the years. Some attempts have looked into studying the various types of personality of
software development professionals. The results from such studies can provide help-
ful insight about the type of personalities attracted to the software development indus-
try, and also can be used by companies looking to recruit or release personnel, or by
software project managers attempting to assign developers to tasks. Some of the ques-
tions asked in these studies focus on whether software professionals share a common
personality type [2] and whether they differ from the rest of the general population
[3]. Some studies concentrate on specific professions, such as systems analysts [4],
while others examine occupations from all development phases [5]. More recently,
Varona, et al. carried out a survey of existing studies that attempted to profile IT-
related professions in order to identify trends and changes, and to form a better under-
standing of the software industry’s human resources [6]. Another area of research has
focused on assessing the effects of personality on various properties of software de-
velopment. For instance, personality has been explored with respect to team effec-
tiveness and performance [7, 8], cohesion [9], software quality [10], as well as job
satisfaction [11]. More recent research has also concentrated on how personality in-
fluences pair programming in agile methodologies [12, 13].

Research work relating to team staffing and formation have also been carried out,
whereby attempts to build teams for software projects take into account human factors
such as developers’ personality types [14] and capabilities [15]. Some of the team
staffing approaches proposed employ computational intelligence techniques to aid

 A Multi-objective Genetic Algorithm for Software Development Team Staffing 39

with assigning developers to tasks. For instance, Martínez et al. [16] proposed
RAMSET as a methodology for assigning roles in software engineering teams that
adopted a learning approach based on an adaptive network-based fuzzy inference
system to recommend the best resource allocation possible. Also, André, Baldoquín
and Acuña [17] formalized a set of rules to match the personality types of developers
to fixed project roles defined by a set of generic and technical competencies. They
then transformed these rules into objective functions and constraints, and applied
them in various heuristic algorithms (such as, random restart hill-climbing, simulated
annealing and Tabu search) to carry out optimal assignment of developers to roles.

Despite much research being conducted concerning human factors, and in particu-
lar personality, most focuses on exploring and investigating their effects in various
aspects of software development. There is still, however, a great need for tools to
support software project managers incorporate these factors systematically in their
staffing activities. Therefore, a major contribution of this work is providing such a
tool, which carries out team staffing in an automated fashion and that, in addition,
employs computational intelligence through the application of multi-objective optimi-
zation to handle the balancing of personality traits and technical skills and knowledge.

3 Personality Traits of Software Development Occupations

One aspect of the optimization approach implemented in this paper concerns the
evaluation of selected developers based on the suitability of their personality traits
with respect to the type of task they have been assigned to carry out. To do this, the
software professions most commonly found in SMEs of today’s software develop-
ment industry were first identified using the 2010 Standard Occupational Classifica-
tion (SOC), which serves as a systematized taxonomy of the majority of existing pro-
fessions identified by the U.S. Bureau of Labor Statistics [18]. Then, detailed analysis
of each profession was carried out using the Occupational Information Network
(O*NET) Resource Center [19], which provides a content model and an online data-
base defining standardized and occupation-specific descriptors of each profession
using the SOC system coding. Each occupation’s job-related and worker-related char-
acteristics and requirements were retrieved containing information on: the abilities
and work styles of workers, the skills required by workers, and the work activities of
occupations. Once these key requirements and characteristics were identified, the
most suitable personality traits required by developers to carry out activities of each
profession were then were associated with corresponding personality traits. These are
expressed using five basic domains of personality, which comprise the Five-Factor
Model (FFM), originally identified in 1961 by Tupes and Cristal [20] and later opera-
tionalized by Costa and McCrae through the NEO-Personality Inventory (NEO-PI)
[21]. The Five-Factor Model has been widely adopted in many academic and applica-
tion disciplines where personality measures have been required, and is a common
instrument in cases involving career and personnel assessment. Specifically, the five
domains are described as follows:

40 C. Stylianou and A.S. Andreou

• Neuroticism reflects the level to which an individual is predisposed to experiencing
negative emotions, such as sadness, embarrassment, fear and anger.

