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Abstract. Monitors constitute one of the common techniques to syn-
chronize threads in multithreaded programs, where calling a wait com-
mand on a condition variable suspends the caller thread and notifying a
condition variable causes the threads waiting for that condition variable
to resume their execution. One potential problem with these programs is
that a waiting thread might be suspended forever leading to deadlock, a
state where each thread of the program is waiting for a condition variable
or a lock. In this paper, a modular verification approach for deadlock-
freedom of such programs is presented, ensuring that in any state of the
execution of the program if there are some threads suspended then there
exists at least one thread running. The main idea behind this approach
is to make sure that for any condition variable v for which a thread is
waiting there exists a thread obliged to fulfil an obligation for v that
only waits for a waitable object whose wait level, an arbitrary number
associated with each waitable object, is less than the wait level of v. The
relaxed precedence relation introduced in this paper, aiming to avoid
cycles, can also benefit some other verification approaches, verifying
deadlock-freedom of other synchronization constructs such as channels
and semaphores, enabling them to accept a wider range of deadlock-free
programs. We encoded the proposed proof rules in the VeriFast program
verifier and by defining some appropriate invariants for the locks asso-
ciated with some condition variables succeeded in verifying some popu-
lar use cases of monitors including unbounded/bounded buffer, sleeping
barber, barrier, and readers-writers locks. A soundness proof for the pre-
sented approach is provided; some of the trickiest lemmas in this proof
have been machine-checked with Coq.

1 Introduction

One of the popular mechanisms for synchronizing threads in multithreaded pro-
grams is using monitors, a synchronization construct allowing threads to have
mutual exclusion and also the ability to wait for a certain condition to become
true. These constructs, consisting of a mutex/lock and some condition variables,
provide some basic functions for their clients, namely wait(v, l), causing the call-
ing thread to wait for the condition variable v and release lock l while doing
so, and notify(v)/notifyAll(v), causing one/all thread(s) waiting for v to resume
their execution. Each condition variable is associated with a lock; a thread must
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acquire the associated lock for waiting or notifying on a condition variable, and
when a thread is notified it must reacquire the associated lock.

However, one potential problem with these synchronizers is deadlock, where
all threads of the program are waiting for a condition variable or a lock. To clarify
the problem consider the program in Fig. 1, where a channel consists of a queue
q, a lock l and a condition variable v, protecting a thread from dequeuing q when
it is empty. In this program the receiver thread first acquires lock l and while
there is no item in q it releases l, suspends itself and waits for a notification
on v. If this thread is notified while q is not empty it dequeues an item and
finally releases l. The sender thread also acquires the same lock, enqueues an
item into q, notifies one of the threads waiting for v, if any, and lastly releases
l. After creating a channel ch, the main thread of the program first forks a
thread to receive a message from ch and then sends a message on ch. Although
this program is deadlock-free, it is easy to construct some variations of it that
lead to deadlock: if the main thread itself, before sending any messages, tries
to receive a message from ch, or if the number of receives is greater than the
number of sends, or if the receiver thread waits for v even if q is not empty.

routine main()
{q := newqueue;
l := newlock;
v := newcond;
ch := channel(q, l, v);
fork (receive(ch));
send(ch, 12)}

routine send(channel ch, int d)
{acquire(ch.l);
enqueue(ch.q, d);
notify(ch.v);
release(ch.l)}

routine receive(channel ch)
{acquire(ch.l);
while(sizeof(ch.q) = 0)

wait(ch.v, ch.l);
d := dequeue(ch.q);
release(ch.l);
d}

Fig. 1. A message passing program synchronized using a monitor

Several approaches to verify termination, deadlock-freedom, liveness, and
finite blocking of threads of programs have been presented. Some of these
approaches only work with non-blocking algorithms [1–3], where the suspension
of one thread cannot lead to the suspension of other threads. These approaches
are not applicable for condition variables because suspension of a sender thread
in Fig. 1, for example, might cause a receiver thread to be blocked forever. Some
other approaches are also presented to verify termination of programs using some
blocking constructs such as channels [4–6] and semaphores [7]. These approaches
are not general enough to cover condition variables because unlike the channels
and semaphores a notification of a condition variable is lost when there is no
thread waiting for that condition variable. There are also some studies [8–10] to
verify correctness of programs that support condition variables. However, these
approaches either only cover a very specific application of condition variables,
such as a buffer program with only one producer and one consumer, or are not
modular and suffer from a long verification time when the size of the state space,
such as the number of threads, is increased.
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In this paper we present a modular approach to verify deadlock-freedom
of programs in the presence of condition variables. More specifically, this app-
roach makes sure that for any condition variable v for which a thread is wait-
ing there exists a thread obliged to fulfil an obligation for v that only waits
for a waitable object whose wait level, an arbitrary number associated with
each waitable object, is less than the wait level of v. The presented approach
is modular, meaning that different modules (functions) of a program can be
verified individually. This approach is based on Leino et al. [4] approach for
verification of deadlock-freedom in the presence of channels and locks, which in
turn was based on Kobayashi’s [6] type system for verifying deadlock-freedom
of π-calculus processes, and extends the separation logic-based encoding [11] by
covering condition variables. We implemented the proposed proof rules in the
VeriFast verifier [12–14] and succeeded in verifying some common applications
of condition variables such as bounded/unbounded buffer, sleeping barber [15],
barrier, and readers-writers locks (see the full version of this paper [16] reporting
the verification time of these programs).

This paper is structured as follows. Section 2 provides some background
information on the existing approaches upon which we build our verification
algorithm. Section 3 introduces a preliminary approach for verifying deadlock-
freedom of some common applications of condition variables. In Sect. 4 the prece-
dence relation, aiming to avoid cycles, is relaxed, making it possible to verify
some trickier applications of condition variables. A soundness proof of the pre-
sented approach is lastly given in Sect. 5.

2 Background Information on the Underlying Approaches

In this section we provide some background information on the existing
approaches that verify absence of data races and deadlock in the presence of
locks and channels that we build on.

2.1 Verifying Absence of Data Races

Locks/mutexes are mostly used to avoid data races, an undesired situation where
a heap location is being written and accessed concurrently by two different
threads. One common approach to verify absence of these undesired conditions
is ownership: ownership of heap locations is assigned to threads and it is verified
that a thread accesses only the heap locations that it owns. Transferring owner-
ship of heap locations between threads is supported through locks by allowing
locks, too, to own heap locations. While a lock is not held by a thread, it owns
the heap locations described by its invariant. More specifically, when a lock is
created the resources specified by its invariant are transferred from the creating
thread to the lock, when that lock is acquired these resources are transferred
from the lock to the acquiring thread, and when that lock is released these
resources, that must be again in possession of the thread, are again transferred
from the thread to the lock [17]. Figure 2 illustrates how a program increasing a
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x:=newint(0);
{x�→0}
l := newlock;
{ulock(l) ∗ x�→0}
ct := counter(x:=x, l:=l);
{ulock(ct.l) ∗ ct.x �→0}
{ulock(ct.l) ∗ inv(ct)}
{lock(ct.l) ∧ I(l)=inv(ct)}
{lock(ct.l) ∗ lock(ct.l)}
fork (inc(ct));
{lock(ct.l)}
inc(ct)

routine inc(counter ct){
{lock(ct.l) ∧ I(l)=inv(ct)}
acquire(ct.l);
{locked(ct.l) ∗ ∃z. ct.x �→z}
ct.x:=ct.x+1;
{locked(ct.l) ∗ ∃z. ct.x �→z}
release(ct.l)
{lock(ct.l)}}

Fig. 2. Verification of data-race-freedom of a program, where inv = λct. ∃z. ct.x �→z

counter, which consists of an integer variable x and a lock l protecting this vari-
able, can be verified, where two threads try to write on the variable x. We use
separation logic [18] to reason about the ownership of permissions. As indicated
below each command, creating the integer variable x initialized by zero provides
a read/write access permission to x, denoted by x�→0. This ownership, that is
going to be protected by lock l, is transferred to the lock because it is asserted by
the lock invariant inv, which is associated with the lock, as denoted by function I,
at the point where the lock is initialized. The resulting lock permission, that can
be duplicated, is used in the routine inc, where x is increased under protection
of lock l. Acquiring this lock in this routine provides a full access permission to
x and transforms the lock permission to a locked permission, implying that the
related lock has been acquired. Releasing that lock again consumes this access
permission and transforms the locked permission to a lock one.

