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Abstract. This paper examines the effect of bilateral anatomical asym-
metry of spatial priors on the final tissue classification based on
maximum-likelihood (ML) estimates of model parameters, in a model-
based intensity driven brain tissue segmentation algorithm from (possi-
bly multispectral) MR images. The asymmetry inherent in the spatial
priors is enforced on the segmentation routine by laterally flipping the
priors during the initialization stage. The influence of asymmetry on
the final classification is examined by making the priors subject-specific
using non-rigid warping, by reducing the strength of the prior informa-
tion, and by a combination of both. Our results, both qualitative and
quantitative, indicate that reducing the prior strength alone does not
have any significant impact on the segmentation performance, but when
used in conjunction with the subject-specific priors, helps to remove the
misclassifications due to the influence of the asymmetric priors.

1 Introduction

A normal human brain has systematic bilateral asymmetry, exhibited, most no-
tably, in the frontal and the occipital regions. This effect is referred to as the brain
torque. For a normal population, the right frontal lobe is larger than the left,
the left occipital lobe is larger than the right ([8] and references therein). This
normal inter-hemispheric morphological variability is reflected in all databases
that are built upon a large representative population study. An example of such
a database is the digital brain atlas provided with SPM99 [6] (figure 1) which
contains spatially varying probability maps for gray matter (GM), white mat-
ter (WM) and cerebro-spinal fluid (CSF), obtained by averaging deterministic
classifications of respective tissue classes from a large normal population, aligned
to a standard reference space by affine transformations [2]. The asymmetry in-
herent in the normal brains, hence, is reflected in the inter-hemispheric asym-
metry of the priors. This atlas has wide applications in the field of automated
brain tissue segmentation, wherein it is used as a first estimate of the classi-
fication, and to spatially constrain the classification [3]. The use of the priors
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(a) (b) (c) (d)

Fig. 1. Digital Brain Atlas as provided by SPM99 [6]. (a) Normal T1 brain template,
(b)-(d): apriori spatial probability maps for gray matter, white matter and csf respec-
tively

in their usual form, however tends to introduce a spatial bias in the derived
classifications, of a nature similar to the asymmetry content in the priors. Fur-
thermore, asymmetry studies and anatomical lateralization over and above the
normal morphogenic incongruity of the human brain are strong indicators of
widespread and local neurodegenerative disorders. Typically, in such computa-
tional neuroscience methodologies, it is the segmentation map which is under
examination. This fact, combined with the ubiquity of the automated segmen-
tation methodologies using a brain atlas as spatial a-priori information merits
a study examining the influence that the asymmetric priors have on the final
results, and devise ways to attenuate or ideally, obliterate their influence. Such a
study will ensure that the morphological findings are intrinsic to the data under
examination, and not an artifact of the intermediate processing steps.

2 Materials and Methods

We use high-resolution simulated 3D T1 weighted brain MR images provided by
Brainweb [1]. All the data sets have 1 mm isotropic voxel dimensions. The inten-
sity homogeneity was chosen to be 20% to engage the bias correction component
of the segmentation scheme. The experiments were performed for noise levels
σ = {3, 5, 7, 9}%. Corresponding to these data sets were anatomical determinis-
tic ground truths G per tissue class, which were used as a reference to which we
compare the segmentation maps produced by each segmentation methodology.
We use the spatial priors P o in their original orientation, as provided in the stan-
dard distribution of SPM99 [6]. We also derive a new set of priors P f by flipping
P o bilaterally in the native space. This is done to transfer the intrinsic bilateral
asymmetry in the spatial priors to the opposite side. Because of the flipping in
the native space of the atlas, no re-alignment of P f to P o was performed.

2.1 Standard Segmentation

The standard segmentation strategy under examination is the method presented
in [3], which parameterizes the tissue-specific intensity distribution as a gaussian,
resulting in a mixture model for the entire data set. We denote this strategy by
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U . At the core is the classical Expectation-Maximization (EM) loop which is
initialized by model parameter estimates from P o or P f . The standard process-
ing methodology involves reformating the spatial priors for each tissue class, to
the space of the study subject, which has already been aligned to a standard
reference space by a 12 parameter affine transformation using maximization of
mutual information [4] as an image similarity measure. The realigned spatial
priors are then used to initialize the EM loop, and also to spatially constrain
the tissue classification during the search for ML estimates of model parame-
ters. The results of the segmentation, however, differ, depending on whether the
classification has been initialized by P o or P f . The effect is clearly visible in
figure 2, which shows an axial slice of the GM classification map obtained by
initialization and constraining the classification by P o, and by P f respectively,
and the absolute difference between the two classifications.

(a) (b) (c)

Fig. 2. (a) Probabilistic GM classification obtained by model-based tissue classification
initialized with P o, (b) probabilistic GM classification obtained on initialization with
P f , (c) absolute difference of (a) and (b), showing a systematic misclassification on the
outer periphery of the cortex, predominantly at the frontal and contralateral occipital
lobe. The colormap is inverted (high(dark) to low(bright)).