• Extraversion refers to the level to which an individual engages with their external
world through interpersonal interactions, as well as their energy and predisposition
to experiencing positive emotions.

• Openness to experience concerns an individual’s tendencies regarding intellectual
curiosity, creativity and variety in interests and experiences.

• Agreeableness involves interpersonal orientation with regards issues, such as com-
passion, social harmony, cooperation, and trust.

• Conscientiousness relates to the degree of self-discipline and control of impulses,
and also ambition and organization.

Finally, the desired level of each of the domain was determined so as to ascertain
whether a profession requires either a {1:low, 2:medium or 3:high} level of that par-
ticular domain. The same was applied to personality traits possessed by developers so
that comparisons between the two can take place using a simple distance measure.

An important issue here is that of the validation of each profession’s associated
personality traits that were selected as desirable. A large number of studies were used
for this purpose, such as [2, 3, 4, 5, 6], as well as other related material, for example,
career handbooks suggesting the best occupation based on personality types. How-
ever, the validation process is not currently in the scope of this paper, since the de-
sired personality types can be easily modified and, furthermore, the study’s focus is
on how well the chosen encoding performs in optimizing developer assignments.

4 Description of Methodology

The goal of the proposed approach is to allow project managers of SMEs in the soft-
ware industry to staff their projects with the most suitable teams taking into account
the technical knowledge and skills of available developers as well as their personality
traits and abilities. These, however, may be viewed as conflicting in some cases,
where a developer may be technically capable but does not hold the appropriate traits
required by activities of a task, or vice-versa. For example, if a programming task
requires skills in a specific programming language, a developer possessing a high
level of such skills may not necessarily possess a low level of extraversion, which is
one of the desired traits of programming tasks. On this basis, a software project man-
ager would encounter difficulties in trying to make the best selection and assignment
of resources whilst trying to balance the two. Also, due to the fact that there are many
different possible combinations to examine, a software project manager will be re-
quired to perform an exhaustive assessment of all possible permutations, which only
becomes more difficult when the number of tasks to be performed and the number of
available developers increases. Therefore, in order to decrease the search space and
handle the NP-hard nature of such a problem [22], a multi-objective optimization
approach was adopted. In particular, two objective functions were modelled in an
implementation of the Non-dominated Sorting Genetic Algorithm II (NSGA-II), in-
troduced by Deb in 2002 [23]. With this technique, a set of optimal solutions will be

 A Multi-objective Genetic Algorithm for Software Development Team Staffing 41

produced suggesting a collection of possible assignments of developers to project
tasks aiming to satisfy the two aforementioned considerations. Furthermore, due to
the involvement of constraints influencing the feasibility of solutions, the Constrained
NSGA-II algorithm was applied. The algorithm promotes the solution diversity using
a crowded comparison operator during its selection procedure and population reduc-
tion process. In addition, because parent and offspring populations are combined be-
fore non-dominated sorting takes place, elitism (i.e., preservation of the best solu-
tions) is always ensured. Further details of the NSGA-II can be found in [23].

4.1 Encoding and Representation

Each software project consists of a number of tasks that need to be carried out. For
each task, developers need to be assigned to perform the activities involved. There-
fore, since it is the selection of developers that forms the basis of evaluation, each
project task is denoted by a string of bits, and each bit represents one specific devel-
oper. If a bit in the string has a value of ‘1’, then this signifies that the specific
developer is assigned to work on the task, whereas a value of ‘0’ indicates that the
developer has not been selected for the task. Overall, if a software project consists of
T tasks and there are E available developers, then each solution would be represented
by an individual in the algorithm using (ܶܧݔ) bits.

