
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2020) 11:2963–2986
https://doi.org/10.1007/s12652-019-01439-3

ORIGINAL RESEARCH

A RESTful middleware for AI controlled sensors, actuators and smart
devices

Nikos Dipsis1 · Kostas Stathis1

Received: 14 February 2019 / Accepted: 28 August 2019 / Published online: 12 September 2019
© The Author(s) 2019

Abstract
The numerous applications of internet of things (IoT) and sensor networks combined with specialized devices used in each has
led to a proliferation of domain specific middleware, which in turn creates interoperability issues between the corresponding
architectures and the technologies used. But what if we wanted to use a machine learning algorithm to an IoT application
so that it adapts intelligently to changes of the environment, or enable a software agent to enrich with artificial intelligence
(AI) a smart home consisting of multiple and possibly incompatible technologies? In this work we answer these questions
by studying a framework that explores how to simplify the incorporation of AI capabilities to existing sensor-actuator net-
works or IoT infrastructures making the services offered in such settings smarter. Towards this goal we present eVATAR+,
a middleware that implements the interactions within the context of such integrations systematically and transparently from
the developers’ perspective. It also provides a simple and easy to use interface for developers to use. eVATAR+ uses JAVA
server technologies enhanced by mediator functionality providing interoperability, maintainability and heterogeneity support.
We exemplify eVATAR+ with a concrete case study and we evaluate the relative merits of our approach by comparing our
work with the current state of the art.

Keywords Internet of things · Sensor networks · Smart devices · Artificial intelligence · Middleware · RESTful API

1 Introduction

One common requirement for the constituents of sensor-
actuator networks and IoT infrastructures is that they should
access and transform the environment in which they are
situated. Consider, for example, the “smarter planet” vision
where cognitive AI is applied on sensors and actuators
embedded in physical objects found in every environment
of human activity (IBM Watson IoT 2017). Such a vision to
apply AI to a global network of sensors is further reinforced
by analogous efforts [see Google DeepMind (2018), Ten-
sorFlow (2016)], who are showing an increasing interest in
home automation technologies (see Nest Labs 2019), IoT
platforms (see Google Cloud IoT 2018) and smart services
(see Amazon Web Services IoT 2018). Similar ideas, for

example Sundmaeker et al. (2010) and earlier works such
as that of de Bruijn and Stathis (2003), require things to
“interact and communicate among themselves and with the
environment by exchanging information sensed about it
while reacting autonomously to the physical world events
and influencing it by running processes that trigger actions
and create services with or without direct human interven-
tion”. The adoption of these ideas for a variety of popu-
lar applications that provide smart electronic services for
domestic, healthcare and work environments suggest that
their supporting technologies are here to stay.

However, the numerous application areas requiring IoT
and sensor-actuator networks combined with the specialized
devices used in each has led to the creation of countless
specialized middleware. Zachariah et al. (2015) show that
this problem has led to a multiplicity of problem specific
middleware, creating interoperability issues between the
architectures they enable due to the diversity in the tech-
nologies used and the architectural approaches to IoT. For
example, Hydra [see Eisenhauer et al. (2009), LinkSmart
(2018)] abstracts devices as services using semantic ontolo-
gies to implement discovery while Google Fit (2018) uses

 * Nikos Dipsis
 ndipsis@gmail.com

 Kostas Stathis
 kostas.stathis@cs.rhul.ac.uk

1 Computer Science Department, Royal Holloway, University
of London, Egham, Surrey TW20 0EX, UK

http://orcid.org/0000-0002-2687-9397
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-019-01439-3&domain=pdf

2964 N. Dipsis, K. Stathis

1 3

a representational state transfer (RESTful) application pro-
gramming interface (API) as discussed in Fielding (2000)
and does not use high level abstractions for incorporating
new devices in its architecture. Google Cloud IoT (2018)
and Amazon Web Services IoT (2018) on the other hand
work with edge-based services (closer to the sensors/things,
localised services) and cloud based web services. They both
require from devices and settings to run their proprietary
software to access their infrastructures and their cloud web-
services that include powerful machine learning and analyt-
ics functionalities.