2.2 Segmentation with Subject Specific Priors

An affine mapping of the priors P o or P f to the study subject ensures global
anatomical correspondence between the subject and the prior. Local morpho-
logical variability in the brain of the subject to be segmented is not taken into
account by this methodology. A more optimal way of providing the EM seg-
mentation routine with initial estimates would be to normalize the priors to the
study subject by using a high-dimensional non-rigid registration technique [7].
Warping the priors to the subject brings the priors in better anatomical corre-
spondence with the subject, resulting in a more accurate initialization, which is
likely to improve the overall segmentation. Starting from the initial affine align-
ment of the spatial priors to the study subject, a set of deformation fields were
estimated from the T1 weighted template provided with SPM99 [6], using the
non-rigid registration tool of SPM99 [6], with default parameter settings. These
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deformation fields were then applied to the priors, enhancing the local anatomi-
cal correspondence. The deformed priors were then provided to the segmentation
routine as initial estimates and for successive spatial constraints. We denote this
strategy by W.

2.3 Segmentation with Reduced Priors

In [5] it is argued that it is not convenient to initialize the segmentation with
actual a-priori probabilities because the empirical frequencies in the atlas tissue
maps encode a wide variation in population, and are different from the anatom-
ical variation in the study subject. As proposed in [5] we moderate the priors
by a small factor before initialization and subsequent processing steps. If pt(r)
denotes the a-priori probability of voxel r being of the tissue type t, then the
prior is modified into

qt(r) = αpt(r) + (1 − α)
1
K

(1)

where K is the number of classes under consideration, and α ∈ [0, 1] is the
weighing parameter that serves to reduce the influence of the spatial priors
on classification. We have applied this prior reduction strategy to each of
the segmentation strategies mentioned in sections 2.1 and 2.2, for values of
α = {0.3, 0.5, 0.7, 0.9, 1.0}, where α = 1.0 refers to unmodified spatial priors. In
cases where reduced priors were used in combination with W (section 2.2), the
reduction was applied after the non-rigid registration.

2.4 Segmentation Performance Index

Each segmentation methodology yields a classification map for each of the tissue
classes, which we denote by C. The free parameters for our experiments are the
segmentation methodologies M ∈ {U ,W} representing the affine and warped
priors respectively, orientations k ∈ {o, f} of the priors P o and P f respectively
and the reduction fraction α ∈ {0.3, 0.5, 0.7, 0.9, 1.0} for the priors, and the noise
content of the data σ ∈ {3, 5, 7, 9}%. For ease of reference, a segmentation for a
particular tissue class performed on data with a particular noise content σ, with
methodology M, and initialization performed with priors in orientation k will be
denoted by Ck,M

α . Based on this notation, we have, for a particular orientation k
of the prior, and for a particular noise level, 10 possible segmentations for each
tissue class. Since the basic objective of the work is to check for the effects of
asymmetry of the priors on the segmentation, our hypothesis is that a segmen-
tation Ck,M

α is immune to the asymmetry effects if it agrees well with its corre-
sponding ground truth G, and also if Co,M

α and Cf,M
α agree well with each other.

We use the Dice Similarity Coefficient (DSC) described in [9] as a measure of
agreement between the segmentations for a particular tissue class using different
methodologies. This similarity index is defined as DSC(C1, C2) = 2V (C1∩C2)

V (C1)+V (C2)
,

where V(C) is the volume of the classification map C, defined, in our case, as the
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total number of voxels classified in a classification map (all voxels with non-zero
probability). This measure is used to evaluate a ratio of twice the number of
commonly classified voxels, to the number of all the voxels classified in C1 and
C2, without taking into account the probability of the classification. This makes
the measure more stringent as compared to discretizing both the volumes by de-
terministic assignment (hard segmentation) [3], and more responsive to spatial
misclassifications even with a small membership probability. The value of this
DSC lies between 0 and 1, and serves as a performance index increasing from 0
to 1, indicating an excellent agreement for DSC > 0.7 [7]. For ease of reference,
we define sk,M

α = DSC(Ck,M
α ,G) and sM

α = DSC(Co,M
α , Cf,M

α ), where G refers
to the ground truth corresponding to the classification map C.

3 Results

We have studied the segmentation performance based on DSC, on simulated
Brainweb data [1]. Since most of the systematic errors occur in the GM (fig-
ure 2(c)), we present results only for the GM, for noise content of 5% and 7%.
This is the noise content from moderate to extreme that is typically present
in most of the high resolution acquisitions that are used. Table 1 shows the
DSC based performance index for GM, and its variations across methodologies
and noise level. Figure 3 shows the GM segmentations for all methodologies (for
α = 1.0 and α = 0.7), for σ = 5%, allowing visual inspection of the improvement
in segmentation for each methodology.

Table 1. Similarity index (DSC) for GM, for all methodologies. The results are shown
for noise levels σ = 5% and σ = 7%. The left-most column shows the segmentation
methodology, standard (U) or warped (W), along with the reduction fraction α.