Since it is possible that a development company follows its own method to evalu-
ate technical skills and knowledge, each developer is simply required to be rated
based on each of the skills required by task activities in a normalized form in the
range [0, 1], meaning that low possession of skill will be denoted by a value closer to
zero, and high possession of a skill will be denoted by a value closer to one. Project
managers can use different metrics, such as experience or IT-related aptitude tests, or
can even use the experience requirements and occupation-specific information set
suggested by the O*NET Content Model. As part of on-going research efforts in this
area, a method to rate and match developers’ skills and knowledge is currently in
progress. On the other hand, regarding personality traits, developers are assessed spe-
cifically using the NEO-Five-Factor Inventory and their five domain scores are used.

4.2 Objective Functions and Constraints

A total of three objective functions were created for the evaluation of each solution
along with two constraints to measure the degree of feasibility of each solution.

Technical Skills Objective Function (ࢌ૚). This maximization function is responsible
for evaluating a solution based on the assigned developers’ levels of technical skills
and knowledge required by the activities of each task. The objective function’s value
is calculated for each task by adding the maximum skill level possessed by the devel-
opers assigned to the average skill level possessed by the developers assigned, as
shown in Eq. (1).

42 C. Stylianou and A.S. Andreou

)____(

)____max(1

developersassignedoflevelskillavg

developersassignedoflevelskillf

+
+= (1)

Personality Traits Objective Function (ࢌ૛). This maximization function is respon-
sible for evaluating a solution based on developers’ personality traits. Using Eq. (2), a
distance is computed between the desired levels of the FFM domains for the profes-
sion and the selected developer’s levels of the FFM domains. If more than one devel-
oper is assigned to work on a task, then the average of the distances is used.


=

−=
5

1
2 ______

i
ii domaininleveldeveloperdomaininleveldesiredf (2)

Team Size Objective Function (ࢌ૜). This minimization function is responsible for
evaluating a solution based on the number of developers assigned to each task. The
inclusion of such a fitness measure is important in order to maximize resource utiliza-
tion and avoid unnecessary assignments. For each task, the inverse of the number of
team members is calculated, as shown in Eq. (3).

developersassignedofnumber
f

1

3 = (3)

Skills Satisfied Constraint (ࢉ૚). The purpose of this constraint function is to measure
the feasibility of a solution with respect to the technical skills required by activities of
a task. Using Eq. (4), a solution is feasible only if for all activities, there is at least one
developer selected to carry it out who possesses the necessary technical skills.

requiredskillsprojectofnumbertotal

skillsdunsatisfieofnumber
c

1 = (4)

Developer Availability Constraint (ࢉ૛). The second constraint implemented in-
volves checking the feasibility of a solution regarding the availability of developers
when assigned to tasks that are carried out simultaneously. An assumption made in
this approach is that no developer can work on more than one task at any given point
in time. Furthermore, it is also assumed that the project’s schedule is fixed beforehand
and, thus, each task has already been allocated a specific “time slot” to be carried out.
Eq. (5) determines this constraint value by calculating the number of days a developer
has been assigned to more than one task throughout the duration of the project.

projecttheinassigneddaysofnumbertotal

conflictswithassigneddaysofnumber
c

2 = (5)

4.3 Algorithm Parameters and Settings

For the execution of the multi-objective genetic algorithm, a population of 100 indi-
viduals were used. The fast non-dominated sorting procedure was applied to rank the
individuals in terms of their fitness and feasibility, after which a tournament selection
of size 4 was used to select which parents were to enter the mating pool. The best two

 A Multi-objective Genetic Algorithm for Software Development Team Staffing 43

parents were then set to produce offspring by the application of a recombination op-
erator (one-point crossover) with a likelihood of 0.80, and a mutation operator (single
bit-flip mutation) with a (1/݊ݏ݇ݏܽݐ_ݐ݆ܿ݁݋ݎ݌_݂݋_ݎܾ݁݉ݑ) probability. The population
evolves by repeating the steps from the selection of individuals until the termination
criteria are met or the maximum number of iterations have been reached (set at 2000).

