
Teaching Introductory Programming Concepts
Through a Gesture-Based Interface

Lora Streeter(&) and John Gauch(&)

University of Arkansas, Fayetteville, AR 72701, USA
{lstrothe,jgauch}@uark.edu

Abstract. The goal of our research is to create and evaluate a visual and
gesture-driven interface to teach computer programming to non-traditional
programmers, typically school-age children. By making the interface more
enjoyable for young students, we hope to keep students engaged and increase
their attention span while learning how to program.
Our system combines components from Google’s Blockly, a visual block

programming language with drag-and-drop puzzle pieces, and Microsoft’s Xbox
Kinect, which is used to perform skeletal tracking. We created pre-defined
gestures to correspond to program functions and available actions, which were
compiled from a survey conducted of over 100 grade-school students over three
years who had very little to no programming experience before we met. After
learning how to use Blockly and having a basic understanding of simple pro-
gramming logic, the students were asked to create intuitive gestures for common
programming constructs, while both standing up using full body movement, and
sitting down at a desk, using only their hands. The specific programming
constructs included in the survey were loops, conditionals, run program, and
undo.
To detect the gestures, we have implemented and evaluated a number of

gesture matching algorithms. One challenge is that the size, shape, and path of
the gestures varied considerably, so the data has to be normalized for any
comparisons.

Keywords: Blockly � Gesture matching � Kinect � Programming
Quantization � Visual programming

1 Introduction

Computer programming is an important field given the rapid advance of technology in
recent years, but traditional programming classes are not necessarily directed to the
masses. They are typically tailored to people who are either already interested in
programming or are old enough (or have enough self-discipline) to sit in a class, take
notes, and then go home and experiment with what they have learned in front of a
screen. Could there be a better way to teach them? What if, instead of having them sit
down and type, they could have a more interactive experience? These are two of the
questions that motivate the current research.

© Springer International Publishing AG, part of Springer Nature 2018
C. Stephanidis (Ed.): HCII Posters 2018, CCIS 852, pp. 116–123, 2018.
https://doi.org/10.1007/978-3-319-92285-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92285-0_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92285-0_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92285-0_17&domain=pdf

Programming is an integral part of the technologically driven society, so there is a
need to provide a better way to teach programming to a broader audience. It is an
essential career skill that teaches problem solving skills that are broadly useful. Hence,
there is a need to grab the attention of non-traditional programmers, draw them into the
world of computing, and hold their interest.

Programming with a language meant solely for text analysis or numerical com-
putation can easily discourage people since learning syntax and rules is typically not as
enjoyable as manipulating images and completing fun tasks. When people become
immersed in learning and having fun, they are more likely to continue onto more
challenging topics. It was discovered during some very controlled trials for first-time
university level programmers that using a visual language like Alice increased retention
by 41%, and the average grade in the class rose an entire letter grade [1].

The goal of our research is to create and evaluate a visual and gesture-driven
interface to teach programming to non-traditional programmers, typically school-age
children. We have discovered intuitive gestures for specific programming constructs for
children, and are working toward recognizing pre-defined gestures. We are also
working toward answering the question “Can we teach programming effectively
without a mouse?” by using a gesture-driven interface utilizing the Kinect as an input
device integrated with Google’s Blockly. This paper discusses these intuitive gestures
and our gesture matching algorithms.

2 Background and Related Work

2.1 Visual Programming Languages

Visual programming languages have a long history starting around the 1970’s and have
explored a number of programming paradigms and interfaces. They usually incorporate
icons, have a drag-and-drop interface, or are mouse or graphics based – such as Google’s
Blockly, MIT’s Scratch, Carnegie Mellon’s Alice, and Berkley’s Snap. Google’s visual
editor, Blockly, enables users to create programs by using a mouse to drag-and-drop
connecting puzzle piece blocks together to accomplish a series of goals. After the user
has completed a goal, Blockly shows them how many lines their program would have
taken in JavaScript. Each task the user is given can be solved with the information they
have been provided, and each puzzle builds on the previous in each game.

2.2 Gestural Programming Languages

A gestural programming language is one that takes input as a movement of the hands,
face or other parts of the body instead of keyboard or mouse input [2]. Gesture-based
languages can involve multi-touch gestures on a tablet device [3], using an image or
video as input [4, 5], determining finger locations using a data glove [6], or manual
selection of symbolic markers to control a robot [7]. Consumer devices, like mobile
phones, tablets, and controller-free sensors such as the Kinect and LeapMotion, all of
which are equipped with many sensors, cameras and multi-touch screens, have opened
up new possibilities of promoting gestural programming to the broader public.