σ =⇒ σ = 5% σ = 7%
(M, α) ⇓ so,M

α sf,M
α sM

α so,M
α sf,M

α sM
α

(U , 1.0) 0.725612 0.722171 0.986609 0.709364 0.708018 0.992829
(W, 1.0) 0.730665 0.730551 0.992660 0.713761 0.712719 0.994128
(U , 0.3) 0.722913 0.714043 0.980580 0.709440 0.708352 0.993268
(U , 0.5) 0.721188 0.714287 0.981220 0.708900 0.708214 0.993152
(U , 0.7) 0.721942 0.713215 0.980316 0.708662 0.708607 0.993026
(U , 0.9) 0.722741 0.715180 0.981435 0.708951 0.709029 0.992880
(W, 0.3) 0.730177 0.729552 0.993097 0.713373 0.712819 0.994267
(W, 0.5) 0.730270 0.729546 0.992827 0.713594 0.712928 0.994203
(W, 0.7) 0.731153 0.729602 0.992718 0.713463 0.712810 0.994210
(W, 0.9) 0.730947 0.729415 0.992680 0.713562 0.712726 0.994411
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Co,U
1.0 Cf,U

1.0 | Co,U
1.0 - Cf,U

1.0 |

Co,W
1.0 Cf,W

1.0 | Co,W
1.0 - Cf,W

1.0 |

Co,U
0.7 Cf,U

0.7 | Co,U
0.7 - Cf,U

0.7 |

Co,W
0.7 Cf,W

0.7 | Co,W
0.7 - Cf,W

0.7 |

Fig. 3. Column-wise: segmentations initialized with P o, P f , and their absolute differ-
ences respectively. Methods vary row-wise, as designated by the corresponding labels.
The noise level for the data is σ = 5%

4 Discussion

Table 1 gives a global overview of segmentation performance of various method-
ologies, and their ability to make the segmentation maps indifferent to the spatial
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asymmetry content in the prior probability maps. We observe a small improve-
ment, with respect to the similarity index, between the affine-transformed, and
non-rigidly deformed prior based initialization strategy, with un-modified (α =
1.0) priors. Upon inclusion of the reduction strategy (section 2.3) in the standard
segmentation procedure U there is a drop in the DSC measure, and it remains
less than the performance of U for α = 1.0. The use of W, however, performs
better than U for all values of α, and performs better than (W,1.0) (table 1)
for 0.7 ≤ α ≤ 0.9. This holds true for all noise ranges σ ∈ {3, 5, 7, 9}%. Within
a particular methodology, there seems to be a very minimal dependence of α
upon the DSC based comparison with the ground truth. This does not agree
well with the findings reported in [5]. The differences could be because of the
fact that we calculate volumes in DSC metric as voxel counts in the posterior
probability maps, and not as voxel counts in hard segmented classification maps.
Since the basic objective of this work is to make the segmentations immune to
the anatomical asymmetry in the priors, a successful strategy will be one that
gives high values of performance index sk

α, indicating that the segmentations of
the same study subject, obtained by initializations with P o and P f respectively
agree well with each other, while at the same time are in good agreement with
their respective ground truths. Table 1 demonstrates that some improvement is
gained in sk

α by changing the normalization strategy from affine-only to non-
rigid. Further, there is a slight improvement, for the non-rigid normalization, for
values of 0.3 ≤ α < 1.0, in comparison to the values for (U ,1.0) and (W, 1.0). It
should be mentioned here that the similarity across segmentations, as demon-
strated under column labeled sk

α in table 1 is high even without any modification
to the segmentation methodology. Since the misclassifications due to asymmetry
represent a small fraction of connected voxels at anatomically specific locations,
a removal of this effect lends a very small fraction to the performance index as
an improvement, making small changes in performance very significant. Resid-
ual errors (1.0−DSC) in the most optimal segmentation (figure 3, bottom row)
can be attributed to the remaining misclassified voxels spread over the entire
segmentation map, while segmentation errors due to the misclassified voxels at
the outer edge of the cortex are completely removed.

5 Conclusion

This paper investigates the effect of anatomical bilateral asymmetry in the spa-
tial prior probability maps used to initialize, and spatially guide intensity based
segmentation, on the resulting classifications. The premise for the experiments
performed was that the same study-subject brain, segmented under laterally
flipped conditions (P o or P f ) should result in the same segmentation, and should
also agree well with the corresponding anatomical ground truth. To this end, we
have used the volume similarity as the performance index, and compared gray
matter segmentations obtained after initialization of the classification method
with P o and P f respectively. Since the effects of asymmetry are more visible in
the gray matter segmentation maps, we have presented results only for the gray
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matter. Our results indicate that anatomical asymmetry in the prior probability
maps influence the segmentation by severely misclassifying small but significant
regions of the brain, especially at the outer surface of the cortex. Such an effect
might get swamped in volumetric studies, but is of significance in studies where
topological and geometrical properties of the cortex are under examination. Fur-
ther, the use of non-rigid registration improves the segmentation performance,
as compared to the usual affine-only spatial correspondence, and also helps to
remove the effects of asymmetry from the final GM classification map. Reducing
the prior strength alone does not result in any significant improvement of the
segmentation. Further, visual analysis of figure 3 (bottom row) shows that the
reduced prior strategy, when used in conjunction with the non-rigid registration,
serves to remove the effect of the spatial prior asymmetry from the classification.
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