5 Results of Experiments

5.1 Design of Experiments

Two experiments were carried out to evaluate the proposed methodology. First, in
order to evaluate the validity and scalability of the multi-objective optimization algo-
rithm, two hypothetical software projects consisting of 20 and 30 tasks each were
created based on the input of several project managers of SME software development
companies as to the basic structure, size and complexity of the type of software pro-
jects they usually undertake. For both projects, the skill levels and personality traits of
the available software developers were selected so as to represent the best-case and
worst-case scenarios for the proposed team staffing approach. For the best-case sce-
nario, all available developers possessing the highest skill levels also possessed the
most suitable personality traits. On the other hand, for the worst-case scenario, all the
available developers possessing the highest skill levels possessed the least suitable
personality traits, and vice-versa. Through these two extreme cases, both the behav-
iour and correctness of the optimization approach could be observed and analyzed,
and also the competitive nature of the objective functions could be investigated.

Fig. 1. Real-world software project schedule (vessel policies management system)

44 C. Stylianou and A.S. Andreou

In the second experiment, a real-world software project developed by a local IT
company was used that related to the implementation of a vessel policies management
system for a large insurance brokers company. The project, whose schedule is shown
in Fig. 1, consisted of 31 tasks involving project management, design, programming
and testing activities. A total of four developers were available to carry out the pro-
ject, each possessing a varied set of skills at different levels, as well as unique person-
ality traits, which were determined by administering the NEO-FFI-3 [21].

5.2 Results and Discussion

In the first experiment, the algorithm was executed 10 times for both hypothetical pro-
jects using the best-case and worst-case scenarios. The results are shown in Table 1.

Table 1. Results obtained from the first experiment using hypothetical software projects

Experiment
Average Number of

Unique Solutions
Execution

Time (min.)
Best-case scenario (20 tasks) 1 22.56
Worst-case scenario (20 tasks) 94 22.86
Best-case scenario (30 tasks) 1 23.90
Worst-case scenario (30 tasks) 95 26.08

For both hypothetical projects, the algorithm managed to provide both feasible and

optimal solutions when performing team staffing in the best-case scenario. Specifi-
cally, the algorithm always managed to assign the most suitable developer with re-
spect to both the technical skill levels and personality traits possessed, and never as-
signed a developer who was less suited in either aspect. Furthermore, the Pareto front
consisted of individuals representing the same optimal solution. This was expected
since in the “optimistic” case there would always be only one possible ideal assign-
ment existing for each task. In the worst-case scenario, the algorithm’s job was to try
to balance the two objective functions, since no developers possessed both the highest
skill levels and most suitable personality traits for any task. For both hypothetical
projects, it was observed that this time the individuals of the Pareto front represented
a number of different solutions, as seen in Fig. 2. Such behaviour again was antici-
pated since for each task either skill levels or personality traits could be given prefer-
ence – but not both due to the nature of the characteristics of the available developers.
The general behaviour of the algorithm was, thus, validated as correct.

In the second experiment, the algorithm was also executed 10 times. However, the
results obtained from these executions showed that the algorithm did not actually
produce any optimal solutions but, in fact, consistently generated the same infeasible
developer assignments with respect to their availability (constraint c2). This observa-
tion is mainly attributed to the small number of available developers in combination
with a relatively high number of concurrent tasks within the project. Specifically, in
cases where several tasks requiring the same skills and personality traits were set to

 A Multi-objective Genetic Algorithm for Software Development Team Staffing 45

Fig. 2. Pareto front of hypothetical project (30 tasks) worst-case scenario (f1 vs. f2)

execute simultaneously (e.g., tasks T8-T14 in Fig. 1), the algorithm would encounter
difficulties in finding an optimal assignment of developers possessing these to the
tasks, simply because the available resources were insufficient for such concurrent
scheduling of tasks.