2.2 Verifying Absence of Deadlock

One potential problem with programs using locks and other synchronization
mechanisms is deadlock, an undesired situation where all threads of the program
are waiting for some waitable objects. For example, a program can deadlock if a
thread acquires a lock and forgets to release it, because any other thread waiting
for that lock never succeeds in acquiring that lock. As another example, if in a
message passing program the number of threads trying to receive a message
from a channel is greater than the number of messages sent on that channel
there will be some threads waiting for that channel forever. One approach to
verify deadlock-freedom of channels and locks is presented by Leino et al. [4] that
guarantees deadlock-freedom of programs by ensuring that (1) for any obligee
thread waiting for a waitable object, such as a channel or lock, there is an
obligation for that object that must be fulfilled by an obligor thread, where a
thread can fulfil an obligation for a channel/lock if it sends a message on that
channel/releases that lock, and (2) each thread waits for an object only if the
wait level of that object, an arbitrary number assigned to each waitable object,
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is lower than the wait levels of all obligations of that thread. The second rule is
established by making sure that when a thread with some obligations O executes
a command acquire(o)/receive(o) the precondition o≺O holds, i.e. the wait level
of o is lower than the wait levels of obligations in O. To meet the first rule where
the waitable object is a lock, as the example in the left side of Fig. 3 illustrates,
after acquiring a lock, that lock is loaded onto the bag1 (multiset) of obligations
of the thread, denoted by obs(O). This ensures that if a thread tries to acquire
a lock that has already been acquired then there is one thread obliged to fulfil
an obligation for that lock.

{obs(O) ∗ lock(l) ∧ l≺O}
acquire(l);
{obs(O�{[l]}) ∗ locked(l) ∗ I(l)}
...
{obs(O�{[l]}) ∗ locked(l) ∗ I(l)}
release(l)
{obs(O) ∗ lock(l)}

{obs(O)}
{obs(O�{[ch]}) ∗ credit(ch)}
fork (
{obs({[]}) ∗ credit(ch) ∧ ch≺{[]}}
receive(ch)
{obs({[]})}
);
{obs(O�{[ch]})}
send(ch, 12) {obs(O)}

Fig. 3. Verification of deadlock-freedom of locks (left side) and channels (right side)

To establish the first rule where the waitable object is a channel any thread
trying to receive a message from a channel ch must spend one credit for ch. This
credit is normally obtained from the thread that has forked the receiver thread,
where this credit is originally created by loading ch onto the bag of obligations
of the forking thread. The forking thread can discharge the loaded obligation
by either sending a message on the corresponding channel or delegating it to a
child thread that can discharge it. The example on the right side of Fig. 3 shows
the verification of deadlock-freedom a program in which the main routine, after
forking a obligee thread trying to receive a message from channel ch, sends a
message on this channel. Before forking the receiver thread, a credit and an
obligation for the channel ch are created in the main thread. The former is given
to the forked thread, where this credit is spent by the receive(ch) command,
and the latter is fulfilled by the main thread when it executes the command
send(ch, 12).

More formally, the mentioned verification approach satisfies the first rule by
ensuring that for each channel ch in the program the number of obligations for ch
is equal to/greater than the number of threads waiting for ch. This assurance is
obtained by preserving the invariant Wt(ch)+Ct(ch) � Ot(ch)+sizeof(ch), while
the programming language itself ensures that sizeof(ch) > 0 ⇒ Wt(ch) = 0,
where sizeof is a function mapping each channel to the size of its queue, Wt(ch)
1 We treat bags of waitable objects as functions from waitable objects to natural

numbers.
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is the total number of threads currently waiting for channel ch, Ot(ch) is the
total number of obligations for channel ch held by all threads, and Ct(ch) is the
total number of credits for channel ch currently in the system.

2.3 Proof Rules

The separation logic-based proof rules, introduced by Jacobs et al. [11], avoid-
ing data races and deadlock in the presence of locks and channels are shown in
Fig. 4, where R and I are functions mapping a waitable object/lock to its wait
level/invariant, respectively, and g initl, and g load are some ghost commands used
to initialize an uninitialized lock permission and load a channel onto the bag of
obligations and credits of a thread, respectively. When a lock is created, as shown
inNewLock, an uninitialized lock permission ulock(l) is provided for that thread.
Additionally, an arbitrary integer number z can be decided as the wait level of that
lock that is stored in R. Note that variable z in this rule is universally quantified
over the rule, and different applications of the NewLock rule can use different
values for this variable. The uninitialized lock permission, as shown in InitLock,
can be converted to a normal lock permission lock(l) provided that the resources
described by the invariant of that lock, stored in I, that must be in possession of the
thread, are transferred from the thread to the lock. By the rule Acquire, having
a lock permission, a thread can acquire that lock if the wait levels of obligations of
that thread are all greater than the wait level of that lock. After acquiring the lock,
the resources represented by the invariant of that lock are provided for the acquir-
ing thread and the permission lock is converted to a locked permission. When a

NewLock
{true} newlock {λl. ulock(l) ∧ R(l)=z}

InitLock
{ulock(l) ∗ i} g initl(l) {λ . lock(l) ∧ I(l)=i}

Acquire {lock(l) ∗ obs(O) ∧ l≺O} acquire(l) {λ . obs(O�{[l]}) ∗ locked(l) ∗ I(l)}

Release {obs(O) ∗ locked(l) ∗ I(l)} release(l) {λ . obs(O−{[l]}) ∗ lock(l)}

NewChannel
{true} newchannel {λch. R(ch)=z}

Send
{obs(O)} send(ch, v) {λ . obs(O−{[ch]})}

Receive
{obs(O) ∗ credit(ch) ∧ ch≺O} receive(ch) {λ . obs(O)}

Fork
{a ∗ obs(O)} c {λ . obs({[]})}

{a ∗ obs(O�O′)} fork(c) {λ . obs(O′)} DupLock lock(l) ⇔ lock(l) ∗ lock(l)

LoadOb {obs(O)} g load(ch) {λ . obs(O�{[ch]}) ∗ credit(ch)}

Fig. 4. Proof rules ensuring deadlock-freedom of channels and locks, where o≺O ⇔
∀o′ ∈ O. R(o) < R(o′)
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thread releases a lock, as shown in the rule Release, the resources indicated by
the invariant of that lock, that must be in possession of the releasing thread, are
transferred from the thread to the lock and the permission locked is again con-
verted to a lock permission. By the rule Receive a thread with obligations O can
try to receive a message from a channel ch only if the wait level of ch is lower than
the wait levels of all obligations in O. This thread must also spend one credit for
ch, ensuring that there is another thread obliged to fulfil an obligation for ch. As
shown in the rule Send, an obligation for this channel can be discharged by send-
ing a message on that channel. Alternatively, by the rule Fork, a thread can dis-
charge an obligation for a channel if it delegates that obligation to a child thread,
provided that the child thread discharges the delegated obligation. In this setting
the verification of a program starts with an empty bag of obligations and must
also end with such bag implying that there is no remaining obligation to fulfil.

However, this verification approach is not straightforwardly applicable to
condition variables. A command notify cannot be treated like a command send
because a notification on a condition variable is lost when there is no thread
waiting for that variable. Accordingly, it does not make sense to discharge an
obligation for a condition variable whenever it is notified. Similarly, a command
wait cannot be treated like a command receive. A command wait is normally
executed in a while loop, checking the waiting condition of the related condition
variable. Accordingly, it is impossible to build a loop invariant for such a loop if
we force the wait command to spend a credit for the related condition variable.

3 Deadlock-Free Monitors

3.1 High-Level Idea

In this section we introduce an approach to verify deadlock-freedom of pro-
grams in the presence of condition variables. This approach ensures that the
verified program never deadlocks, i.e. there is always a running thread, that is
not blocked, until the program terminates. The main idea behind this approach
is to make sure that for any condition variable v for which a thread is waiting
there exists a thread obliged to fulfil an obligation for v that only waits for a
waitable object whose wait level is less than the wait level of v. As a consequence,
if the program has some threads suspended, waiting for some obligations, there is
always a thread obliged to fulfil the obligation omin that is not suspended, where
omin has a minimal wait level among all waitable objects for which a thread is
waiting. Accordingly, the proposed proof rules make sure that (1) when a com-
mand wait(v, l) is executed Ot(v) > 0, where Ot maps each condition variable v
to the total number of obligations for v held by all threads (note that having a
thread with permission obs(O) implies O(v) � Ot(v)), (2) a thread discharges
an obligation for a condition variable only if after this discharge the invariant
one ob(v,Wt , Ot) defined as Wt(v) > 0 ⇒ Ot(v) > 0 still holds, where Wt(v)
denotes the number of threads waiting for condition variable v, and (3) a thread
with obligations O executes a command wait(v, l) only if v≺O.