Teaching Introductory Programming Concepts 117

2.3 Kinect

The Kinect is a popular, inexpensive, three-dimensional camera that has revolutionized
human-computer interaction by having depth and RGB cameras in the same
easy-to-use unit. Although the Kinect was originally developed for video game input, it
has been used as an input device for a wide range of applications, both because it
provides a hands-free interface and because it provides physical engagement for users.
The OpenNI framework provides an open source API for the Kinect that tracks and
reports the positions of fifteen different skeletal joints, including hands.

3 Methodology

3.1 Student Population and Experimental Design

We have had the opportunity to teach and work with a number of young students who
are interested in computer science and engineering, and to get feedback from them
about gestures they thought were most natural for specific programming concepts.
Using this information, we developed a prototype gesture-based visual programming
interface that captures gestures using the Kinect and transfers this information to
Blockly to create and run programs.

The students who participated in this segment of the study attended various engi-
neering summer camps held at the University of Arkansas for rising 6th–12th graders.
Some students arrived with absolutely no programming experience, while others had
used a few languages already. Very few, if any, of the students had used Blockly
before, although around half of the students had utilized Scratch in the past. For this
experiment, we focused on Blockly.

The students got the opportunity to work with Blockly and then filled out a survey
at the end of the session about the concepts they learned, and whether they would
prefer to program while standing and using full body movements, or sitting and using
only hand gestures. They were also asked to create their own gestures for the following
programming concepts for both sitting and standing. The questions were left relatively
open-ended to allow the students to either describe in words the gestures/movements
they would make, or to draw the path of the gesture, or a combination of both. These
programming concepts include:

• If statement
• If/else statement
• For loop
• While loop
• Run program
• Undo previous action

After filling out the survey, the students got the opportunity to record their gestures
into the computer using the Kinect. Our capture gesture program is written in the
language Processing that allows the user to draw a gesture with their hand and the
Kinect. The program recorded the coordinates of all of the user’s joints, even though all
of our data was drawn one-handed, and made note of which joints comprised the

118 L. Streeter and J. Gauch

gesture path (typically just the right or left hand). The gesture coordinates were saved
into a text file, and a screenshot of the gesture path was saved into a jpg.

3.2 Comparing Gestures

Gesture Capturing
The gesture capture program code was designed to track the full skeleton, because
when the research was started, we were not sure if standing and using full body
movements or sitting and only using hand gestures would be more popular with stu-
dents. In fact, 56% of all students surveyed would rather sit and use hand gestures, so
we limited our subsequent research to that. However, when we asked the students to
design their own gestures for both sitting and standing to see what kinds of results we
got, and even when the student was standing and had the ability to use full body
movements, the majority of students still chose a two dimensional, one handed gesture.

Common Gestures Among Students
While the students were given relatively open-ended prompts to generate gesture shape
information, there were six distinct gestures that appeared consistently throughout the
surveys. The most popular gesture was a circle or loop gesture, with 162 gestures being
drawn or described under the “for loop” or “while loop” options, either while standing
or sitting. 27 students chose a spiral gesture, with almost half of them choosing this
gesture for one of the loop options while standing. An additional 22 students chose a
“thumbs up” gesture, with 15 of them choosing it to run the program while they were
seated at the computer. Finally 18 students chose a wave gesture, while 29 students
chose either the figure eight or infinity sign. The rest of the gestures described or drawn
were less common or unique.

Therefore, we decided to limit our gesture vocabulary to the circle/loop, infinity sign,
figure eight, and wave. The spiral is very similar to a loop, so for the sake of simplicity and
distinct gestures, we decided not to focus on it. The code we are currently using for skeletal
tracking does not track individual fingers, so the thumbs up gesture was also discarded.

3.3 Gesture Matching Algorithms

An important part of controlling the computer with gestures is being able to recognize
when a gesture has been drawn. By far, the most popular gesture created by students
was a circle motion for a loop gesture. So to refine the gesture matching algorithms, it
was decided to concentrate on matching the loop gesture first.

Template Matching for Loop Gesture
We started with a simple template matching algorithm, where a two-dimensional array
was set up with a perfect circle plotted onto it. Instead of drawing the circle as a 1x1
pixel line, we used a 5x5 pixel mask to give the user’s gesture some wiggle room so as
to not require an exact 1-to-1 match. An advantage of using template matching is that it
does not matter where the gesture starts or stops, if it is drawn clockwise or
counter-clockwise, or how fast it is drawn. Plotting the user’s gesture against the

Teaching Introductory Programming Concepts 119

template and measuring hit and miss percentage should give us a good idea of whether
or not the user’s gesture matches the template.

The number of coordinates varied greatly between gestures and users, so we nor-
malized all gestures to have the same dataset size of 50 uniformly sampled coordinates
from the original saved gesture. We discovered there was no discernable loss of
matching precision when comparing 50 pared coordinates instead of up to 195 for the
longest recorded gesture.

