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Abstract 

Advances in computer science in combination with the next-generation sequencing have introduced a new era 
in biology, enabling advanced state-of-the-art analysis of complex biological data. Bioinformatics is evolving as a 
union field between computer Science and biology, enabling the representation, storage, management, analysis 
and exploration of many types of data with a plethora of machine learning algorithms and computing tools. In this 
study, we used machine learning algorithms to detect differentially expressed genes between different types of 
cancer and showing the existence overlap to final results from RNA-sequencing analysis. The datasets were obtained 
from the National Center for Biotechnology Information resource. Specifically, dataset GSE68086 which corresponds 
to PMID:200,068,086. This dataset consists of 171 blood platelet samples collected from patients with six different 
tumors and healthy individuals. All steps for RNA-sequencing analysis (preprocessing, read alignment, transcriptome 
reconstruction, expression quantification and differential expression analysis) were followed. Machine Learning- based 
Random Forest and Gradient Boosting algorithms were applied to predict significant genes. The Rstudio statistical 
tool was used for the analysis.
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Introduction
RNA-sequencing (RNA-seq) is a powerful technique 
for characterizing and quantifying the transcriptome 
and accelerates the development of bioinformatics soft-
ware. Due to the low cost of next-generation sequencing 
technologies and remarkable power and accuracy, RNA 
sequencing has become the most popular method for 
analyzing differentially expressed genes [1]. The work-
flow of the next generation of RNA sequencing [2] data 
includes the preprocessing and the downstream analysis. 
Machine Learning is a multidisciplinary field that uses 
computer science, computational statistics, and infor-
mation theory to build algorithms that can learn from 
existing datasets and make predictions for new datasets 

[3]. Machine Learning is a key tool for biological studies, 
including the study of cancer as well as the discovery of 
genes.

This article analyzes differential gene expression in 
a large RNA-seq dataset using samples with different 
types of cancer and normal conditions and examines 
the discovery of important genes identified between the 
use of classical RNA-seq analysis and machine learn-
ing algorithms. The scientific question we analyze in the 
present study is the reliability and overlap of machine 
learning algorithms in the final outcome of an RNA-seq 
analysis. More specifically, in the aforementioned experi-
ment (cancer vs normal) 4,559 genes were identified by 
RNA-seq analysis and in combination with 2 different 
classification algorithms, we identified common impor-
tant differentially expressed genes. We found that there 
is reproducibility and overlap between the two methods 
for finding the most significant differentially expressed 
genes which play an important role in the development 
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of cancerous tumors that we analyze. Also, we found that 
the random forest [4] and gradient boosting [5] models 
are powerful for predicting differentially expressed genes. 
Raw data from cancer patients were extracted from the 
NCBI-GEO database [6]. The analysis was performed 
with the use of the R programming language and RStu-
dio user interface to execute the code and visualize the 
results. R is one of the well-known programming lan-
guages and is an open-source software developed by 
the scientific community for calculating, analyzing and 
visualizing big data in any field, including biomedical 
research for bioinformatics applications. R with the help 
of Bioconductor in RStudio provides many packages 
that support high-performance sequence data analysis, 
including RNA sequencing (RNA-seq) [7].

Overall, our study shows that combining machine 
learning with RNA sequencing has significantly improved 
the recognition of the most important differentially 
expressed genes.

Materials and methods
For the RNA-seq analysis, the workflow we have taken 
into account includes the following steps:

1.	 Data acquisition (obtained raw RNA-seq data).
2.	 Data Quality Control (First QC of RNA-seq analysis). 

We assessed the quality of our raw data using tools 
like FastQC to check for sequencing errors, adapter 
contamination, and other issues.

3.	 Preprocessing (Trim adapters and low-quality bases 
from the raw reads using tool like Trimmomatic).

4.	 Read Alignment (Second QC of RNA-seq analysis). 
We aligned the cleaned and trimmed sequencing 
reads to a reference genome.

5.	 Quantification (We estimated gene and transcript 
expression levels using tools like featureCounts and 
Salmon. This step produces count tables that repre-
sent how many reads map to each gene or transcript).

6.	 Normalization and QC (Third QC of RNA-seq analy-
sis). We normalized expression counts to account for 
variations in library size and composition. Common 
normalization methods include TPM (Transcripts 
Per Million) or FPKM (Fragments Per Kilobase Mil-
lion).

