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A b s t r a c t .  Junctions of lines or edges are important visual cues in vari- 
ous fields of computer vision. They are characterized by the existence of 
more than one orientation at one single point, the so called keypoint. In 
this work we investigate the performance of highly orientation selective 
functions to detect multiple orientations and to characterize junctions. 
A quadrature pair of functions is used to detect lines as well as edges 
and to distinguish between them. An associated one-sided function with 
an angular periodicity of 360 ~ can distinguish between terminating and 
non-terminating lines and edges which constitute the junctions. To cal- 
culate the response of these functions in a continuum of orientations and 
scales a method is used that was introduced recently by P. Perona [8]. 

1 Introduct ion 

Junctions of lines and edges are impor tant  visual cues in various fields of com- 
puter  vision. They have a complex 2D structure with many  degrees of freedom. 
Hence, there will be no computat ionally cheap solution for the classification and 
quanti tat ive description of junctions. Therefore, one should drop the requirement 
of fast algorithms tha t  can process the whole image as in simple edge detection. 
Instead, junction classification might only be sensible in computer  vision systems 
with at tentional mechanisms that  become more and more popular  in recent time. 
There, only some small regions of interest are investigated in depth what justifies 
computat ional ly  involved methods.  

In this contribution we propose a method to classify and describe junctions 
tha t  is based on multiple orientation detection. To limit interference effects of 
lines or edges of different orientations we use a function with a high orientation 
selectivity. The point where the lines or edges intersect is called the keypoint. 
I t  is assumed that  the keypoint already has been detected and all functions will 
be centered at the keypoint. To detect the events independently of their profiles 
(line, edge, mixed) we use a (pseudo) quadrature pair of functions ([7]). The 
complex response of the quadrature pair can be transformed to an energy/phase  
representation, where the energy detects the events and the phase reveals the 
type (line or edge). We define the energy to be the modulus of the complex 
response. The interpretation of these signals requires the response in a continuum 
of orientations and scales. For this we use the steerability method of Perona [8]. 
Perona introduces a set of basis functions tha t  can be steered easily and tha t  
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can approximate the original function by linear combinations. A discussion of 
this method is given in Michaelis and Sommer [5]. 

R e l a t e d  work :  Noble [6] outlines a detection and classification method 
based on the evaluation of groups of elliptic and hyperbolic points. This method 
is quite sensitive to noise. Guiducci [4] estimates the parameters of corners (am- 
plitude, aperture and smoothness of edges) from second order Taylor approxi- 
mations. More complicated junctions are not dealt with. Rohr [9] detects and 
classifies junctions with two or more edges by fitting wedge models to the image. 
This method gives a precise description of edge junctions but it has difficulties 
with situations that  are not in the range of the models of the fitting algorithm, 
e.g. line junctions or a non uniform brightness between the edges. Brunnstrhm 
et al. [2] evaluate the local histogram of the junction to derive a hypothesis about 
the number of edges. The hypothesis is verified using an edge image provided by 
a Canny-Deriche edge detector. This method cannot handle line junctions, and 
the evaluation of the histogram might be hard for real world junctions. Anders- 
son [1] developed a method similar to ours in evaluating the prominent events 
in the orientational responses of filters of a two- and one-sided type. But the de- 
sign of the filters, the interpolation method and the evaluation of the responses 
are different. Perona [8] hints very briefly to the detection and classification of 
junctions using steerable filters. 

2 T h e  d o u b l e  H e r m i t e  f u n c t i o n  

The function we use for orientation analysis consists of two elongated 2D-Gauss- 
ians and a second/first derivative in the y-direction for the real / imaginary part: 

2 _ (x-2~) ~ _ (x+2~) 2 
F (x,y) = N (1 - (e + e ) 

F,,e (x, y) := F~(x cos 8 - y sin 0, x sin t~ + y cos t~) 

is the aspect ratio of the 2D-Gaussians, N is a normalization factor, 
and ~ are the orientation and the scale. The real and imaginary y-cross-sections 
are approximately in quadrature. To give it a name we called this function the 
double tIermite function. Fig.1 shows this function and the associated one-sided 
function [8]. The latter consists essentially (but not exact) of the right lobe 
of the double Hermite function. The one-sided function has a periodicity in 
orientation of 360 o and can therefore distinguish between terminating and non- 
terminating events (T- or X-junction). The same basis functions that  steer the 
double IIermite function can steer the one-sided function as well. Hence, there is 
no extra computational effort. This is one advantage of the steerability method of 
Perona compared to approaches that  use rotated copies, of the original function 
as basis filters for the interpolation (Freeman and Adelson [3]). 