But what if we wanted to apply a machine learning algo-
rithm to an existing IoT setting to add further intelligence
to the environment (e.g. Mehmood et al. 2019), or enable a
software agent to enrich with AI capabilities a smart home
(e.g. Poncela et al. 2018) consisting of multiple and not nec-
essarily interoperable technologies? We are trying to answer
these questions through a framework that demonstrates how
to simplify the incorporation of AI capabilities to existing
sensor-actuator networks or IoT infrastructures making the
services offered in such settings smarter. Yet another IoT or
sensor network middleware directly connecting the low level
sensors and physical devices with AI capabilities would only
contribute to the existing mosaic of available middleware.
As the current state of the art indicates, such attempt would
inevitably be application/hardware specific and not very use-
ful to most existing systems. Instead we want to integrate,
when possible, with existing settings and make them smarter
with the added benefit of interoperability between heteroge-
neous and diverse IoT architectures.

Working at this level would take away the specialized
sensor and smart device integration complexities that has
led to the multitude of IoT middleware approaches and
would allow the middleware to work with existing settings
instead of requiring their replacement. In this context, we
argue that what will simplify a developer’s task is a more
customized middleware that takes into account the par-
ticularities of binding an AI to a sensor/actuator network
to make their integration transparent and systematic. The
reason why integration transparency is important is that it
can abstract away the low-level details of how an AI discov-
ers and interacts with a set of a sensors and actuators, as in
Görgü et al. (2018). In other words, the system developer
that uses eVATAR+ in an application would describe AIs
and devices using abstractions and the middleware would
bind them to each-other and route messages between them
without the developer having to deal with or have knowledge
of how this is done inside the middleware i.e. transparently.
Systematization refers to providing developers with a stand-
ard way of implementing the specific type of integrations
that involve AI platforms and sensor/actuator/smart device
networks. We aspire to simplify the task of integrating agent
AI with sensor, actuator and smart device networks and a

way of achieving this is by using a familiar and easy to use
API. Interoperability and heterogeneity are also important
features of the discussed middleware because a middleware
would not be of much use if it contradicted its intrinsic goal
to interconnect heterogeneous software.

Our middleware is associated with an interaction para-
digm for binding AI capabilities with sensor, actuator and
smart devices; the capabilities will be part of intelligent
agents using different agent models (Kakas et al. 2008) or
architectures (Witkowski and Stathis 2004). According to
Heim (2007), an interaction paradigm is a model or pattern
of human–computer interaction encompassing all aspects of
interaction, including physical, virtual, perceptual and cog-
nitive. Our middleware’s paradigm is inspired by the famil-
iar concept of avatar as it has been popularised in virtual
reality and computer games applications. However, instead
of representing a user in a virtual environment, our avatar
architecture explores the reverse arrangement, viz., where
an AI agent running in an electronic environment is bound
with an avatar body that is essentially comprised of sensors,
actuators and smart devices deployed in a physical world.
In this new view, the AI provides an invisible mind that
controls a physical body, thus adding an anthropomorphic
dimension to the integrated system. According to Epley et al.
(2007) human-like qualities enable robotic and AI systems
to become more familiar and comprehensible by both end
users and developers. Thus, we used the notion of the avatar
to conceptualize and develop a familiar, comprehensible and
therefore intuitive interaction paradigm for the systematiza-
tion of interactions between AI programs and heterogeneous
sensor, actuator and smart device technologies.

The notion of a software component acting like a mind
to control another software component representing a body
with sensors and actuators is not new, for example see the
agent architecture described in Stathis et al. (2004). We
essentially augment that architecture to control physical sen-
sors and actuators. Also, an important focus of our work is to
produce middleware that implements such interaction trans-
parently, i.e. a developer can bind AI agents with specific
sensors and actuators for free and thus concentrate on other
aspects, viz. the modelling of the application level interac-
tion between components (e.g. Stathis and Sergot 1996), its
specification and architecture (e.g. Stathis 2000), and their
implications on a specific domain (e.g. Cohen and Stathis
2001). The resulting middleware is called eVATAR+, a
play with the words electronic and avatar to denote that it
enables an entity in an electronic environment to have an
avatar through specific sensors and actuators situated in the
physical environment (see Fig. 1 in the next section for an
example use).

eVATAR+ is an evolution of our previous work with
the EVATAR system (see Dipsis and Stathis 2010 and
Dipsis and Stathis 2009). The older version featured a

2965A RESTful middleware for AI controlled sensors, actuators and smart devices

1 3

message-oriented middleware with a centralized broker and
XML based messaging that was enabled by adaptors that
were running on the various communicating entities (agents
and devices) implemented on a service-oriented architecture
(see Dipsis and Stathis 2012). The new version discussed
here, however, is a substantial reengineering of the previous
system as a web server with enhanced mediation capabilities
and a RESTful API for easier interaction with third party
software (vs the cumbersome and complicated XML ontolo-
gies of the older version). In addition, we present here an
approach that utilizes widely-used technologies integrated
in such a way that can be easily replicated by developers.