422 J. Hamin and B. Jacobs

3.2 Tracking Numbers of Waiting Threads and Obligations

For all condition variables associated with a lock l the value of functions Wt and
Ot can only be changed by a thread that has locked l; Wt(v) is changed only
when one of the commands wait(v, l)/notify(v)/notifyAll(v) is executed, requiring
holding lock l, and we allow Ot(v) to be changed only when a permission locked
for l is available. Accordingly, when a thread acquires a lock these two bags
are stored in the related locked permission and are used to establish the rules
number 1 and 2, when a thread executes a wait command or discharges one
of its obligations. Note that the domain of these functions is the set of the
condition variables associated with the related lock. The thread executing the
critical section can change these two bags under some circumstances. If that
thread loads/discharges a condition variable onto/from the list of its obligations
this condition variable must also be loaded/discharged onto/from the bag Ot
stored in the related locked permission. Note that unlike the approach presented
by Leino et al. [4], an obligation for a condition variable can arbitrarily be
loaded or discharged by a thread, provided that the rule number 2 is respected.
At the start of the execution of a wait(v, l) command, Wt(v) is incremented and
after execution of commands notify(v)/notifyAll(v) one/all instance(s) of v is/are
removed from the bag Wt stored in the related locked permission, since these
commands change the number of threads waiting for v.

A program can be successfully verified according to the mentioned rules,
formally indicated in Fig. 5, if each lock associated with any condition vari-
able v has an appropriate invariant such that it implies the desired invariant
one ob(v,Wt , Ot). Accordingly, the proof rules allow locks to have invariants
parametrized over the bags Wt and Ot. When a thread acquires a lock the result
of applying the invariant of that lock to these two bags, stored in the related
locked permission, is provided for the thread and when that lock is released it is
expected that the result of applying the lock invariant to those bags, stored in
the related locked permission, again holds. However, before execution of a com-
mand wait(v, l), when lock l with bags Wt and Ot stored in its locked permission
is going to be released, it is expected that the invariant of l holds with bags
Wt�{[v]} and Ot because the running thread is going to wait for v and this con-
dition variable is going to be added to Wt . As this thread resumes its execution,
when it has some bags Wt ′ and Ot′ stored in the related locked permission, the
result of applying the invariant of l to these bags is provided for that thread. Note
that the total number of threads waiting for v, Wt(v), is already decreased when
a command notify(v) or notifyAll(v) is executed, causing the waiting thread(s)
to wake up and try to acquire the lock associated with v.

3.3 Resource Transfer on Notification

In general, as we will see when looking at examples, it is sometimes necessary
to transfer resources from a notifying thread to the threads being notified2.
2 This transfer is only sound in the absence of spurious wake-ups, where a thread

is awoken from its waiting state even though no thread has signaled the related
condition variable.
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To this end, these resources, specified by a function M, are associated
with each condition variable v when v is created, such that the commands
notify(v)/notifyAll(v) consume one/Wt(v) instance(s) of these resources, respec-
tively, and the command wait(v, l) produces one instance of such resources (see
the rules Wait,Notify, and NotifyAll in Fig. 5).

NewLock {true} newlock {λl. ulock(l, {[]}, {[]}) ∧ R(l)=z}

NewCv {true} newcond {λv. R(v)=z ∧ L(v)=l ∧ M(v)=m}

Acquire
{lock(l) ∗ obs(O) ∧ l≺O} acquire(l)

{λ . ∃Wt , Ot. locked(l,Wt , Ot) ∗ I(l)(Wt , Ot) ∗ obs(O�{[l]})}

Release
{locked(l,Wt , Ot) ∗ I(l)(Wt , Ot) ∗ obs(O�{[l]})} release(l) {λ . lock(l) ∗ obs(O)}

Wait
{locked(l,Wt , Ot) ∗ I(l)(Wt�{[v]}, Ot) ∗ obs(O�{[l]})

∧ l=L(v) ∧ v≺O ∧ l≺O ∧ safe obs(v,Wt�{[v]}, Ot)} wait(v, l)
{λ . obs(O�{[l]}) ∗ ∃Wt ′, Ot′. locked(l,Wt ′, Ot′) ∗ I(l)(Wt ′, Ot′) ∗ M(v)}

Notify
{locked(L(v),Wt , Ot) ∗ (Wt(v) = 0 ∨ M(v))} notify(v)

{λ . locked(L(v),Wt−{[v]}, Ot)}

NotifyAll

{locked(L(v),Wt , Ot) ∗ (
Wt(v)∗
i:=0

M(v))} notifyAll(v) {λ . locked(L(v),Wt [v:=0], Ot)}

InitLock
{ulock(l,Wt , Ot) ∗ inv(Wt , Ot) ∗ obs(O)} g initl(l) {λ . lock(l) ∗ obs(O) ∧ I(l)=inv}

ChargeOb
{obs(O) ∗ ulock/locked(L(v),Wt , Ot)} g chrg(v)

{λ . obs(O�{[v]}) ∗ ulock/locked(L(v),Wt , Ot�{[v]})}

DisOb
{obs(O) ∗ ulock/locked(L(v),Wt , Ot) ∧ safe obs(v,Wt(v), Ot−{[v]})}

g disch(v) {λ . obs(O−{[v]}) ∗ ulock/locked(L(v),Wt , Ot−{[v]})}

Fig. 5. Proof rules to verify deadlock-freedom of condition variables, where Wt(v)
and Ot(v) denote the total number of threads waiting for v and the total number
of obligations for v, respectively, and safe obs(v,Wt , Ot) ⇔ one ob(v,Wt , Ot) and
one ob(v,Wt , Ot) ⇔ (Wt(v) > 0 ⇒ Ot(v) > 0)

3.4 Proof Rules

Figure 5 shows the proposed proof rules used to verify deadlock-freedom of
condition variables, where L and M are functions mapping each condition variable
to its associated lock and to the resources that are moved from the notifying
thread to the notified one when that condition variable is notified, respectively.



424 J. Hamin and B. Jacobs

Creating a lock, as shown in the rule NewLock, produces a permission ulock
storing the bags Wt and Ot, where these bags are initially empty. The bag
Ot in this permission, similar to a locked one, can be changed provided that the
obligations of the running thread are also updated by one of the ghost commands
g chrg(v) or g disch(v) (see rules ChargeOb and DisOb). The lock related to
this permission can be initialized by transferring the resources described by
the invariant of this lock, that is now parametrized over the bags Wt and Ot,
applied to the bags stored in this permission from the thread to the lock (see
rule InitLock). When this lock is acquired, as shown in the rule Acquire, the
resources indicated by its invariant are provided for the thread, and when it is
released, as shown in the rule Release, the resources described by its invariant
that must hold with appropriate bags, are again transferred from the thread
to the lock. The rules Wait and DisOb ensure that for any condition variable
v when the number of waiting threads is increased, by executing a command
wait(v, l), or the number of the obligations is decreased, by (logically) executing
a command g disch(v), the desired invariant one ob still holds. Additionally, the
rules Acquire and Wait make sure that a thread only waits for a waitable
object whose wait level is lower that the wait levels of obligations of that thread.
Note that in the rule Wait in the precondition of the command wait(v, l) it is
not necessary that the wait level of v is lower that the wait level of l, since lock
l is going to be released by this command. However, in this precondition the
wait level of l must be lower that the wait levels of the obligations of the thread
because when this thread is notified it tries to reacquire l, at which point l≺O
must hold. The commands notify(v)/notifyAll(v), as shown in the rules Notify
and NotifyAll, remove one/all instance(s) of v, if any, from the bag Wt stored
in the related locked permission. Additionally, notify(v) consumes the moving
resources, indicated by M(v), that appear in the postcondition of the notified
thread. Note that notifyAll(v) consumes Wt(v) instances of these resources, since
they are transferred to Wt(v) threads waiting for v.

3.5 Verifying Channels

Ghost Counters. We will now use our proof system to prove deadlock-freedom
of the program in Fig. 1. To do so, however, we will introduce a ghost resource
that plays the role of credits, in such a way that we can prove the invariant
Wt(ch) + Ct(ch) � Ot(ch) + sizeof(ch). In particular, we want this property
to follow from the lock invariant. This means we need to be able to talk, in
the lock invariant, about the total number of credits in the system. To achieve
this, we introduce a notion of ghost counters and corresponding ghost counter
tickets, both of which are a particular kind of ghost resources. Specifically, we
introduce three ghost commands: g newctr, g inc, and g dec. g newctr allocates
a new ghost counter whose value is zero and returns a ghost counter identifier
c for it. g inc(c) increments the value of the ghost counter with identifier c and
produces a ticket for the counter. g dec(c), finally, consumes a ticket for ghost
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NewCounter {true} g newctr {λc. ctr(c, 0)}

IncCounter {ctr(c, n)} g inc(c) {λ . ctr(c, n+1) ∗ tic(c)}

DecCounter {ctr(c, n) ∗ tic(c)} g dec(c) {λ . ctr(c, n−1) ∧ 0<n}

Fig. 6. Ghost counters

counter c and decrements the ghost counter’s value. Since these are the only
operations that manipulate ghost counters or ghost counter tickets, it follows
that the value of a ghost counter c is always equal to the number of tickets for
c in the system. Proof rules for these ghost commands are shown in Fig. 63.