Commonly the functions used for estimating the orientation have the bulk of 
their energy at the center ([3],[8]). There are three reasons to choose a function 
with almost no energy at the center: (1) the discretization of the orientation is 
worst at the center, (2) frequently the immediate neighborhood of real world 
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keypoints has a confusing structure (e.g. Fig.4), (3) the associated one-sided 
function performs better. 

Fig. 1. Double Hermite function (a) Re, (b) Im and the associated one-sided function 
(c) Re, (d) Im. 

3 Junction classification by multiple orientation detection 

Our model for junctions consists of straight edges and lines that  intersect in 
one point. The junctions will be classified by the number of events, their ori- 
entation, their type (line or edge) and whether the events are terminating or 
non-terminating. For the presentations of this section 23 basis functions in ori- 
entation and 4 in scale are used to steer the double I-Iermite function. The aspect 
ratio ~ is 3. The orientation 0 ~ is from the keypoint to the right, positive rota- 
tions are anti-clockwise. All responses in the figures are normalized to the same 
amplitude because we are mainly interested in their shape and not in the abso- 
lute values. Hence, the relative strength of the response between the figures and 
sub-figures cannot be compared. 

3.1 P r i n c i p l e  o f  j u n c t i o n  classification 

Fig.2 demonstrates the principle of the analysis with a synthetic junction of 
events without an intrinsic scale (step edge, thin line). Hence, we can use any 
scale to analyse the junction. The prominent maxima in the energy of the dou- 
ble Itermite response give the number and orientations of the events. For this, 
in general the double ttermite function is preferable to the one-sided function 
because it has the better orientation selectivity. The phase at these orienta- 
tions reveals the type of the events. A phase of 4-7r/2 indicates an odd event 
(dark/bright or brigth/dark edge), for 0, 4-~r the event is even (dark or bright 
line). The phase has a periodicity of 27r, i.e. +~r and -zr have to be identified. 
The double ttermite function cannot distinguish between terminating and non- 
terminating events. This information is contained in the one-sided response that  
has a periodicity of 360 ~ 

Smooth edges and thick lines have an intrinsic scale and therefore these 
events are only classified correctly above a certain scale. At smaller scales the 
local structure looks completely different. Fig.3 shows an example of a blurred 
edge and a thick line. 

Resolution:  Two events cannot be distinguished if their separation in ori- 
entation is below the resolution of the analysing function. The exact possible 
resolution depends on the relative strength and the profile of the events. The 
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(b) (c) (d) 
Fig. 2. (a) junction, (b) energy, (c) phase for the double Hermite function. (d) energy 
for the one-sided function. The energy shows two events at 900 and 136 ~ (modulo 180 ~ 
The phase at the orientation of the maxima of the energy (1.77 and 3.00) reveals that 
they originate from a line at 136 ~ and an edge at 90 ~ Due to the influence of the 
dominating edge the maximum of the line is shifted by less than one degree. The 
missing second peak of the line at 3160 in (d) shows that it terminates at the keypoint. 
The center of the double IIermite function matches the keypoint within 1 pixel. 

Fig. 3. Depicted are from left to right the junction and the energy of the double Hermite 
response as an intensity image and as a wire plot. The junction is the same as in Fig.2 
but with a Gaussian blurred edge (a = 3) and a thick line (5 pixels). At small scales 
the response to the edge is weak and it is interfering with the line. The line is seen as 
two events with a scale dependent orientation. 

peaks in the real and imaginary response are bet ter  resolved than in the energy. 
However, the connection between the peaks and the underlying events is more 
complex. Furthermore the resolution can be improved by analysing the exact 
shape of the peaks in the response. A peak that  results from two unresolved 
events will have a different shape than a single event peak (see [1]). However, 
such an analysis depends on the models of the junctions. When dealing with real  
world junctions it wilt be prone to give false results. 