To present our approach, the paper is structured as fol-
lows. In Sect. 2, we take a look at current state of the art of
middleware that could enable the connection of AI capa-
bility to existing smart home and IoT settings and identify
potential shortcomings. In Sect. 3, we describe our approach
attempting to overcome these shortcomings where we pre-
sent the architecture of eVATAR+ and its instantiation. Then
in Sect. 4 we present a case study that illustrates the type
of applications we envisage when using eVATAR+, par-
ticularly in the area of AI enabled smart homes. Finally,
we summarise our contributions in Sect. 5 where we also
present our plans for future work.

2 State of the art

A plethora of middleware for the IoT community is already
available, see Ngu et al. (2016) for more details. We have
selected here from the current state-of-the-art those mid-
dleware that could support AI to sensor, actuator and IoT

device integration and we evaluate them against the fol-
lowing requirements. Particularly, we will be focusing on
the following characteristics that could simplify the pro-
posed integrations:

• API technology prevalence of use for the development
of similar APIs and API level of complexity indicating
ease of use;

• a systematic and familiar way for implementing the
integrations between AI and IoT/Sensor networks;

• integration transparency.

Agent based middleware intrinsically support agent AI
to sensor network integration. They are used to imple-
ment software agents on sensor and actuator networks.
Specifically, an intelligent agent is commonly deployed
on a single sensor/actuator/device node. Agents running
on a node react to their environment in ways that support
complex tasks requiring intelligence. However, key frame-
works under this approach such as SensorWare in Boulis
et al. (2007), Impala in Liu and Martonosi (2003), Agilla
in Fok et al. (2009), Smart Messages in Kang et al. (2004),
Ubiware in Michal et al. (2009) and UbiRoad in Terziyan
et al. (2009) are usually implemented with an intrinsic
support of a single hardware/software platform overlook-
ing heterogeneity issues and also they are usually bound
to a single AI platform.

More generally, deploying intelligent applications using
this type of middleware that implements software agents can
be a challenging task due to: (a) hardware limitations; (b) the
complexity of programming decentralized nodes to exchange
increased volumes of context data about the environment
and coordinate their activities to support cooperative tasks;
(c) proprietary APIs. In environments with fast and reliable
networking connectivity such as in smart homes (our area of
interest), there are commonly facilities for centralized pro-
cessing and the sensors and actuators are usually either static
(wired) or wireless. Decentralized (node level) computation
is not as critical in such settings. Therefore we see that agent
based middleware provide with a systematic way of integrat-
ing agents with sensor and actuator networks but they tend to
be complex to use and application/domain/platform specific.

A more common approach follows a service oriented
architecture (SOA) paradigm to implement middleware that
provide with ways to interconnect sensor (and actuator) net-
work nodes, IoT and smart home devices. Such middleware
components focus on connectivity, interoperability and on
low-level tasks such as gathering information from sensors
or controlling actuators. The SOA paradigm enables middle-
ware to also implement integrations with external applica-
tions through the representation of nodes in a sensor/actuator
network as services and external systems as service consum-
ers, for example in our case an AI agent. In this way such

Fig. 1 Example of a smart home system that uses a middleware
implemented following the avatar framework (e.g. eVATAR+). The
locks indicate secure communications

2966 N. Dipsis, K. Stathis

1 3

middleware can support data integrations in which a sensor
network produces data used by external systems.