7.	 Differential Expression Analysis (We identified genes 
that are differentially expressed between different 
experimental conditions using DESeq2 software. And 
we performed statistical tests to assess significance, 
calculate fold changes, and generate lists of differen-
tially expressed genes).

8.	 Functional Enrichment Analysis (We interpreted 
the biological significance of differentially expressed 
genes by performing functional enrichment analysis 

using tools like Gene Ontology (GO) analysis, path-
way analysis (KEGG), or gene set enrichment analy-
sis (GSEA).

9.	 Biological Interpretation (We interpreted the results 
in the context of our biological question. Investigated 
the biological functions and pathways associated 
with differentially expressed genes).

The methods used to analyze RNA sequencing include 
obtaining raw RNA-seq data in fastq format from the 
GEO database (GEO Accession Number GSE68086). 
From the 171 total samples, 35 regard breast cancer, 11 
liver cancer, 30 colorectal cancer, 13 glioblastoma, 33 
lung cancer, 25 pancreatic cancer and 24 healthy indi-
viduals. Quality control was performed in RStudio for 
each sample separately with the FastQC tool from the 
Babraham institute bioinformatics group, which is used 
to evaluate the quality of the sequence data [8]. Following 
quality control, Trimmomatic was used for filtering sam-
ples [9]. The reads were mapped with Rsubread 2.0.1 [10] 
to RStudio, using the hg38 human genome and the GTF 
annotation file. Quantification of gene expression was 
performed using Salmon [11], which correlated sequence 
readings directly with transcripts. The differential expres-
sion of the genes was completed with DESeq2 [12] in 
RStudio and the genes were annotated with Bioconduc-
tor annotation packages, which help to map different 
identification systems (ID) between them. The Annota-
tionDbi and org.Hs.eg.db libraries were used to anno-
tate on the differentially expressed genes. Finally, using 
gProfileR [13] we did the functional enrichment analysis 
on the Gene Ontology (GO) terms. We also identified the 
most important genes expressed in GO terms through 
the gage and pathview packages. We also did pathway 
analysis based on the KEGG database [14].

The classification methods used for the Machine 
Learning analysis include the caret package in RStudio 
[15], which was used to train and evaluate the algorithms.

The workflow for Random Forest and Gradient Boost-
ing in RNA-seq analysis that we used to detect differen-
tially expressed genes in various types of cancer is:

	 1.	 Data Preprocessing (Obtained RNA-seq data and 
performed quality control and data preprocessing, 
including read alignment, transcript quantification 
and normalization).

	 2.	 Feature Selection (Genes are quantified from the 
aligned reads to create a count matrix. We used 
statistical methods and machine learning -based 
feature selection techniques to choose the most 
important genes).

	 3.	 Labeling (Assigned labels to the samples based on 
experimental conditions).



Page 3 of 10Stathopoulou et al. Health Information Science and Systems (2024) 12:14

	 4.	 Data Splitting (Split the dataset into training and 
testing sets. Training set is used to train the models 
and the testing set is used for model evaluation).

	 5.	 Model Selection (Random Forest and Gradient 
Boosting models are chosen as potential machine 
learning algorithms for the analysis).

	 6.	 Hyperparameter Tuning (We used techniques 
like grid search and random search to optimize 
the parameters of the chosen models. Optimize 
parameters such as the number of trees, max depth 
and learning rate for Gradient Boosting).

	 7.	 Model Training (The models trained on the train-
ing dataset using the optimized hyperparameters).

	 8.	 Model Evaluation (The trained models evaluated 
on the testing / validation dataset using appropriate 
metrics like accuracy, recall, F1-score, ROC curves, 
precision, etc.).

	 9.	 Feature Importance Analysis (Extracted feature 
importance scores generated by the models to 
identify the most relevant genes in our RNA-seq 
data).

	10.	 Overlap with RNA-seq Analysis (Compared the 
genes identified by our machine learning models 
with the results of our RNA-seq analysis to find the 
overlap).

	11.	 Biological Interpretation (Interpreted the results 
in the context of cancer biology to understand 
the functional significance of the differentially 
expressed genes. Also, identified potential path-
ways).