The Channels Proof. Figure 7 illustrates how the program in Fig. 1 can be ver-
ified using our proof system. The invariant of lock ch.l in this program, denoted
by inv(ch), is parametrized over bags Wt , Ot and implies the desired invariant
one ob(ch.v,Wt , Ot). The permission ctr(ch.c, Ctv) in this invariant indicates
that the total number of credits (tickets) for ch.v is Ctv, where ch.c is a ghost field
added to the channel data structure, aiming to store a ghost counter identifier
for the ghost counter of ch.v. Generally, a lock invariant can imply the invariant
one ob(v,Wt , Ot) if it asserts Wt(v)+ Ct(v) � Ot(v)+ S(v) and Wt(v) � Ot(v),
where Ct(v) is the total number of credits for v and S(v) is an integer value such
that the command wait(v, l) is executed only if S(v) � 0. After initializing l in
the main routine, there exists a credit for ch.v (denoted by tic(ch.c)) that is
consumed by the thread executing the receive routine, and also an obligation for
ch.v that is fulfilled by this thread after executing the send routine. The credit
tic(ch.c) in the precondition of the routine receive ensures that before execution
of the command wait(ch.v, ch.l), Ot(ch.v) > 0. This inequality follows from the
invariant of lock l, which holds for Wt�{[ch.v]} and Ot when Ctv is decreased
by g dec(ch.c). This credit (or the one specified by M(ch.v) that is moved from
a notifier thread when the receiver thread wakes up) must be consumed after
execution of the command dequeue(ch.q) and before releasing ch.l to make sure
that the invariant still holds after decreasing the number of items in ch.q. The
obligation for ch.v in the precondition of the routine send is discharged by this
routine, which is safe, since after the execution of the commands enqueue and
notify the invariant one ob(ch.v,Wt , Ot − {[ch.v]}), which follows from the lock
invariant, holds.

3 Some logics for program verification, such as Iris [19], include general support for
defining ghost resources such as our ghost counters. In particular, our ghost counters
can be obtained in Iris as an instance of the authoritative monoid [19, p. 5].
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inv(channel ch) ::= λWt . λOt. ∃Ctv. ctr(ch.c, Ctv) ∗ ∃s. queue(ch.q, s) ∧
L(ch.v)=ch.l ∧ M(ch.v)=tic(ch.c) ∧
Wt(ch.v) + Ctv � Ot(ch.v) + s ∧
Wt(ch.v) � Ot(ch.v)

routine main(){{obs({[]})}
q:=newqueue; l:=newlock; v:=newcond; c:=g newctr; g inc(c);
{obs({[]}) ∗ ulock(l, {[]}, {[]}) ∗ queue(q, 0) ∗ ctr(c, 1) ∗ tic(c)
∧ L(v)=l ∧ M(v)=tic(c) ∧ R(l)=0 ∧ R(v)=1}
ch:=channel(q, l, v); ch.c:=c;
{obs({[]}) ∗ ulock(l, {[]}, {[]}) ∗ inv(ch)({[]}, {[v]}) ∗ tic(c)} g chrg(v);
{obs({[v]}) ∗ ulock(l, {[]}, {[v]}) ∗ inv(ch)({[]}, {[v]}) ∗ tic(c)} g initl(l);
{obs({[v]}) ∗ lock(l) ∗ tic(c) ∧ I(l)=inv(ch)}
fork (receive(ch));
{obs({[v]}) ∗ lock(l)}
send(ch, 12) {obs({[]})}}

routine receive(channel ch){
{obs(O) ∗ tic(ch.c) ∗ lock(ch.l) ∧ ch.l≺O ∧ ch.v≺O ∧ I(ch.l)=inv(ch)}
acquire(ch.l);
{obs(O�{[ch.l]}) ∗ tic(ch.c) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt , Ot)}
while(sizeof(ch.q) = 0){ g dec(ch.c);

{obs(O�{[ch.l]}) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt�{[ch.v]}, Ot)}}
wait(ch.v, ch.l)
{obs(O�{[ch.l]}) ∗ M(ch.v) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt , Ot)}};

dequeue(ch.q); g dec(ch.c);
{obs(O�{[ch.l]}) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt , Ot)}
release(ch.l) {obs(O) ∗ lock(ch.l)}}

routine send(channel ch, int d){
{obs(O�{[ch.v]}) ∗ lock(ch.l) ∧ ch.l≺O�{[ch.v]} ∧ I(ch.l)=inv(ch)}
acquire(ch.l);
{obs(O�{[ch.v, ch.l]}) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt , Ot)}
enqueue(ch.q, d);
if (Wt(ch.v)>0) g inc(ch.c);
notify(ch.v);
{obs(O�{[ch.v, ch.l]}) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt, Ot−{[ch.v]})}
g disch(ch.v);
{obs(O�{[ch.l]}) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt , Ot)}
release(ch.l) {obs(O) ∗ lock(ch.l)}}

Fig. 7. Verification of the program in Fig. 1

3.6 Other Examples

Using the proof system of this section we prove two other deadlock-free programs,
namely sleeping barber [16], and barrier. In the barrier program shown in Fig. 8, a
barrier b consists of an integer variable r indicating the number of the remaining
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routine main(){
r:=newint(3);
l:=newlock;
v:=newcond;
b:=barrier(r, l, v);
fork (task1();wait for rest(b); task2());
fork (task1();wait for rest(b); task2());
task1();wait for rest(b); task2()}

routine wait for rest(barrier b){
acquire(b.l);
b.r:=b.r−1;
if(b.r=0)
notifyAll();

else
while(b.r>0)

wait(b.v, b.l);
release(b.l)}

inv(barrier b) ::= λWt . λOt. ∃r�0. b.r �→r ∧ L(b.v)=b.l ∧ M(b.v)=true ∧
(Wt(b.v) = 0 ∨ 0 < r) ∧ (r � Ot(b.v))

routine main(){{obs({[]})}
r:=newint(3); l:=newlock; v:=newcond;
{obs({[]}) ∗ r �→3 ∗ ulock(l, {[]}, {[]}) ∧ L(v)=l ∧ M(v)=true ∧ R(l)=0 ∧ R(v)=1}
b:=barrier(r, l, v);
{obs({[]}) ∗ inv(b)({[]}, {[3·v]}) ∗ ulock(l, {[]}, {[]})}
g chrg(v); g chrg(v); g chrg(v); g initl(l);
{obs({[3·v]}) ∗ lock(l) ∧ I(l)=inv(b)}
fork (wait for rest(b));
{obs({[2·v]}) ∗ lock(l)}
fork (wait for rest(b));
{obs({[v]}) ∗ lock(l)}
wait for rest(b) {obs({[]})}}

routine wait for rest(barrier b){
{obs(O�{[b.v]}) ∗ lock(b.l) ∧ b.l≺O�{[b.v]} ∧ b.v≺O ∧ I(b.l)=inv(b)}
acquire(b.l);
{obs(O�{[b.v, b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot) ∗ inv(b)(Wt , Ot)}
b.r:=b.r−1;
if(b.r=0){
notifyAll(b.v);
{obs(O�{[b.v, b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt [b.v:=0], Ot)
∗inv(b)(Wt [b.v:=0], Ot−{[b.v]})} g disch(b.v)
{obs(O�{[b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot) ∗ inv(b)(Wt , Ot)}}

else{
{obs(O�{[b.v, b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot)
∗inv(b)(Wt , Ot−{[b.v]})} g disch(b.v);
{obs(O�{[b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot) ∗ inv(b)(Wt , Ot)}
while(b.r>0)

{obs(O�{[b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot) ∗ inv(b)(Wt�{[b.v]}, Ot)}
wait(b.v, b.l)
{obs(O�{[b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot) ∗ inv(b)(Wt , Ot)}};

release(b.l) {obs(O) ∗ lock(b.l)}}

Fig. 8. Verification of a barrier synchronized using a monitor
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threads that must call the routine wait for rest, a lock l protecting r against data
races, and a condition variable v. Each thread executing the routine wait for rest
first decreases the variable r, and if the resulting value is still positive waits for
v, otherwise it notifies all threads waiting for v. In this program the barrier is
initialized to 3, implying that no thread must start task2 unless all the three
threads in this program finish task1. This program is deadlock-free because the
routine wait for rest is executed by three different threads. Figure 8 illustrates
how this program can be verified by the presented proof rules. Note that before
executing g disch in the else branch, safe obs holds because at this point we have
0 < b.r, which implies 1 < b.r before the execution of b.r := b.r − 1, and by the
invariant we have 1 < Ot(b.v), implying 0 < (Ot − {[b.v]})(b.v). The interesting
point about the verification of this program is that since all the threads waiting
for condition variable v in this program are notified by the command notifyAll,
the invariant of the related lock, implying one ob(b.v,Wt , Ot), is significantly
different from the ones defined in the channel and sleeping barber examples.
Generally, for a condition variable v on which only notifyAll is executed (and
not notify) a lock invariant can imply the invariant one ob(v,Wt , Ot) if it asserts
Wt(v) = 0 ∨ S(v) � Ct(v) and Ct(v) < Ot(v) + S(v), where Ct(v) is the total
number of credits for v and S(v) is an integer value such that the command
wait(v, l) is executed only if S(v) � 0. For this particular example S(b.v) = 1−b.r
and Ct(b.v) = 0, since this program can be verified without incorporating the
notion of credits.