What’s interesting, however, is that whilst consulting with the project’s manager to
understand the method that was used to allocate human resources to tasks, it was es-
tablished that the project suffered from schedule overruns due to the lack of available
resources. This shows the potential of such approach as it can be used as means to
pinpoint possible staffing caveats for project managers, who would then be able to
seek a solution by either revising their original schedule of tasks or even consider
hiring or buying the services of developers for tasks that could not be optimally allo-
cated resources. To further investigate this, the experiment was repeated without in-
clusion of the developer availability constraint. The results this time showed that the
algorithm was able to produce both feasible and optimal assignments, averaging
around 95 unique Pareto front solutions over 10 executions. In some cases developers
possessing high levels of skills required for tasks but less suitable personality traits
were chosen and in other cases developers most suited with respect to personality
traits were preferred even if they possessed lower levels of skills for the tasks they
were assigned to. This further enhanced the initial belief that the two objectives can
indeed be competing. In such a case, it is up to the project manager to decide which of
the two options has higher priority and, therefore, should be followed.

46 C. Stylianou and A.S. Andreou

6 Concluding Remarks

The approach described in this paper proposes the innovative use of computational
intelligence as a means to help software project managers solve the problem of team
staffing. In particular the approach suggests the use of a multi-objective genetic algo-
rithm for assigning software developers to project tasks based on technical skills and
personality traits. By taking into consideration these factors, it allows software project
managers to view team staffing and human resource allocation from an alternative
perspective, since software project success is considered to be largely influenced by
the human factors present in software development. The results obtained from several
experiments indicate that the algorithm is capable of generating adequate and feasible
solutions, balancing the two objectives where necessary, and has the potential to con-
stitute a decision support tool for software project team staffing.

One of the major contributions of this approach is that it can allow project manag-
ers to foresee possible resource issues arising during development. With respect to
either or both constraint functions, if the algorithm is unable to find feasible solutions
when applied to a specific project whose schedule is fixed, this could indicate that the
available resources are not sufficient or adequate enough to carry out the software
project. This is very useful for project managers since it would allow them to revise
their project schedule and attempt to staff their team in a slackened timeframe. Alter-
natively, without modifying the project’s schedule, a project manager may use the
results to recruit extra resources (possessing either higher skill levels or more suitable
personality traits or both). In a similar way, the approach can be used to examine
whether the development company has the required capacity in terms of human re-
sources before bidding for a software project.

As part of future work, improvements can be made to the way in which developer
skill levels are measured and evaluated. Also, additional objective functions can be
introduced, such as the minimization of a project’s cost based on developers’ salaries.
Attempts have also been made to collect data from development companies for the pur-
poses of further evaluation using real-world projects, in addition to comparison of the
approach with other computational intelligence techniques. Another possible future
enhancement can involve integrating the proposed approach with other techniques for
software project management activities taking into account the solutions generated from
the current optimization method. This could allow for a comparative analysis of the
effectiveness of the approach when combined and used in parallel with other models.
Possible applications include feeding the solutions generated by the algorithm into an
intelligent scheduling mechanism or, alternatively, using the output of assigned devel-
opers to help predict the cost of a software project (per phase or as a whole).

References

1. Amrit, C.: Coordination in Software Development: The Problem of Task Allocation. In:
27th International Conference on Software Engineering, pp. 1–7. ACM, New York (2005)

2. Moore, J.E.: Personality Characteristics of Information Systems Professionals. In: 1991
Conference on Computer Personnel Research, pp. 140–155. ACM, New York (1991)

3. Wynekoop, J.L., Walz, D.B.: Revisiting the Perennial Question: Are IS People Different?
ACM Database 29, 62–72 (1998)

 A Multi-objective Genetic Algorithm for Software Development Team Staffing 47

4. Smith, D.C.: The Personality of the Systems Analysts: An Investigation. ACM SIGCPR
Computer Personnel 12, 12–14 (1989)

5. Capretz, L.F., Ahmed, F.: Making Sense of Software Development and Personality Types.
IT Prof. 12, 6–13 (2001)

6. Varona, D., Capretz, L.F., Pinero, Y., Raza, A.: Evolution of Software Engineers’ Perso-
nality Profile. ACM SIGSOFT Soft. Eng. Notes 37, 1–5 (2012)