Results
The Fastqc tool was used for the quality control step. 
76 samples passed the quality score which was over 30, 
while 95 samples did not meet the desired quality grade. 
Trimmomatic was used to remove areas (trimming) of 
the reads, whereas the Rsubread package was used to 
map the reads to the reference genome. BAM files were 
created and checked for alignment quality and showed 
a minimum mapping quality of 34, which is sufficient. 
Quantification of gene expression was performed using 
Salmon. Training data included the quant.sf file for each 
of the 129 samples from the Salmon output. We imported 
quant.sf files using tximport, scaling transcripts-per-
million (TPM) using the average transcript length across 
samples and the library size (length-Scaled TPM), fol-
lowed by the log2 transformation. In the remaining 42 
of the 171 samples there were no quantification results 
because they showed an error in reading fastq. This is 
the smallest return of the code from both the right and 
the left of the reading was (− 2), indicating that the files 
are not valid and therefore could not be quantified. The 
percentage of aligned reads from all samples is 71 to 84%. 

The total number of reads of the samples corresponding 
to 561,501,702 readings was obtained using DESeq2. The 
unexpressed genes were filtered, and reasonable values 
were obtained, that show how many samples each gene 
are expressed. The resulting table refers to 129 samples 
with 35,135 genes. The data was afterwards normalized 
and filtered, while the library size was reduced and the 
dependence of the variance on the mean was removed. 
Thus, out of the 35,135 genes, 10,796 that were expressed 
in all 129 samples were kept for further analysis. For the 
result of 10,796 genes, automatic filtering was performed 
based on the average of the normalized measurements 
for each gene. DESeq2 and the Benjamini–Hochberg 
(BH) false discovery rate (fdr) for multiple hypothesis 
testing correction were used to calculate the fdr adjusted 
p value for each gene. The study is limited to 10,796 genes 
that were expressed in all samples, because the main goal 
of the study was to find genes that are important and 
expressed in all types of cancer that we examined.

For the third quality control and evaluation of the 
whole experiment, the Principal Component Analysis 
(PCA) plot, as shown in Fig. 1, for the samples’ distance 
was used. The PCA plot was performed with DESeq2 
which offers the variance stabilization transform (VST) 
for negative binomial data. This means that the differ-
ences between the normal samples and the tumor will 
contribute to the expected mean variation of the exper-
iment. The graph also shows the samples in the 2D 
plane extending from its first two main components, 
where the first dimension concerns the separation of 
cancer types in the samples and the second dimension 
concerns the separation of samples into tumor data sets 
from normal data sets.

DESeq2 was used for differential gene expression in 
R. The dispersion estimation, Wald statistic was per-
formed, where the negative binomial model for each 
gene was placed and the nbinomWaldTest was used 
to control differential expression. 10,796 genes were 
found with a significant change in gene expression 
between samples and after filtering the p value with 
p-value < 0.0001, recovering the normalized measure-
ments and comparing tumor versus normal samples, 
the 4,559 genes were found to be the most important 
differentially expressed. Ensembl transcript names were 
converted into gene symbols using the AnnotationDbi 
package. To visualize the most important differentially 
expressed genes, the Volcano Plot was created, which 
shows the relationship of expression change between 
the two conditions. The Volcano plot, as shown in 
Fig.  2, is a type of scatter plot that shows statistical 
significance (p value) versus fold change. It allows fast 
visual recognition of genes with changes that are statis-
tically significant.
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Functional enrichment analysis was performed with the 
gProfileR package and adjusted value p < 0.0001. Signifi-
cantly enriched GO terms were identified, of which 135 
were overrepresented and classified into 94 Biological 
Process (BP), 11 Molecular Function (MF) and 30 Cellu-
lar Components (CC), respectively. The most important 
term GO in frequency and uniqueness was found in the 
term GO: 0005515, which belongs to the group MF called 
protein binding, with a frequency of 76.4%. Among all 
GO terms, the most important upregulated genes are 
KCTD20, ZNF185, VCL, ITGB1, F13A1, TPP1, EIF4G2, 
PRKAR1A, CORO1C and the most important down-
regulated genes are GPNMB, ZNF835, MARN22. The 
enrichment analysis of the gene sets with the gage pack-
age was then performed. A total of 156 KEGG pathways 
were identified with an adjusted value of p < 0.0001, of 
which 7 were upregulated and 149 were downregulated. 
The differentially expressed genes were gathered in the 
following pathways, hsa00190-oxidative phosphoryla-
tion, hsa04145-phagosome, hsa04810-regulation of actin 

cytoskeleton, hsa04510-focal adhesion, hsa04670- leuko-
cyte interstitial migration and hsa004144-endocytosis. 
Among all pathways, the most important upregulated 
genes are ITGB1, VCL, CORO1C, ABCC3, F2R, ACTN1, 
CDC42, GRB2, EHD3, NDUFA4 and downregulated are 
NDUFV3, CORO2A, TLR6, SL LDLR. GO enrichment 
analysis revealed that the predicted regulatory gene 
group was enriched with genes involved in differential 
expression analysis.