Minimum/Maximum Scaling Algorithm
To use a template matching algorithm, we needed to normalize our data so that it fits
onto the template. Our first attempt was to take the gesture, find the minimum x and y
values, and the maximum x and y values, and linearly scale the gesture in both
directions independently to fit the template.

As the coordinates for the drawn gesture are being plotted onto the loop gesture
template, the number of hits and misses are counted, and then using these, the per-
centage match is calculated. If the percentage is above a certain threshold, the drawn
gesture should be recognized as a match to the template gesture.

Standard Deviation Scaling Algorithm
While the minimum/maximum scaling algorithm works relatively well, one problem is
that it is designed to match a saved gesture, not a real-time gesture. The files we are
using for comparison were started when the user was ready to start and finished when
they completed the gesture, so the minimums and maximums are relatively accurate to
create a bounding box for the gesture. However, when trying to compare a gesture from
a real-time feed, there is no predefined start and stop, so we still need to be able to
detect it. For example, if the user reaches up and scratches their head before drawing a
loop, how can we detect that and ignore it as irrelevant data?

Our first implementation was to try using standard deviation in the hope that it
would help eliminate the irrelevant “straggler” coordinates before and after the
intended gesture. The thought was that we should be able to take something like the
number “9” and be able to detect where the loop section starts and ends without
including the leg of the number. To this end, the xmean and ymean were calculated
separately to come up with both xstddev and ystddev. Using this mean and standard
deviation, we defined a bounding box that was kx standard deviations units wide and ky
standard deviations tall, and we used those values to be the floor and ceiling of x and y
coordinates of the gesture respectively.

Sector Quantization
Sector quantization is simply taking a large set of data and condensing it down to a
smaller, more easily understandable set of data. We follow the path of the gesture and
note which sectors it appears in and in what order. We have the paths of clockwise and
counter-clockwise loops, figure eights, and infinity symbols predefined in the gesture
matching code, and we compare each user provided gesture path to it, and then accept
the largest matching percentage as the most likely candidate.

The current version of the code is written so that the predefined paths circle around
twice. Instead of just 2, 3, 6, 9, 8, 7, 4, 1, 2 (see Fig. 1A) for a clockwise loop, the path
is doubled to 2, 3, 6, 9, 8, 7, 4, 1, 2, 3, 6, 9, 8, 7, 4, 1, 2 so sub-lists of the arrays can be

120 L. Streeter and J. Gauch

utilized without having to wrap the array index back to zero. Because the predefined
paths are almost twice as long as the actual path we are trying to match, either the
match percentage must be doubled, or the threshold of matching must be halved. We
chose to go with the latter; therefore, the matching percentages look lower, but they are
being compared to a predefined gesture that is almost twice as long as the expected
gesture. An ideal loop gesture would visit eight or nine sectors, depending whether it
starts and ends in the same one, or stops just short of completing the path. Our
predefined loop gesture visits 17 sectors, visiting each one twice, and the initial sector
three times. Thus, a valid loop gesture match should have at least a 47% match
percentage (8 sectors/17 possible locations).

4 Results and Analysis

4.1 Data General Analysis

Using the data collected in 435 gesture files, we have discovered that the average
number of coordinates recorded for a gesture is around 94. This additional data was
collected by giving young adults interested in programming or computer networking
specific directions for what to draw (“draw a loop”), but not specifying where to start,
which direction to go, or which hand to use. With the information in Table 1, we
should be able to look at around 150 coordinates at a time to decide whether the
person’s movement contains a recognizable loop gesture. For the purposes of this
paper, we will only be looking at the matching accuracy of the loop gesture.

Fig. 1. Quantized gestures with sector grid; A. Ideal circle, and B–D. Three user gestures

Table 1. Data gathered

Files Total coordinates Average coordinates Minimum Maximum

Figure eight 119 10973 92 42 195
Infinity 122 11953 97 39 185
Loop 129 10173 78 38 157
Spiral 40 5890 147 97 193
Wave 27 2138 79 53 131
All 437 41127 94 38 195

Teaching Introductory Programming Concepts 121

We tried a simple minimum/maximum scaling to linearly scale the gesture to a
template. When the gesture was well-drawn and easily recognizable as a circle, this
algorithm worked well (Fig. 1B). However, when the gesture had significant overlap
(Fig. 1C), or was drawn shakily (Fig. 1D), the gestures did not match as well.

Next, to remove “straggler” points that were not part of the gesture itself, we tried a
standard deviation scaling algorithm with many different values for sigma. Unfortu-
nately, there was no one good value for sigma across all gestures, and the matching
percentage rarely went above 50.