4 Relaxing the Precedence Relation

The precedence relation, in this paper denoted by ≺, introduced in [4] makes
sure that all threads wait for the waitable objects in strict ascending order (with
respect to the wait level associated with each waitable object), or here in this
paper in descending order, ensuring that in any state of the execution there is no
cycle in the corresponding wait-for graph. However, this relation is too restrictive
and prevents verifying some programs that are actually deadlock-free, such as
the one shown in the left side of Fig. 9. In this program a value is increased by
two threads communicating through a channel. Each thread receives a value from
the channel, increases that value, and then sends it back on the channel. Since an
initial value is sent on the related channel this program is deadlock-free. The first
attempt to verify this program is illustrated in the middle part of Fig. 9, where
the required credit to verify the receive command in the routine inc is going to
be provided by the send command, executed immediately after this command,
and not by the precondition of this routine. In other words, the idea is to load
a credit and an obligation for ch in the routine inc itself, and then spend the
loaded credit to verify the receive(ch) command and fulfil the loaded obligation
by the send(ch) command. However, this idea fails because the receive command
in the routine inc cannot be verified since one of its preconditions, ch≺{[ch]}, never
holds. Kobayashi [6,20] has addressed this problem in his type system by using
the notion of usages and assigning levels to each obligation/capability, instead of
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routine main(){
ch:=channel;
send(ch, 12);
fork (inc(ch));
fork (inc(ch))}

routine inc(channel ch){
d:=receive(ch);
send(ch, d+1)}

routine main(){
{obs({[]})}
ch:=newchannel;
send(ch, 12);
fork (inc(ch));
fork (inc(ch)) {obs({[]})}}

routine inc(channel ch){
{obs({[]})}
{obs({[ch]}) ∗ credit(ch)
∧ ch {≺� [ch]}}
d:=receive(ch);
{obs({[ch]})}
send(ch, d+1) {obs({[]})}}

routine main(){
{obs({[]})}
ch:=newchannel;
{obs({[ch]}) ∧ P(ch)=true}
send(ch, 12);
{obs({[]})}
fork (inc(ch));
fork (inc(ch)) {obs({[]})}}

routine inc(channel ch){
{obs({[]}) ∧ ch�{[ch]}}
〈obs({[ch]}) ∗ credit(ch)
∧ ch�{[ch]}〉
d:=receive(ch);
{obs({[ch]})}
send(ch, d+1) {obs({[]})}}

Fig. 9. A deadlock-free program verified by exploiting the relaxed precedence relation

waitable objects. However, in the next section we provide a novel idea to address
this problem by just relaxing the precedence relation used in the presented proof
rules.

4.1 A Relaxed Precedence Relation

To tackle the problem mentioned in the previous section we relax the precedence
relation, enforced by ≺, by replacing ≺ by � satisfying the following property:
o�O holds if either o≺O or (1) o≺O − {[o]}, and (2) o satisfies the property that
in any execution state, if a thread waits for o then there exists a thread that can
discharge an obligation for o and is not waiting for any object whose wait level
is equal to/greater than the wait level of o. This property still guarantees that in
any state of the execution if the program has some threads suspended, waiting for
some obligations, there is always a thread obliged to fulfil the obligation omin

that is not blocked, where omin has a minimal wait level among all waitable
objects for which a thread is waiting.

The condition number 2 is met if it is an invariant that for a condition variable
o for which a thread is waiting the total number of obligations is greater than the
total number of waiting threads. Since each thread waiting for o has at most one
instance of o in the bag of its obligations, according to the pigeonhole principle,
if the number obligations for o is higher than the number of threads waiting for
o then there exists a thread that holds an obligation for o that is not waiting for
o, implying the rule number 2 because this thread only waits for objects whose
wait levels are lower than the wait level of o. Accordingly, we first introduce a
new function P in the proof rules mapping each waitable object to a boolean
value, and then make sure that for any object o for which a thread is waiting if
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P(o) = true then Wt(o) < Ot(o). With the help of this function we define the
relaxed precedence relation as shown in Definition 1.

Definition 1 (Relaxed precedence relation). The relaxed precedence rela-
tion indexed over functions R and P holds for a waitable object v and a bag of
obligations O, denoted by v � O, if and only if:

v≺O ∨ (v≺O − {[v]} ∧ P(v) = true) , where v≺O ⇔ ∀o ∈ O. R(v) < R(o)

Using this relaxed precedence relation the approach presented by Leino et al. [4]
can also support more complex programs, such as the one in the left side of Fig. 9.
This approach can exploit this relation by (1) replacing the original precedence
relation ≺ by the relaxed one �, and (2) replacing the rule associated with creating
a channel by the one shown below. According to this proof rule for each channel
ch the function P, in the definition of the relaxed precedence relation, is initialized
when ch is created such that if P(ch) is decided to be true then one obligation for
ch is loaded onto the bag of obligations of the creating thread. The approach is
still sound because for any channel ch for which P is true the invariant Wt(ch) +
Ct(ch) < Ot(ch)+ sizeof(ch) holds. Combined with the fact that in this language,
where channels are primitive constructs, Wt(ch) > 0 ⇒ sizeof(ch) = 0, we have
Wt(ch) > 0 ⇒ Wt(ch) < Ot(ch). Now consider a deadlocked state, where each
thread is waiting for a waitable object. Among all of these waitable objects take
the one having a minimal wait level, namely om. If om is a lock or a channel, where
P(om) = false, then at least one thread has an obligation for om and is waiting for
an object o whose wait level is lower that the wait level of om, which contradicts
minimality of thewait level of om. Otherwise, sinceWt(om) > 0we haveWt(om) <
Ot(om). Additionally, we know that each thread waiting for om has at most one
obligation for om. Accordingly, there must be a thread holding an obligation for om

that is not waiting for om. Consequently, this thread must be waiting for an object
o whose wait level is lower than the wait level of om, which contradicts minimality
of the wait level of om.

{obs(O)} newchannel {λch. obs(O′) ∧ R(ch) = z ∧ P(ch) = b
∧((b = false ∧ O′ = O) ∨ (b = true ∧ O′ = O�{[ch]}))}

To exploit the relaxed definition in the approach presented in this paper we
only need to make sure that for any condition variable v for which a thread is
waiting if P(v) is true then Ot(v) is greater than Wt(v). To achieve this goal
we include this invariant in the definition of the invariant safe obs, shown in
Definition 2, an invariant that must hold when a command wait or a ghost
command g disch is executed.