Subsequently, two supervised learning algorithms were 
tested. The choice of these two algorithms was made after 
analyzing many algorithms. It is common to explore mul-
tiple algorithms and techniques during RNA-seq analy-
sis to determine which one(s) provide the best results for 
our specific research question and data set. Furthermore, 
feature engineering, data preprocessing, and cross-vali-
dation play critical roles in the success of machine learn-
ing in RNA-seq analysis. Random Forest and Gradient 
Boosting algorithms in addition to the results were found 
to be suitable and fit our research objective because we 

Fig. 1  Principal component analysis plot. From the above plot we see that the differences between the two conditions (Tumor and Normal) are 
significant. The samples concerning healthy people have short distances from each other in relation to other types of cancer. Also, some distances 
are observed between lung cancer samples compared to other types of cancer
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prioritized robustness, feature importance analysis—pro-
viding feature importance scores, and high predictive 
accuracy.

We used Random Forest because it is a powerful, easy-
to-implement model that handles high-dimensional data 
and provides feature importance scores for gene selec-
tion. It is robust to outliers and noisy data. This is ben-
eficial in RNA-seq analysis, where gene expression data 

can have variations and technical noise. It can be used for 
binary or multiclass classification of genes based on their 
expression patterns in different cancer types.

We used the Gradient Boosting algorithm because 
it offers high prediction accuracy which is critical in 
RNA-seq analysis and can be used for accurate gene 
classification and feature selection, helping us identify 
differentially expressed genes. It can handle noisy data 

Fig. 2  The Volcano plot with the 4,559 most differentially expressed genes. The most upregulated genes are to the right and the most downregu‑
lated genes are to the left. The highest upregulated genes are at the top. The 10 of the most important differentially expressed genes are KCTD20, 
ZNF185, VCL, ITGB1, F13A1, TPP1, EIF4G2, PRKAR1A, ABCC3 and CORO1C 
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by iteratively improving predictions and reducing the 
impact of outliers. And if the RNA-seq dataset has a lim-
ited number of samples, Gradient Boosting can perform 
well due to its iterative nature and focus on correcting 
misclassifications.

Before starting training, exploratory data analysis was 
done to see how the variables and samples were related 
to each other. The first thing we did is data normaliza-
tion and transformation. We took care of data scaling 
issues that might come from how the experiments were 
run and potential problems that might arise during data 
collection. The next step was to transfer our data. We 
then filtered the predictor variables and selected arbi-
trary cutoffs for variability. The expression values of the 
initial 35,135 genes were used. To execute the code, the 
caret::preProcess function was used to filter the predic-
tor variables, the 1,000 best predictors were selected, that 
is the gene expression values, and then we filtered the 
highly related prediction variables, creating a filter for the 
subtraction of related variables. If two variables are suffi-
ciently correlated, only one of them is removed. The clas-
sification problem used was binary and involved tumor 
samples versus normal samples. Of the 129 samples, 108 
correspond to cancer samples (30 breast, 10 liver, 19 colo-
rectal, 21 lung, 18 pancreatic, 10 glioblastoma) and 21 are 
normal samples. The training and testing of the data was 
done with the method caret::createDataPartition, where 
the parameter p = 0.7 was set, meaning that training to 
test ratio is 70:30. This corresponds to 91 samples for the 
training set and 38 samples for the test set.

To configure the Random Forest and Gradient Boost-
ing algorithms we included the setting of various hyper-
parameters such as:

RandomForest

1.	 n_estimators: This parameter defines the number of 
decision trees in the forest. We used “ranger” method 
and the argument tuneGrid in the “train” function, 
which specifies a grid of parameters.

2.	 mtry was set to 100, which is the number of varia-
bles randomly selected at each split in each tree. This 
value is part of the hyperparameter tuning process.

3.	 Criterion: Random Forest can use different criteria 
for splitting nodes in the decision trees. Splitrlule 
was set to “gini”, indicating that the Gini impurity 
criterion was used for splitting nodes in the decision 
trees.

4.	 min_samples_leaf: Sets the minimum number of 
samples required to be at a leaf node. In our code 
min.node.size was set to 1.