SOA-based middleware components such as Hydra
(LinkSmart) (Eisenhauer et al. 2009), TinySOA (Rezgui and
Eltoweissy 2007), USEME (Cañete et al. 2009) and SIXTH
(O’Hare et al. 2012), NOSA (Chu et al. 2006), OASiS
(Kushwaha et al. 2007), SenseWrap (Evensen and Meling
2009), MUSIC (Rouvoy et al. 2009) and SOCRADES (Gui-
nard et al. 2010) provide services for the integration with an
AI program. Web-server based middleware exposing their
services using RESTful APIs such as Kaa-IoT Technologies
(2017), Konker Labs (2017) and DataArt Solutions, Device-
Hive (2017) work in a similar way. However, they do not
provide a systematic way for linking AI capabilities to a sen-
sor and actuator network that abstracts away from the low-
level details of how this is achieved, nor do they achieve this
linking in a transparent way. In order to make this process
systematic and transparent we would require a middleware
that looks at the integration from an application perspective.
SOA-based middleware for sensor actuator networks tend to
focus on gathering information from sensors and they tend
to ignore how to use this information effectively at a higher-
level. SOA based middleware can achieve the integrations
and they tend to offer industry standard API interactions
that are familiar to a wide range of engineers and develop-
ers but their intrinsic focus is the interconnectivity of sen-
sors, actuators and IoT devices because this is what they are
designed to do. Therefore they do not offer a systematic and
transparent way enabling developers to integrate AI agents
to existing IoT and sensor/network ecosystems because they
were not designed for this particular type of integrations.

Pervasive and Ambient Intelligence middleware such
as SALSA in Favela et al. (2004), RoboCare in Bahadori
(2005), the middle layer in Kim et al. (2007) and ReMMoC
in Grace et al. (2005) are more flexible in terms of creating
application specific solutions that use the data of low-level
sensor/actuator network middleware. However, none of these
middleware satisfies both required characteristics for: (a) a
systematic integration (providing developers with a standard
way for implementing the specific type of integrations that
involve AI platforms and sensors and actuator networks) and
(b) transparency (abstracting the low-level details of how an
AI discovers and interacts with a set of a sensors and actua-
tors). In general, state of the art IoT middleware such as the
ones mentioned above and other notable examples such as
PEIS (Saffiotti et al. 2008) and iCore (Giaffreda 2013) could
also potentially enable architectures that integrate AI with
IoT infrastructures, sensors and actuators. A downside in
the above approaches is that there is usually a steep learning
curve when attempting to integrate such middleware into
a new system or use their APIs that tend to be complex,
proprietary and targeting specialized audiences (due to the
IoT middleware pluralism). Furthermore, being middleware,

they intrinsically focus on connectivity and interoperabil-
ity between different elements of sensor/actuator networks,
smart home and IoT infrastructures as opposed to simplicity
and integration transparency. We also considered middle-
ware approaches for robotics such as MARIE (Cote et al.
2006) and Player (Gerkey et al. 2003) that can achieve
integrations between AI programs and sensor and actuator
networks, but they also do not satisfy the systematic integra-
tion and transparency requirements. Google Fit (2018) is
another example of a body network middleware that is appli-
cation specific and thus not suitable for the purposes of our
research for a middleware capable of integrating various AI
software with existing IoT and sensor network ecosystems.

Google Cloud IoT (2018) offers a solution for connect-
ing, processing, storing and analysing data both at the
edge and in the cloud. A similar approach is followed by
Amazon Web Services IoT (2018). The downside of these
approaches is that they require proprietary software to be
run on the devices, sensors and actuators in order to par-
ticipate in their infrastructures and they limit the AI to the
services offered by their private clouds. Thus, they are not
easily interoperable with different technologies.

Atmojo et al. (2015) propose an approach for designing
AmI systems based on the use of a concurrent program-
ming language called SystemJ. SystemJ programs control
heterogeneous sensor/actuator nodes to implement dis-
tributed AmI systems. SystemJ runs on the Java Virtual
Machine and provides high-level abstracted objects, sig-
nals and channels, for communications between different
software entities and the nodes. It can be a complemen-
tary approach to eVATAR+ as it is generally designed to
implement programmable distributed systems consisting
of sensors and actuators while eVATAR+ is designed to
make them more intelligent.

The following table summarizes the representative list of
middleware that were considered.