3.2 J u n c t i o n s  in real-world images  

For real-world junctions there are difficulties that  are not present in the previ- 
ous synthetic examples: noise, the neighborhood of the junction, and not ideal 
events. The proposed method is designed to be robust with respect to these 
difficulties: (1) The responses are practically not affected by noise because the 
smoothing in the orientation of the double IIermite  function r is large. (2) For 
more robust orientation estimations of terminat ing events the one-sided function 
instead of the double t termite  function can be used. It  is more accurate if the 
neighborhood is not 'neutral '  (other events, not constant gray values). (3) Both 
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functions have the main part of their energy some distance away from the center. 
This corresponds to the fact that  the immediate neighborhood of the keypoint 
frequently has a different structure than the junction (e.g. blob) and that  it is 
not so important  for the classification. (4) Another important  part of the anal- 
ysis of real junctions is the scale dependence of the responses. The events are 
frequently only visible in a certain range of scales. For the orientation estimation 
the scale with the strongest response is used. Important  for the acceptance of an 
event is a stable orientation with respect to the scale. If the orientation is not 
stable the event might be not straight or the scale is not appropriate (e.g. small 
scales for the thick line in Fig.3). Another reason for an unstable orientation 
is an inaccurately detected keypoint. If the shift between the keypoint and the 
center of the functions is not too large the correct orientation is given by the 
larger scales where it is stable. Moreover, from the bending of the ridge in the 
one-sided energy the direction of the true keypoint can be estimated. 

Fig.4 shows the responses of the one-sided function for a junction of poor 
quality. 

Fig. 4. (a) L-junction of the dark lines at the border of the eye. (b),(c) one-sided energy 
as wire plot and intensity image] (d),(e) energy and phase at the optimal scale that is 
marked in (c). The lower line of the junction is only visible in a certain range of scales. 
The one-sided response is more reliable, because there are only terminating lines. 

4 S t e e r a b l e  f u n c t i o n s  f o r  m u l t i p l e  o r i e n t a t i o n  d e t e c t i o n  

In this section we discuss the double t termite function in some more detail and 
we compare it to the function used by Perona [7],[8]. The latter is one elongated 
Gaussian with the second derivative (Re) and its true Hilbert-partner (Im) as 
the y-cross-section (Fig.5a,b). 

D o u b l e - l o b e d / s i n g l e - l o b e d :  The function used by Perona consists of one 
elongated Gaussian with the main part of its energy around the center (Fig.5a,b). 
The same is true for the associated one-sided function (Fig.5c,d). We argued 
before that  this is disadvantageous because the immediate neighborhood of a 
real world keypoint might be confusing. The weights the function gives to the 
neighborhood are not in agreement with the 'usual' interpretation of the local 



106 

structure. In contrast the double Hermite function and its associated one-sided 
function have almost no energy at the center (Fig.l).  As a consequence Fig.8a,c 
shows that  e.g. for an endstopping the response for the double Hermite function 
falls almost to zero. This is not the case for the function used by Perona. 

Q u a d r a t u r e :  Both functions are complex with an even real part  and an 
odd imaginary part. This allows to detect lines as well as edges and events with 
mixed profiles ([7]). For both functions the real part is the second derivative of a 
Gaussian whereas the imaginary part is the first derivative in case of the double 
Hermite function and the true Hilbert partner in case of Perona's function. The 
y-cross-sections, the energy, and the phase of the cross-sections are depicted in 
Fig.be-h and 8a-d. For the exact quadrature pair the energy is monomodal  and 
the phase is linear around the center. For the pseudo quadrature pair the phase 
is not exactly linear and the energy is at the borderline of having several peaks. 
In return the central peak is very sharp. The same is true for the energy of the 
responses of the two functions. 

I . A  
(e) (f) (g) (h) 

Fig. 5. The function used by Perona (a) Re, (b) Im and the associated one-sided 
function (c) Re, (d) Im. The aspect ratio of the Gaussian is 5. (e) and (f) are 
the y-cross-sections of (a) and (b). (g) and (h) are the energy and phase of the 
y-cross-section. 

fx'  t 
(a) (b) (c) (a) 

Fig. 6. y-cross-section of the double Hermite function. (a) real part, (b) imaginary 
part, (c) energy, and (d) phase. 