We are currently working with quantization, cutting down our gesture path to a
three-by-three grid of nine total sectors. Requiring the gesture to match at least 47% of
the path’s sector order we expect to see for a loop gave us 124 matching files out of our
test group of 129 (96% success rate). The percent match rate for each of these three
algorithms for our sample three gestures (see Fig. 1B, C and D) is shown in Table 2.

By requiring at least a 90% match for the template matching algorithms, and at least
a 47% match on sector quantization to confirm that a drawn gesture matches what our
program expects to see for a predefined gesture, template matching was not nearly as
successful as sector quantization. When we break template matching into two sub-
sections, none of the standard deviation scaling options give us a match, while only a
very precise loop is matched using the minimum/maximum scaling. By using sector
quantization, all three user drawn gestures are matched as a loop gesture.

While the minimum/maximum scaling algorithm gave better results on a consistent
basis than the standard deviation scaling approach for template matching, we have
discovered that sector quantization holds a lot of promise for future matching efforts.

5 Conclusion and Future Work

The goal of our research is to create and evaluate a visual and gesture-driven interface to
teach programming to non-traditional programmers, typically school-age children. Based
on surveys given to several groups of young students, we discovered that when given the
option between sitting and using hand gestures, or standing and using full body move-
ments, the majority of students choose a one-handed, two dimensional gesture, regardless
of sitting or standing. This was counter-intuitive since we expected the students to use
three-dimensional space and/or utilize more than their dominant hand.

Table 2. Percents matched for gestures

Total coordinates Template matching Sector quantization

Minimum/Maximum
Scaling

Standard deviation scaling - all
data

All data Pared data Sigma = 1.75 Sigma = 1.9

B 68 91.18% 94.00% 12.50% 16.96% 58.82%
C 75 49.33% 48.00% 30.67% 6.67% 64.71%
D 112 33.04% 34.00% 11.48% 16.39% 52.94%

122 L. Streeter and J. Gauch

Our current system has a limited gesture vocabulary that includes loops, figure
eights, infinity signs, and waves. We would like to expand this in the future and allow
students to create their own gestures for key programming constructs.

We have also implemented and evaluated several gesture matching algorithms.
While template matching was not as successful as we were hoping, sector quantization
holds a lot of promise and we are currently incorporating this into our application.
When our gesture-based programming interface is completed, we would like to eval-
uate the effectiveness of this approach with additional groups of young prospective
programmers.

References

1. Moskal, B., Lurie, D., Cooper, S.: Evaluating the effectiveness of a new instructional
approach. SIGCSE Bull. 36(1), 75–79 (2004). https://doi.org/10.1145/1028174.971328

2. Hoste, L., Signer, B.: Criteria, challenges and opportunities for gesture programming
languages. In: Proceedings of EGMI, pp. 22–29 (2014)

3. Lü, H., Li, Y.: Gesture coder: a tool for programming multi-touch gestures by demonstration.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
2012), pp. 2875–2884. ACM, New York (2012). http://dx.doi.org/10.1145/2207676.2208693

4. Kato, J.: Integrated visual representations for programming with real-world input and output.
In: Proceedings of the Adjunct Publication of the 26th Annual ACM Symposium on User
Interface Software and Technology (UIST 2013 Adjunct), pp. 57–60. ACM, New York
(2013). https://doi.org/10.1145/2508468.2508476

5. Kato, J., Igarashi, T.: VisionSketch: integrated support for example-centric programming of
image processing applications. In: Proceedings of Graphics Interface 2014 (GI 2014),
Canadian Information Processing Society, Toronto, Ont., Canada, Canada, pp. 115–122
(2014)

6. Kavakli, M., Taylor, M., Trapeznikov, A.: Designing in virtual reality (DesIRe): a
gesture-based interface. In: Proceedings of the 2nd International Conference on Digital
Interactive Media in Entertainment and Arts (DIMEA 2007), pp. 131–136. ACM, New York
(2007). http://dx.doi.org/10.1145/1306813.1306842

7. Dudek, G., Sattar, J., Xu, A.: A visual language for robot control and programming: a
human-interface study. In: Proceedings of the International Conference on Robotics and
Automation ICRA, Rome, Italy, April 2007

Teaching Introductory Programming Concepts 123

http://dx.doi.org/10.1145/1028174.971328
http://dx.doi.org/10.1145/2207676.2208693
http://dx.doi.org/10.1145/2508468.2508476
http://dx.doi.org/10.1145/1306813.1306842

	Teaching Introductory Programming Concepts Through a Gesture-Based Interface
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Visual Programming Languages
	2.2 Gestural Programming Languages
	2.3 Kinect

	3 Methodology
	3.1 Student Population and Experimental Design
	3.2 Comparing Gestures
	3.3 Gesture Matching Algorithms

	4 Results and Analysis
	4.1 Data General Analysis

	5 Conclusion and Future Work
	References