Table 1 suggests that there is paucity of frameworks that
enable the linking of the computation and functionality of
AI programs to networked sensor/actuation devices in a way
that fulfils all desired characteristics that were identified in
the Introduction i.e. offering: a simple, familiar and easy to
use API, a systematic and familiar way for implementing
the integrations and integration transparency. We therefore
found an opportunity to build upon experience gained from
current research and proposed our own approach, eVA-
TAR+. Our approach is tailor made to the particularities of
integrating agent AI to sensor-actuator networks, IoT set-
tings and smart homes offering a systematic and transparent
way to achieve this (similarly to the agent based middleware)
while at the same time offering a commonly used and famil-
iar approach to API interactions. Furthermore, another goal
of our middleware was independence of AI agent or IoT/
sensor network platforms.

2967A RESTful middleware for AI controlled sensors, actuators and smart devices

1 3

Ta
bl

e
1

 C
ur

re
nt

 st
at

e
of

 th
e

ar
t e

va
lu

at
ed

 a
ga

in
st

ou
r r

es
ea

rc
he

d
ap

pl
ic

at
io

n

M
id

dl
ew

ar
e

ty
pe

Fo
r

A
ga

in
st

Ag
en

t b
as

ed
Se

ns
or

W
ar

e
in

 B
ou

lis
 e

t a
l.

(2
00

7)
, I

m
pa

la
 in

 L
iu

 a
nd

 M
ar

-
to

no
si

 (2
00

3)
, A

gi
lla

 in
 F

ok
 e

t a
l.

(2
00

9)
, S

m
ar

tM
es

sa
ge

s
in

 K
an

g
et

 a
l.

(2
00

4)
, U

bi
w

ar
e

in
 M

ic
ha

l e
t a

l.
(2

00
9)

 a
nd

U

bi
Ro

ad
 in

 T
er

zi
ya

n
et

 a
l.

(2
00

9)

A
 sy

ste
m

at
ic

 w
ay

 o
f i

nt
eg

ra
tin

g
ag

en
ts

 w
ith

 se
ns

or
 a

nd
 a

ct
ua

-
to

r n
et

w
or

ks
Th

ey
 te

nd
 to

 b
e

co
m

pl
ex

 to
 u

se
 a

nd
 a

pp
lic

at
io

n/
do

m
ai

n/
pl

at
-

fo
rm

 sp
ec

ifi
c

SO
A

H
yd

ra
 (L

in
kS

m
ar

t)
in

 E
is

en
ha

ue
r e

t a
l.

(2
00

9)
, T

in
yS

O
A

in

 R
ez

gu
i a

nd
 E

lto
w

ei
ss

y
(2

00
7)

, U
SE

M
E

in
 C

añ
et

e
et

 a
l.

(2
00

9)
 a

nd
 S

IX
TH

 in
 O

’H
ar

e
et

 a
l.

(2
01

2)
, N

O
SA

 in
 C

hu

et
 a

l.
(2

00
6)

, O
A

Si
S

in
 K

us
hw

ah
a

et
 a

l.
(2

00
7)

, S
en

se
W

ra
p

in
 E

ve
ns

en
 a

nd
 M

el
in

g
(2

00
9)

, M
U

SI
C

 in
 R

ou
vo

y
et

 a
l.

(2
00

9)
 a

nd
 S

O
C

R
A

D
ES

 in
 G

ui
na

rd
 e

t a
l.

(2
01

0)
RE

ST
fu

l w
eb

 se
rv

ic
es

K
aa

-I
oT

 T
ec

hn
ol

og
ie

s (
20

17
),

K
on

ke
r L

ab
s (

20
17

),
D

at
aA

rt
So

lu
tio

ns
, D

ev
ic

eH
iv

e
(2

01
7)

Ea
sy

 to
 u

se
, c

om
m

on
ly

 u
se

d
an

d
fa

m
ili

ar
 A

PI
s

N
o

sy
ste

m
at

ic
 a

nd
 tr

an
sp

ar
en

t w
ay

 e
na

bl
in

g
de

ve
lo

pe
rs

 to

in
te

gr
at

e
A

I a
ge

nt
s t

o
ex

ist
in

g
Io

T

Pe
rv

as
iv

e,
 a

m
bi

en
t i

nt
el

lig
en

ce
 a

nd
 ro

bo
tic

s m
id

dl
ew

ar
e

SA
LS

A
 in

 F
av

el
a

et
 a

l.
(2

00
4)

, R
ob

oC
ar

e
in

 B
ah

ad
or

i (
20

05
),

th
e

M
id

dl
e

La
ye

r i
n

K
im

 e
t a

l.
(2

00
7)

, R
eM

M
oC

 in
 G

ra
ce

et

 a
l.