Definition 2 (Safe Obligations). The relation safe obs(v,Wt , Ot), indexed
over function P, holds if and only if:

one ob(v,Wt , Ot) ∧ (P(v) = true ⇒ spare ob(v,Wt , Ot)), where
one ob(v,Wt , Ot) ⇔ (Wt(v) > 0 ⇒ Ot(v) > 0)
spare ob(v,Wt , Ot) ⇔ (Wt(v) > 0 ⇒ Wt(v) < Ot(v))
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one ob(v,Wt , Ot) ∧ (P(v)=true ⇒ spare ob(v,Wt , Ot)), where
one ob(v,Wt , Ot) ⇔ (Wt(v)>0 ⇒ Ot(v)>0)
spare ob(v,Wt , Ot) ⇔ (Wt(v)>0 ⇒ Wt(v)<Ot(v))

routine main(){
aw:=newint(0);
ww:=newint(0);
ar:=newint(0);
l:=newlock;
vw:=newcond;
vr:=newcond;
b := rdwr(aw, ww
, ar, l, vw, vr);
fork(
while (true)
fork(reader(b))

);
while (true)
fork(writer(b))

}

routine reader(rdwr b){
acquire(b.l);
while(b.aw+b.ww>0)
wait(b.vr, b.l);

b.ar:=b.ar+1;
release(b.l);
// Perform reading ...
acquire(b.l);
if(b.ar<1)
abort;

b.ar:=b.ar−1;
notify(b.vw);
release(b.l)}

routine writer(rdwr b){
acquire(b.l);
while(b.aw+b.ar>0){

b.ww:=b.ww+1;
wait(b.vw, b.l);
if(b.ww<1)

abort();
b.ww:=b.ww−1

};
b.aw:=b.aw+1;
release(b.l);
// Perform writing ...
acquire(b.l);
if(b.aw �=1)
abort;

b.aw:=b.aw−1;
notify(b.vw);
if(b.ww=0)
notifyAll(b.vr);

release(b.l)}

Fig. 10. A readers-writers program with variables aw, holding the number of threads
writing, ww, holding the number of thread waiting to write, and ar, holding the number
of threads reading, that is synchronized using a monitor consisting of condition variables
vw, preventing writers from writing while other threads are reading or writing, and vr,
preventing readers from reading while there is another thread writing or waiting to
write.

Readers-Writes Locks. As another application of this relaxed definition con-
sider a readers-writers program, shown in Fig. 104, where the condition variable
vw prevents writers from writing on a shared memory when that memory is being
accessed by other threads. After reading the shared memory, a reader thread noti-
fies this condition variable if there is no other thread reading that memory. This
condition variable is also notified by a writer thread when it finishes its writing.
Consequently, a writer thread first might wait for vw and then fulfil an obliga-
tion for this condition variable. This program is verified if the writer thread itself
produces a credit and an obligation for vw and then uses the former for the com-
mandwait(vw, l) and fulfils the latter at the end of its execution. Accordingly, since
when the command wait(vw, l) is executed vw is in the bag of obligations of the

4 The abort commands in this program can be eliminated using the ghost counters from
Fig. 6. However, we leave them in for simplicity.
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inv(rdwr b) ::= λWt . λOt. ∃Ctw. ctr(b.cw, Ctw) ∗
∃aw�0, ww�0, ar�0. b.aw �→aw ∗ b.ww �→ww ∗ b.ar �→ar ∧
L(b.vw)=L(b.vr)=b.l ∧ M(b.vw)=tic(b.cw) ∧ M(b.vr)=true ∧ P(vw)=true ∧ P(vr)=false ∧
(Wt(b.vr) = 0 ∨ 0 < aw + ww) ∧
aw + ww � Ot(b.vr) ∧
Wt(b.vw) + Ctw + aw + ar � Ot(b.vw) ∧
(Wt(b.vw) = 0 ∨ Wt(b.vw) < Ot(b.vw))

routine main(){
aw:=newint(0); ww:=newint(0);
ar:=newint(0); l:=newlock;
vw:=newcond; vr:=newcond;
b := rdwr(aw, ww, ar, l, vw, vr);
b.cw:=g newctr;
{obs({[]}) ∗ inv(b)({[]}, {[]}) ∗ ulock(l, {[]}, {[]}) ∗
L(vw)=L(vr)=l ∧ M(vw)=tic(b.cw) ∧
M(vr)=true ∧ R(l)=0 ∧ R(vw)=1 ∧
R(vr)=2 ∧ L(vw)=l ∧ L(vr)=l
∧ P(vw)=true ∧ P(vr)=false} g initl(l);
{obs({[]}) ∗ lock(l) ∧ I(l)=inv(b)}
fork( {obs({[]}) ∗ lock(l)}
while (true) fork(reader(b)));
{obs({[]}) ∗ lock(l)}
while (true) fork(writer(b))
{obs({[]}) ∗ lock(l)}}

routine reader(rdwr b){
{obs(O) ∗ lock(b.l) ∧ b.l�O�{[b.vw]}
∧ b.vr�O ∧ I(b.l)=inv(b)}
acquire(b.l);
while(b.aw+b.ww>0)
wait(b.vr, b.l);

b.ar:=b.ar+1;
g chrg(b.vw);
release(b.l);
// Perform reading ...
acquire(b.l);
if(b.ar<1)
abort;

b.ar:=b.ar−1;
if (Wt(b.vw) > 0) g inc(b.cw);
notify(b.vw);
g disch(b.vw);
release(b.l) {obs({[]}) ∗ lock(b.l)}}

routine writer(rdwr b){
{obs(O) ∗ lock(b.l) ∧ b.l�O�{[b.vw, b.vr]}
∧ b.vw�O�{[b.vw, b.vr]} ∧ I(b.l)=inv(b)}
acquire(b.l);
g chrg(b.vw); g inc(b.cw);
g chrg(b.vr);
while(b.aw+b.ar>0){
g dec(b.cw);
b.ww:=b.ww+1;
wait(b.vw, b.l);
if(b.ww<1)

abort();
b.ww:=b.ww−1

};
b.aw:=b.aw+1;
g dec(b.cw);
release(b.l);
// Perform writing ...
acquire(b.l);
if(b.aw �=1)
abort;

b.aw:=b.aw−1;
if (Wt(b.vw) > 0) g inc(b.cw);
notify(b.vw);
if(b.ww=0)
notifyAll(b.vr);

g disch(b.vw); g disch(b.vr);
release(b.l) {obs({[]}) ∗ lock(b.l)}}

Fig. 11. Verification of the program in Fig. 10
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writer thread, this command can be verified if vw�{[vw]}, whereP(vw) must be true.
The verification of this program is illustrated in Fig. 11. Generally, for a condi-
tion variable v for which P (v) = true a lock invariant can imply the invariant
one ob(v,Wt , Ot) if it asserts Wt(v) + Ct(v) < Ot(v) + S(v) and Wt(v) =
0 ∨Wt(v) < Ot(v), where Ct(v) is the total number of credits for v and S(v) is
an integer value such that wait(v, l) is executed only if S(v) � 0.

4.2 A Further Relaxation

The relation � allows one to verify some deadlock-free programs where a thread
waits for a condition variable while that thread is also obliged to fulfil an obliga-
tion for that variable. However, it is still possible to have a more general, more
relaxed definition for this relation. Under this definition a thread with obliga-
tions O is allowed to wait for a condition variable v if either v≺O, or there exists
an obligation o such that (1) v≺O − {[o]}, and (2) o satisfies the property that in
any execution state, if a thread is waiting for o then there exists a thread that
is not waiting for any waitable object whose wait level is equal to/greater than
the wait levels of v and o. This new definition still guarantees that in any state
of the execution if the program has some threads suspended, waiting for some
obligations, there is always a thread obliged to fulfil the obligation omin that is
not suspended, where omin has a minimal wait level among all waitable objects
for which a thread is waiting. To satisfy the condition number 2 we introduce a
new definition for �, shown in Definition 3, that uses a new function X mapping
each lock to a set of wait levels. This definition will be sound only if the proof
rules ensure that for any condition variable v whose wait level is in X(L(v)) the
number of obligations is equal to or greater than the number of the waiting
threads.

This definition is still sound because of Lemma 1, that has been machine-
checked in Coq5, where G is a bag of waitable object-bag of obligations pairs
such that each element t of G is associated with a thread in a state of the
execution, where the first element of t is the object for which t is waiting and
the second element is the bag of obligations of t. This lemma implies that if
all the mentioned rules, denoted by H1 to H4, are respected in any state of
the execution then it is impossible that all threads in that state are waiting
for a waitable object. This lemma can be proved by induction on the number
of elements of G and considering the element waiting for an object whose wait
level is minimal (see [16] representing its proof in details).

Definition 3 (Relaxed precedence relation). The new precedence relation
indexed over functions R, L,P,X holds for a waitable object v and a bag of obli-
gations O, denoted by v � O, if and only if:

5 The machine-checked proof can be found at https://github.com/jafarhamin/
deadlock-free-monitors-soundness.

https://github.com/jafarhamin/deadlock-free-monitors-soundness
https://github.com/jafarhamin/deadlock-free-monitors-soundness
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(v≺O ∨ v�O) ∧ (¬exc(v) ∨ v⊥O), where
v≺O ⇔ ∀o ∈ O. R(v) < R(o)
v�O ⇔ P(v) = true ∧ exc(v) ∧

∃o. v≺O − {[o]} ∧ R(v) � R(o) + 1 ∧ L(v) = L(o) ∧ exc(o)
exc(v) = R(v) ∈ X(L(v))

v⊥O ⇔ let Ox = λv′.