5.	 bootstrap: A Boolean parameter indicating whether 
to use bootstrapping when building trees. Bootstrap-

ping introduces randomness into the model, which 
can reduce overfitting. We did not explicitly set boot-
strap, the default value < TRUE > was used.

6.	 random_state: Controls the random seed for repro-
ducibility.

We set the random seed to 17 using set.seed (17).

Gradient boosting

1.	 n_estimators: This parameter defines the number 
of boosting stages (trees) to use. In our code, we set 
nrounds = 200 in the tuneGrid, which corresponds to 
the number of trees in the ensemble.

2.	 Learning_rate: Determines the step size at each 
iteration while moving toward a minimum of a loss 
function. The code specifies a range of values for the 
learning rate (0.05, 0.1, 0.3), indicating that it is likely 
being tuned during the cross-validation process.

3.	 max_depth: The maximum depth of individual trees. 
The code specifies a range of values for the maximum 
depth of trees (max_depth = 4).

4.	 We set gamma = 0, which is a regularization param-
eter that controls the complexity of individual trees.

5.	 subsample: The code specifies a value of 0.5 for sub-
sampling, indicating that a fraction of samples is used 
for fitting the trees.

6.	 We set the minimum sum of instance weigh (hessian) 
needed in a child. min_child_weight = 1. It’s a regu-
larization parameter.

7.	 random_state: Controls the random seed for repro-
ducibility, just like in Random Forest. We set the ran-
dom seed to 17 using set.seed (17).

Based on our data, we modeled these hyperparameters, 
using techniques such as grid search or random search, 
and tested various combinations of hyperparameters to 
find the best set for our data. Also, variable importance 
was calculated and plotted.

More specifically, we tested the Random Forest algo-
rithm with 100% success rates for the training set and 
84.21% for the test set and the Gradient Boosting algo-
rithm with 98.9% success rates for the training set and 
86.8% for the test set.

Experimental results indicate that both classifiers had 
good results. But most importantly, the variables were 
checked with the Random Forest algorithm (Fig.  3) and 
Gradient Boosting algorithm (Fig.  4) and the result was 
that there is an overlap with the most important genes 
from the results of differential expression and functional 
enrichment of the genes (GO terms and KEGG path-
ways). The genes commonly found were VCL, F13A1 and 
ACTN1.
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Discussion
Several bioinformatics studies have made RNA-seq anal-
ysis [16] and comparisons with RNA-seq and machine 
learning algorithms such as the study which addresses 
practically machine learning based approach for gene 
expression analysis using RNA-seq data for cancer 
research and compare it with a classical gene expression 
analysis approach [16, 17]. Many researchers have used 
algorithms for the detection of important differentially 
expressed genes [18, 19], for the identification and recov-
ery of reference transcripts with high precision, resulting 
in high—quality normalization [20], for the detection of 
gene signatures which are important for better research 
and clinical treatment [21], for sequence analysis about 
the sequence alignment and the prediction of RNA struc-
ture [22] and many other analyses.

Important papers that we considered in our study are 
the paper which reveals the steps of a typical RNA-seq 
analysis, highlights the pitfalls and checkpoints that are 
vital for scientists and biomedical researchers [23], the 

study which based on machine learning algorithms for 
the efficient integration of single cell data [19, 24], the 
identification of known and novel cell types using biolog-
ical information and the modeling of dynamic changes of 
cell populations over time [25], the paper which mentions 
new methods for analyzing scRNA-seq data. In this study 
observed supervised machine learning algorithms for cell 
phenotype classification were evaluated using published 
real and simulated datasets with diverse cell sizes [26]. 
This paper observes that algorithms and more specifically 
a quantum clustering technique achieves high accuracy 
in classifying cells into different cancer types [27]. This 
study focuses on the application of wet ‘omics technology 
and dry machine learning approaches together to further 
develop precision medicine [28].

In our analysis we used two significant books. The 
first bioinformatics book provides some updates on 
bioinformatics methods, resources, approaches and 
genome analysis tools useful for exploring large—vol-
ume of biological data [29]. The second book is proper 

Fig. 3  Random forest algorithm plot. The above plot indicates the overlap of the Random Forest algorithm with the most important genes (identi‑
fiers) from the results of differential expression



Page 8 of 10Stathopoulou et al. Health Information Science and Systems (2024) 12:14

for researchers seeking to process and manage data gen-
erated by NGS. It describes algorithms for processing 
sequencing data and presents useful studies [30].