(2
00

5)
, M

A
R

IE
 in

 C
ot

e
et

 a
l.

(2
00

6)
, P

la
ye

r i
n

G
er

ke
y

et
 a

l.
(2

00
3)

, P
EI

S
(S

affi
ot

ti
et

 a
l.

20
08

),
iC

or
e

(G
ia

ffr
ed

a
20

13
),

G
oo

gl
e

Fi
t (

20
18

) a
nd

 A
tm

oj
o

et
 a

l.
(2

01
5)

.

A
pp

lic
at

io
n

sp
ec

ifi
c

so
lu

tio
ns

 th
at

 u
se

 th
e

da
ta

 o
f l

ow
-le

ve
l

se
ns

or
/a

ct
ua

to
r n

et
w

or
k

m
id

dl
ew

ar
e

G
en

er
al

ly
 c

om
pl

ex
 to

 u
se

, a
pp

lic
at

io
n

sp
ec

ifi
c

an
d

no
 sy

ste
m

-
at

ic
 a

nd
 tr

an
sp

ar
en

t w
ay

 e
na

bl
in

g
de

ve
lo

pe
rs

 to
 in

te
gr

at
e

A
I

ag
en

ts
 to

 e
xi

sti
ng

 Io
T

C
lo

ud
 b

as
ed

 m
id

dl
ew

ar
e

G
oo

gl
e

C
lo

ud
 Io

T
(2

01
8)

 a
nd

 A
m

az
on

 W
eb

 S
er

vi
ce

s I
oT

(2

01
8)

C
om

pl
et

e
so

lu
tio

ns
 fo

r c
on

ne
ct

in
g,

 p
ro

ce
ss

in
g,

 st
or

in
g

an
d

an
al

ys
in

g
se

ns
or

, a
ct

ua
to

r a
nd

 Io
T

de
vi

ce
 d

at
a

bo
th

 a
t t

he

ed
ge

 a
nd

 in
 th

e
cl

ou
d

Pr
op

rie
ta

ry
 so

ftw
ar

e,
 n

ee
ds

 to
 b

e
ru

n
on

 th
e

de
vi

ce
s,

se
ns

or
s

an
d

ac
tu

at
or

s a
nd

 A
I l

im
ite

d
to

 se
rv

ic
es

 o
ffe

re
d

by
 th

ei
r p

ri-
va

te
 c

lo
ud

s.
N

ot
 e

as
ily

 in
te

ro
pe

ra
bl

e
w

ith
 o

th
er

 te
ch

no
lo

gi
es

2968 N. Dipsis, K. Stathis

1 3

3 EVATAR+

In order to ground our discussion on eVATAR+ and exem-
plify its concepts we consider as our motivating applica-
tion one that needs to use IoT integration for a smart home.
The way we envisage the use of eVATAR+ middleware
for this class of applications, is depicted in Fig. 1 below.

Figure 1 illustrates an AI agent interacting with smart
appliances, smart phones and with a gateway that controls
a smart home sensors and actuators. eVATAR+ is installed
in the edge of the local network and interacts with an AI in
the cloud. In other settings the AI software would typically
run locally or on a smart phone.

The main idea behind the middleware is to enable AI
programs/agents to register with it by sending abstract
descriptions of the functionalities they require in the
search of a new avatar. The avatar would be a set of
physical devices that also register with the middleware
by sending abstract descriptions of their functionalities.
eVATAR+ performs discovery by matching the registered
agents with suitable registered devices. It will then map
them together in a way that the agent is able to send action
requests to the devices or receive sensory data from them,
thus enabling it to enhance existing sensor networks or
IoT settings with AI capabilities. This way the devices
will constitute the avatar body of the agent in the physical
world.

Throughout the paper and for presentation simplicity
whenever we speak about physical devices, we refer to
physical devices as exposed to eVATAR+ via:

• a sensor and actuator network middleware
• an IoT infrastructure
• a smart home application
• directly in the case that they are “smart” and capable

of supporting the calls required by the eVATAR+ API.