{
O(v′) if R(v′) ∈ X(L(v))
0 otherwise

in

|Ox| � 1 ∧
∀v′. Ox(v′) > 0 ⇒ L(v′) = L(v)

Lemma 1 (A Valid Graph Is Not Deadlocked)
∀ G:Bags(WaitObjs × Bags(WaitObjs)), R:WaitObjs→WaitLevels,
L:WaitObjs→Locks, P :WaitObjs→Bools, X:Locks→Sets(WaitLevels).
H1 ∧ H2 ∧ H3 ∧ H4 ⇒ G = {[]}, where

H1 : ∀(o,O) ∈ G. 0 < Ot(o)
H2 : ∀(o,O) ∈ G. P (o) = true ⇒ Wt(o) < Ot(o)
H3 : ∀(o,O) ∈ G. R(o) ∈ X(L(o)) ⇒ Wt(o) � Ot(o)
H4 : ∀(o,O) ∈ G. o�R,L,P,XO

where Wt = �
(o,O)∈G

{[o]} and Ot = �
(o,O)∈G

O

NewLock {true} newlock {λl. ulock(l, {[]}, {[]}) ∧ R(l)=z ∧ X(l)=X}

NewCv {true} newcond {λv. R(v)=z ∧ L(v)=l ∧ M(v)=m ∧ P(v)=b}

Fig. 12. New proof rules initializing functions X and P used in safe obs and �

To
extend the proof rules with the new precedence relation it suffices to include
a new invariant own ob in the definition of safe obs, as shown in Definition 4, an
invariant that must hold when a command wait or a ghost command g disch is
executed, to make sure that for any condition variable for which exc holds, the
number of obligations is equal to/greater than the number of the waiting threads.
Additionally, the functions X and P, as indicated in Fig. 12, are initialized when
a lock and a condition variable is created, respectively. The rest of the proof rules
are the same as those defined in Fig. 5 except that the old precedence relation
(≺) is replaced by the new one (�).

Definition 4 (Safe Obligations). The relation safe obs(v,Wt , Ot), indexed
over functions R, L,P,X, holds if and only if:

one ob(v,Wt , Ot) ∧ (P(v) = true ⇒ spare ob(v,Wt , Ot)) ∧
(exc(v) = true ⇒ own ob(v,Wt , Ot)), where
one ob(v,Wt , Ot) ⇔ (Wt(v) > 0 ⇒ Ot(v) > 0)
spare ob(v,Wt , Ot) ⇔ (Wt(v) > 0 ⇒ Wt(v) < Ot(v))
own ob(v,Wt , Ot) ⇔ (Wt(v) � Ot(v))
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Bounded Channels. One application of the new definition is a bounded chan-
nel program, shown in Fig. 13, where a sender thread waits for a receiver thread
if the channel is full, synchronized by vf , and a receiver thread waits for a sender
thread if the channel is empty, synchronized by ve. More precisely, the sender
thread with an obligation for ve might execute the command wait(vf , l), and the
receiver thread with an obligation for vf might execute a command wait(ve, l).

routine main(){
q := newqueue;
l := newlock;
vf := newcvar;
ve := newcvar;
ch:=channel(q, l, vf , ve);
fork (receive(ch));
send(ch, 12)}

routine send(channel ch, int d)
{
acquire(ch.l);
while(sizeof(ch.q) = max)
wait(ch.vf , ch.l);

enqueue(ch.q, d);
notify(ch.ve);
release(ch.l)}

routine receive(channel ch)
{
acquire(ch.l);
while(sizeof(ch.q) = 0)
wait(ch.ve, ch.l);

dequeue(ch.q);
notify(ch.vf );
release(ch.l)}

inv(channel ch) ::= λWt . λOt. ∃Cte, Ctf. ctr(ch.ce, Cte) ∗ ctr(ch.cf , Ctf) ∗
∃s. queue(ch.q, s) ∧ P(ve)=false ∧ M(ve)=tic(ch.ce) ∧ M(vf )=tic(ch.cf ) land
L(ch.ve)=L(ch.vf )=ch.l ∧
Wt(ch.ve) + Cte � Ot(ch.ve) + s ∧ Wt(ch.ve) � Ot(ch.ve) ∧
Wt(ch.vf ) + Ctf + s < Ot(ch.vf ) +max ∧ (Wt(vf ) = 0 ∨ Wt(ch.vf ) < Ot(ch.vf ))

routine main(){
q := newqueue;
l := newlock;
vf := newcvar;
ve := newcvar;
ch:=channel(q, l, vf , ve);
ch.ce:=g newctr;
ch.cf :=g newctr;
g inc(ch.ce);
g inc(ch.cf );
g chrg(ve); g chrg(vf );
g initl(l);
{obs({[ve, vf ]}) ∗ lock(l) ∗
tic(ch.ce) ∗ tic(ch.cf ) ∗
L(vf )=l ∧ L(ve)=l ∧
M(ve)=tic(ch.ce) ∧
M(vf )=tic(ch.cf ) ∧
P(vf )=true ∧
P(ve)=false ∧
R(l)=0 ∧
R(ve)=1 ∧ R(vf )=2 ∧
X(l)={1, 2} ∧ I(l)=inv}
fork (receive(ch));
send(ch, 12) {obs({[]})}}

routine send(channel ch, int d)
{{obs(O�{[ch.ve]}) ∗ tic(ch.cf ) ∗
lock(ch.l) ∧ ch.l�O�{[ch.ve]} ∧
ch.vf�O�{[ch.ve]}∧I(ch.l)=inv}
acquire(ch.l);
while(sizeof(ch.q) = max){
g dec(ch.cf );
wait(ch.vf , ch.l)};

enqueue(ch.q, d);
if (Wt(b.ve) > 0)
g inc(b.ce);

notify(ch.ve);
g disch(ch.ve);
g dec(ch.cf );
release(ch.l)
{obs(O) ∗ lock(ch.l)}}

routine receive(channel ch){
{obs(O�{[ch.vf ]}) ∗ tic(ch.ce) ∗
lock(ch.l) ∧ ch.l�O�{[ch.vf ]} ∧
ch.ve�O�{[ch.vf ]}∧I(ch.l)=inv}
acquire(ch.l);
while(sizeof(ch.q) = 0){
g dec(ch.ce);
wait(ch.ve, ch.l)};

dequeue(ch.q);
if (Wt(b.vf ) > 0)
g inc(b.cf );

notify(ch.vf );
g disch(ch.vf );
g dec(ch.ce);
release(ch.l)
{obs(O) ∗ lock(ch.l)}}

Fig. 13. Verification of a bounded channel synchronized using a monitor consisting of
condition variables vf , preventing sending on a full channel, and ve, preventing taking
messages from an empty channel
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Since ve and vf are not equal, it is impossible to verify this program by the old
definition of � because the waiting levels of ve and vf cannot be lower than
each other. Thanks to the new definition of �, this program can be verified, as
shown in Fig. 13, by initializing P(vf ) with true and X(l) with {1, 2}, where two
consecutive numbers 1 and 2 are the wait levels of ve and vf , respectively.

5 Soundness Proof

In this section we provide a soundness proof for the present approach6, i.e.
if a program is verified by the proposed proof rules, where the verification
starts from an empty bag of obligations and also ends with such bag, this
program is deadlock-free. To this end, we first define the syntax of programs
and a small-step semantics for programs (�) relating two configurations (see
[16] for formal definitions). A configuration is a thread table-heap pair (t, h),
where heaps and thread tables are some partial functions from locations and
thread identifiers to integers and command-context pairs (c; ξ), respectively,
where a context, denoted by ξ, is either done or let x:=[] in c; ξ. Then we
define validity of configurations, shown in Definition 5, and prove that (1) if
a program c is verified by the proposed proof rules, where it starts from the
precondition obs({[]}) and satisfies the post condition λ .obs({[]}), then the ini-
tial configuration, where the heap is empty, denoted by 0 = λ .∅, and there is
only one thread with command c and context done, is a valid configuration
(Theorem 4), (2) a valid configuration is not deadlocked (Theorem 5), and
(3) starting from a valid configuration, all the subsequent configurations of the
execution are also valid (Theorem 6).

In a valid configuration (t, h),h contains all the heap ownerships that are in pos-
session of all threads in t and also those that are in possession of the locks that are
not held, specified by a list A. Additionally, each thread must have all the required
permissions to be successfully verified with no remaining obligation, enforced by
wpcx. wpcx(c, ξ) in this definition is a function returning the weakest precondition
of the command c with the context ξ w.r.t. the postcondition λ .obs({[]}) (see [16]
for formal definitions). This function is defined with the help of a function wp(c, a)
returning the weakest precondition the command c w.r.t. the postcondition a.