Based on the findings of the aforementioned studies, 
our research interest was focused on the formation of an 
algorithm to generate a classifier based on the expression 
values of the genes of the original RNA-sequencing data-
set, including a dataset containing samples of different 
types of cancer and showing how supervised classifica-
tion algorithms can be used to extract significant genes.

It is obvious that this type of data set we chose includes 
many genes and this has an effect on the results of 
both methods. The proposed machine learning algo-
rithms developed here can classify well and identify the 
top most important genes. These classifications were 
compared with the results of a differential expression 
analysis. The genes selected by both methods are dif-
ferent. Random genes were selected from the raw sam-
ples for the machine learning algorithms and genes with 
p-value < 0.0001 were selected for the RNA-sequencing 
analysis. There is remarkable compatibility in the com-
mon highly correlated genes between the two methods.

The aim of this research is not to replace differential 
expression analysis with machine learning algorithms, 
but to overlap between the two methods in detecting 
important genes. The original study by [31] for the data 
set GSE68086 also suggests the use of machine learning 
algorithms for more accurate analysis. The result in our 
study shows that while the supervised learning-based 
gene selection method was used independently of dif-
ferential expression analysis (i.e., using the genes of all 
samples and not just the genes with significant differ-
ential p-value as input) there is an overlap between the 
two methods in detecting important genes that play an 
important role in the development of cancer. The set of 
selected genes by the proposed method in the GSE68086 
data set is shown in Fig. 2. The volcano plot lists the final 
set of selected genes. The first ten most important genes 
are protein-coding genes and are the following KCTD20, 
ZNF185, VCL, ITGB1, F13A1, TPP1, EIF4G2, PRKAR1A, 
CORO1C and ABCC3. The KCTD20 protein amino acid 
sequence shows high homology and the expression of 
this gene may be involved in oncological processes [32]. 
The ZNF185 gene expression is involved in the regulation 

Fig. 4  Extreme Gradient Boosting algorithm plot. The above plot indicates the overlap of the Gradient Boosting algorithm with the most important 
genes (identifiers) from the results of differential expression
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of tumor growth and metastasis [33]. A study shows that 
the VCL gene is significantly associated with cancer [33, 
34]. The ITGB1 gene stimulates cell proliferation, inva-
sion and metastasis [35]. According to studies, the F13A1 
gene is involved in the development of cancer, with dys-
regulation of excessive platelet activation, thrombo-
sis and its association with inflammation [36]. Also the 
remaining important genes according to previous stud-
ies are cancer-related genes and lead to the develop-
ment of the tumor [37–40] and a study of ABCC3 gene 
whose overexpression indicates poor prognosis in differ-
ent types of cancer [41]. Our research was limited to the 
analysis of the first ten significantly expressed genes and 
the remarkable thing is that the overlap that exists with 
the algorithms is in the VCL, F13A1 and ACTN1 genes. 
The ACTN1 gene is also a protein-coding gene and asso-
ciated with cancer [42]. Our results can provide useful 
information for predicting gene expression. However, we 
believe that the accuracy of the machine learning method 
still needs to be improved. As the field of machine learn-
ing contains many different supervised classification 
algorithms, it would be interesting to extend this work 
by testing the performance of other gene selection algo-
rithms within RNA-sequencing datasets.

In many cases, creating lists of differentially expressed 
genes is not the final step in the analysis. Further bio-
logical knowledge is required by examining changes in 
gene expression. As it is known in differential expression 
analysis of RNA-seq data, long or highly expressed genes 
are more likely to be detected by most existing computa-
tional methods. However, such bias against short or lowly 
expressed genes may distort down-stream data analysis 
at system biology level. Our study needs to be further 
improved on this part by developing a computational 
tool that combines both gene co-expression and RNA-
seq data. A gene enrichment analysis performed on the 
genes identified by the two proposed methods showed 
that many cancer-related pathways were significantly 
enriched. However, it would be of interest to extend fur-
ther biological analysis and interpretation of the results.

Conclusions
RNA-seq workflow analysis routine was described, focus-
ing on expression quantification and finding differentially 
expressed genes. Machine learning algorithms are useful 
tools to improve our determination of gene expression. 
By comprehensive comparison, we determined that the 
model based on Random Forest and Gradient Boost-
ing is powerful and robust for differential expression 
gene’s prediction. Taken all together, our study shows 
that combining the method based on Machine Learning 
algorithms with RNA-seq analysis significantly improves 
the recognition of the most important differentially 

expressed genes and confirms the overlap between these 
methods.
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