7. Peeters, M.A.G., van Tuijl, H.F.J.M., Rutte, C.G., Reymen, I.M.M.J.: Personality and
Team Performance: A Meta-Analysis. Eur. J. Personality 20, 377–396 (2006)

8. Capretz, L.F., Ahmed, F.: Why do we Need Personality Diversity in Software Engineer-
ing? ACM SIGSOFT Soft. Eng. Notes 35, 1–11 (2010)

9. Karn, J.S., Syed-Abdullah, S., Cowling, A.J., Holcombe, M.: A Study into the Effects of
Personality Type and Methodology on Cohesion in Software Engineering Teams. Behav.
Inf. Technol. 26, 99–111 (2007)

10. Fernández-Sanz, L., Misra, S.: Influence of Human Factors in Software Quality and Prod-
uctivity. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.)
ICCSA 2011, Part V. LNCS, vol. 6786, pp. 257–269. Springer, Heidelberg (2011)

11. Acuña, S.T., Gómez, M., Juristo, N.: How do Personality, Team Processes and Task Cha-
racteristics Relate to Job Satisfaction and Software Quality? Inform. Software Tech. 51,
627–639 (2009)

12. Sfetsos, P., Stamelos, I., Angelis, L., Deligiannis, I.: An Experimental Investigation of Per-
sonality Types Impact on Pair Effectiveness in Pair Programming. Empir. Softw. Eng. 14,
187–226 (2009)

13. Salleh, N., Mendes, E., Grundy, J., Burch, G.S.J.: An Empirical Study of the Effects of
Conscientiousness in Pair Programming using the Five-Factor Personality Model. In: 32nd
ACM/IEEE International Conference on Software Engineering, pp. 577–586. ACM, New
York (2010)

14. Rutherfoord, R.H.: Using Personality Inventories to Help Form Teams for Software Engi-
neering Class Projects. ACM SIGCSE Bulletin 33, 73–76 (2001)

15. Acuña, S.T., Juristo, N.: Assigning People to Roles in Software Projects. Softw. Pract. Ex-
per. 34, 675–696 (2004)

16. Martínez, L.G., Rodríguez-Díaz, A., Licea, G., Castro, J.R.: Big Five Patterns for Software
Engineering Roles Using an ANFIS Learning Approach with RAMSET. In: Sidorov, G.,
Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010, Part II. LNCS, vol. 6438,
pp. 428–439. Springer, Heidelberg (2010)

17. André, M., Baldoquín, M.G., Acuña, S.T.: Formal Model for Assigning Human Resources
to Teams in Software Projects. Inform. Software Tech. 53, 259–275 (2011)

18. Standard Occupation Classification, Bureau of Labor Statistics, U.S. Department of Labor,
http://www.bls.gov/soc

19. Occupational Information Network, Employment and Training Administration, U.S. De-
partment of Labour, http://www.onetcenter.org

20. Tupes, E.C., Christal, R.E.: Recurrent Personality Factors Based on Trait Ratings. Tech-
nical Report ASD-TR-61-97, Lackland Air Force Base, Personnel Laboratory, Air Force
Systems Division (1961)

21. McCrae, R.R., Costa, P.T.: NEO Inventories Professional Manual. PAR Inc., Florida
(1992)

22. Pan, N., Hsaio, P., Chen, K.: A Study of Project Scheduling Optimization using Tabu
Search Algorithm. Eng. Appl. Artif. Intel. 21, 1101–1112 (2008)

23. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multi-Objective Genet-
ic Algorithm: NSGA-II. IEEE Trans. on Evol. Comput. 6, 181–197 (2002)

	A Multi-objective Genetic Algorithm for Software Development Team Staffing Based on Personality Types
	Introduction
	Related Work
	Personality Traits of Software Development Occupations
	Description of Methodology
	Encoding and Representation
	Objective Functions and Constraints
	Algorithm Parameters and Settings

	Results of Experiments
	Design of Experiments
	Results and Discussion

	Concluding Remarks
	References