Definition 5 (Validity of Configurations). A configuration is valid, denoted
by valid(t, h), if there exist a list of augmented threads T , consisting of an
identifier (id), a program (c), a context (ξ), a permission heap (p), a ghost
resource heap (C) and a bag of obligations (O) associated with each thread; a list
of assertions A, and some functions R, I, L,M,P,X such that:

– ∀id, c, ξ. t(id) = (c; ξ) ⇔ ∃p,O,C. (id, c, ξ, p,O,C) ∈ T
– h = pheap2heap( ∗

a∈A
a ∗ ∗

(id,c,ξ,p,O,C)∈T
p)

6 The machine-checked version of some lemmas and theorems in this proof, such as
Theorems 4 and 5, can be found at https://github.com/jafarhamin/deadlock-free-
monitors-soundness.

https://github.com/jafarhamin/deadlock-free-monitors-soundness
https://github.com/jafarhamin/deadlock-free-monitors-soundness
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– ∀(id, c, ξ, p,O,C) ∈ T.
• p,O,C |= wpcxR,I,L,M,P,X(c, ξ)
• ∀l,Wt , Ot. p(l) = Ulock/Locked(Wt , Ot) ⇒ Wt = Wtl ∧ Ot = Otl
• ∀l. p(l) = Lock ∧ h(l) = 1 ⇒ I(l)(Wtl,Otl) ∈ A
• ∀l. p(l) = Lock∨p(l) = Locked(Wtl,Otl) ⇒ ¬P (l)∧¬exc(l)∧ (h(l) = 0 ⇒

l ∈ Ot)
• ∀o. waiting for(c, h) = o ⇒ safe obsR,L,P,X(o,Wt,Ot)

where

• Ot = �
(id,c,ξ,p,O,C)∈T

O,Wt = �
(id,c,ξ,p,O,C)∈T∧waiting for(c,h)=o

{[o]}
• Ol is a bag that given an object o returns O(o) if L(o) = l and 0 if L(o) �= l
• waiting for(c, h) returns the object for which c is waiting, if any
• pheap2heap(p) returns the heap corresponding with permission heap p

We finally prove that for each proof rule {a} c {a′} we have a ⇒ wp(c, a′). To
this end, we first define correctness of commands, shown in Definition 6, and then
for each proof rule {a} c {a′} we prove correct(a, c, a′). In addition to the proof
rules presented in this paper, other useful rules such as the rules consequence,
frame and sequential, shown in Theorems 1, 2, and 3 can also be proved with
the help of some auxiliary lemmas in [16]. Note that the indexes R, I, L,M,P,X
are omitted when they are unimportant.

Definition 6 (Correctness of Commands)

correctR,I,L,M,P,X(a, c, a′) ⇔ (a ⇒ wpR,I,L,M,P,X(c, a′))

Theorem 1 (Rule Consequence)

correct(a1, c, a2) ∧ (a′
1 ⇒ a1) ∧ (∀z. a2(z) ⇒ a′

2(z)) ⇒ correct(a′
1, c, a

′
2)

Theorem 2 (Rule Frame)

correct(a, c, a′) ⇒ correct(a ∗ f, c, λz. a′(z) ∗ f)

Theorem 3 (Rule Sequential Composition)

correct(a, c1, a
′) ∧ (∀z. correct(a′(z), c2[z/x], a′′)) ⇒

correct(a, let x:=c1 in c2, a
′′)

Theorem 4 (The Initial Configuration is Valid)

correctR,I,L,M,P,X(obs({[]}), c, λ .obs({[]})) ⇒ valid(0[id:=c; done],0)

Proof. The goal is achieved because there are an augmented thread list T =
[(id, c, done,0, {[]},0)], a list of assertions A = [], and functions R, I, L,M,P,X
by which all the conditions in the definition of validity of configurations are
satisfied.
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Theorem 5 (A Valid Configuration is Not Deadlocked)

(∃id, c, ξ, o. t(id) = (c; ξ) ∧ waiting for(c, h) = o) ∧ valid(t, h)
⇒ ∃id′, c′, ξ′, t(id′) = (c′; ξ′) ∧ waiting for(c′, h) = ∅

Proof. We assume that all threads in t are waiting for an object. Since (t, h)
is a valid configuration there exists a valid augmented thread table T with
a corresponding valid graph G = g(T ), where g maps any element such as
(id, c, ξ, p,O,C) to a new one such as (waiting for(c), O). By Lemma 1, we have
G = {[]}, implying T = {[]}, implying t = 0 which contradicts the assumption of
the theorem.

Theorem 6 (Steps Preserve Validity of Configurations).7

valid(κ) ∧ κ � κ′ ⇒ valid(κ′)

Proof. By case analysis of the small step relation � (see [16] explaining the
proof of some non-trivial cases).

6 Related Work

Several approaches to verify termination [1,21], total correctness [3], and lock
freedom [2] of concurrent programs have been proposed. These approaches are
only applicable to non-blocking algorithms, where the suspension of one thread
cannot lead to the suspension of other threads. Consequently, they cannot be
used to verify deadlock-freedom of programs using condition variables, where
the suspension of a notifying thread might lead a waiting thread to be infinitely
blocked. In [22] a compositional approach to verify termination of multi-threaded
programs is introduced, where rely-guarantee reasoning is used to reason about
each thread individually while there are some assertions about other threads.
In this approach a program is considered to be terminating if it does not have
any infinite computations. As a consequence, it is not applicable to programs
using condition variables because a waiting thread that is never notified cannot
be considered as a terminating thread.

There are also some other approaches addressing some common synchroniza-
tion bugs of programs in the presence of condition variables. In [8], for example,
an approach to identify some potential problems of concurrent programs con-
sisting waits and notifies commands is presented. However, it does not take the
order of execution of theses commands into account. In other words, it might
accept an undesired execution trace where the waiting thread is scheduled before
the notifying thread, that might lead the waiting thread to be infinitely sus-
pended. [9] uses Petri nets to identify some common problems in multithreaded
programs such as data races, lost signals, and deadlocks. However the model
introduced for condition variables in this approach only covers the communi-
cation of two threads and it is not clear how it deals with programs having
7 The proof of this theorem has not been machine-checked with Coq yet.
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more than two threads communicating through condition variables. Recently,
[10] has introduced an approach ensuring that every thread synchronizing under
a set of condition variables eventually exits the synchronization block if that
thread eventually reaches that block. This approach succeeds in verifying one of
the applications of condition variables, namely the buffer. However, since this
approach is not modular and relies on a Petri net analysis tool to solve the termi-
nation problem, it suffers from a long verification time when the size of the state
space is increased, such that the verification of a buffer application having 20
producer and 18 consumer threads, for example, takes more than two minutes.

Kobayashi [6,20] proposed a type system for deadlock-free processes, ensur-
ing that a well-typed process that is annotated with a finite capability level is
deadlock free. He extended channel types with the notion of usages, describ-
ing how often and in which order a channel is used for input and output. For
example, usage of x in the process x?y|x!1|x!2, where ?, !, | represent an input
action, an output action, and parallel composition receptively, is expressed by
?|!|!, which means that x is used once for input and twice for output possibly in
parallel. Additionally, to avoid circular dependency each action α is associated
with the levels of obligation o and capabilities c, denoted by αo

c , such that (1) an
obligation of level n must be fulfilled by using only capabilities of level less than
n, and (2) for an action of capability level n, there must exist a co-action of obli-
gation level less than or equal to n. Leino et al. [4] also proposed an approach to
verify deadlock-freedom of channels and locks. In this approach each thread try-
ing to receive a message from a channel must spend one credit for that channel,
where a credit for a channel is obtained if a thread is obliged to fulfil an obli-
gation for that channel. A thread can fulfil an obligation for a channel if either
it sends a message on that channel or delegate that obligation to other thread.
The same idea is also used to verify deadlock-freedom of semaphores [7], where
acquiring (i.e. decreasing) a semaphore consumes one credit and releasing (i.e.
increasing) that semaphore produces one credit for that semaphore. However, as
it is acknowledged in [4], it is impossible to treat channels (and also semaphores)
like condition variables; a wait cannot be treated like a receive and a notify can-
not be treated like a send because a notification for a condition variable will be
lost if no thread is waiting for that variable. We borrow many ideas, including
the notion of obligations/credits(capabilities) and levels, from these works and
also the one introduced in [11], where a corresponding separation logic based
approach is presented to verify total correctness of programs in the presence of
channels.

7 Conclusion

It this article we introduced a modular approach to verify deadlock-freedom of
monitors. We also introduced a relax, more general precedence relation to avoid
cycles in the wait-for graph of programs, allowing a verification approach to verify
a wider range of deadlock-free programs in the presence of monitors, channels and
other synchronization mechanisms.
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