O r i e n t a t l o n a l  u n c e r t a i n t y  r e l a t i o n :  The better the orientation selectivity 
of a function the more basis functions are necessary to steer it. Both functions are 
not exactly steerable with a finite number of basis functions. According to the 
theory ([5],[8]) the orientation selectivity is given by the autocorrelation function 
h(~) = f Fo(x)F§ (Fig.7a,c). To steer a function in orientation one basis 
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function is needed for every non zero component of the Fourier transform h(~) 
of h (Fig.Tb,d). The L 2 contribution of a basis function to the steered function is 

given by the modulus of ]~ for this component. Therefore the area below the curve 
in Fig.7b,d shows the quality of the approximation given a finite number of basis 
functions. For very accurate approximations both functions need about the same 
number of basis functions but in the beginning (only few basis functions) the 
decay is faster for Perona's function (Fig.7b). This does not mean that  Perona's 
function has a better orientation selectivity when it is approximated with only 
a few basis functions. Instead the main approximation error are strong ripples 
(Fig.Sb,d). The double Hermite function has stronger ripples (Fig.8d) consistend 
with the slower decay of h(~) but the peaks are sharper. 

Fig.?a,c show that  for the double Hermite function h(~) is sharper than 
for the function used by Perona but not monomodal.  This is due partly to the 
'double-lobedness' and partly to the pseudo-quadra ture  pair. 

For short one could roughly say that  there is a tradeoff between sharper 
peaks and stronger ripples between the functions. Sharper peaks imply a better 
orientation selectivity and more robustness against noise. On the other hand 
stronger ripples lead to false event detections. 

(a) h(w) Perona 

I0 ~ 451 
(b) ]~(v) Perona 

1 l  
(c) h(~) Hermite 

0 45 ~ 
(d) h(v) Hermite 

Fig. 7. Depicted are the angular autocorrelation function h(~) and its Fourier trans- 
form h(v) (sorted by magnitude) for the double Hermite function and Perona's func- 
tion. h(~) shows the orientation selectivity of the function, h(v) shows the number of 
basis functions that are necessary. The faster the decay of h(v) the less basis func- 
tions are necessary for a good approximation. According to Fourier theory we have an 
uncertainty relation: better orientation selectivity implies more basis functions. 

(a) one-s. Perona23 (b) one-s. Peronal5 (c) one-s, germite23 (d) one-s. Hermitel5 

Fig. 8. Depicted is the energy of the responses of the one-sided Hermite function and 
one-sided Perona's function for an horizontal endstopping. To demonstrate the effect 
of approximations with only a few basis functions the responses for 15 and for 23 
basis functions are shown. The main effect of taking less basis, functions is not a worse 
orientation selectivity but strong ripples. The same is true for the two-sided original 
functions. 
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5 C o n c l u s i o n s  

We presented a method to classify junctions by detecting the edges and lines 
that  constitute them. For this we use a function that  we designed for this par- 
ticular task and evaluate its response in a continuum of orientations and scales. 
Our method is applicable to junctions of lines as well as edges and it is robust 
Under real world conditions: noise, shaded neighborhoods, not ideal edges and 
lines. Depending on the required orientation selectivity a large number of basis 
functions is necessary to steer the analysing function. Hence, it is not intended 
to apply this method by convolution to the whole image. Preceeding processing 
steps are needed which guide the attention to a selection of interesting candi- 
date points. This method is assumed to be a part  of complex vision systems that  
use attentional mechanisms to allow more involved algorithms for the foveated 
parts of the image. The presented evaluation of the responses of the analysing 
function is not the optimum that  is possible. Depending on the situation a flex- 
ible use of the energy, the real, and the imaginary response of the two-sided as 
well as the one-sided function for the detection and orientation estimation of the 
events would be better. In addition the shape of the peaks in the response can 
be analysed as in [1]. However, one has to keep in mind that  more sophisticated 
evaluations are more dependent on the models and hence are more likely to give 
false results in real world images. Another open question is an efficient handling 
when the keypoint is not detected properly. We already mentioned that  this re- 
sults in scale dependent orientation estimates. At larger scales the orientations 
are exact. But this works only if the detection error is not too big. Otherwise a 
method that  brings the keypoint into the focus would perform better. 
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