Only in the last case eVATAR+ would communicate
with the devices directly. Still, whether the software that
registers a device is run on the device itself or whether it
is run in a controller gateway that exposes its functional-
ity to eVATAR+, the functionality of the latter will remain
the same. In other words, the way eVATAR+ will perform
registration, discovery, binding and mediation of messages
does not depend on the type of communication supported by
the endpoint devices, as long as they are capable of using
its API. Therefore, for simplicity we will be using the word
device, sensor or actuator for all above cases as aliases to
an exposed device, exposed sensor or an exposed actuator.

Having an idea of how a smart home application using
eVATAR+ looks like (Fig. 1), we can now proceed with
describing the middleware, starting with the architecture.

3.1 The architecture of eVATAR+

Figure 2 presents the building blocks of the reference archi-
tecture for eVATAR+. In this section we will refer to this
architecture to present the implementation choices and func-
tionality of the middleware.

The architecture assumes that any external resource such
as sensors, actuators, smart devices and the AI software
should call the middleware’s API that uses REST (Fielding
2000) and JavaScript Object Notation (JSON) to exchange
messages (JSON 2017). This allows a feedback loop
between sensor data that trigger the AIs to select actions
(using cognitive capabilities such as decision making, plan-
ning, learning and reactivity or social capabilities such as
cooperation or negotiation) and then instruct the sensor and
actuator network to perform these actions.

In order to simplify a developer’s task we have selected
implementation technologies that would enable deployment
to the cloud, on a dedicated board computer (e.g. Raspberry
Pi 2018), on an existing local server/pc or a smartphone. As
a result, we have chosen the DropWizard framework (Drop-
Wizard 2017) that is essentially a collection of Java libraries
glued together to enable RESTful server applications. The
benefit of using DropWizard is that it enables the implemen-
tation of lightweight monolith servers and microservices.
The latter can be deployed in the cloud as well as on already
existing local server PC, dedicated board computers and
smartphones. All options except the one of the dedicated
board computer would alleviate the need for another device
in the smart home. This way we can view eVATAR+ as a
low footprint add-on to an existing architecture.

As we can see in Fig. 2 eVATAR+ uses a Jetty container
(Jetty 2018) handled by Jersey that enables us to implement
in Java a handler that supports the REST API (Jersey 2018).

The persistence layer of eVATAR+ supports the busi-
ness logic with a relational database. We have chosen to use
PostgreSQL because it is a powerful, open source object-
relational database system. It supports multiple datatypes,
scalability, a good online support community, it is being
constantly improved and updated, it is cross-platform and
has good administrative tools (pgAdmin, DBeaver). In our
typical so far web server setting, the persistence layer uses
the hibernate object relational mapping (ORM) framework
that is responsible for saving the entity that is a Java object
as a relational database record (Hibernate 2018). Most of the
libraries that we use are part of the DropWizard framework.
Furthermore, we implement the data access object (DAO)
design pattern to provide an abstract interface and access to
a database by using the ORM. It provides and includes all
basic create, read, update, delete (CRUD) methods to inter-
act with the database. The DAO is as light as possible and
exists solely to provide a connection to the database.

2969A RESTful middleware for AI controlled sensors, actuators and smart devices

1 3

Furthermore, in our web server architecture of Fig. 2
there is a service layer which can be described as a layer
between the resources in the controller layer and the DAO
class in the persistence layer. The service layer is called by
the resource layer and makes use of the DAO to interact with
the database. The service layer provides the business logic
to operate on the data sent to and from the DAO and the
client. This is why we all this layer as the business layer in
the architecture of Fig. 2. Another reason for using an extra
service layer to add business logic is security. A service
layer that has no relation to the DB, makes it more difficult
to access the DB from the client unless it goes through the
service. If the DB cannot be accessed directly from the cli-
ent then an attacker taking over the client will need to hack
the service layer as well before gaining access to the data.
In the service layer we implement mediator functionality,

see Gamma (1995). To support the mediations we also
implement discovery of suitable sensors and actuators to
an agents’ requirements and their binding i.e. the creation
of exclusive communication relationships between agent
components and physical sensor, actuators and devices (see
below for more details and clarity).

In this architecture the resource layer is independent of
the data storage engine. To further ensure layer independ-
ence we use dependency injection for simplifying testing
and improving decoupling. Dependency injection is a prac-
tice where objects are designed in a manner where they
receive instances of other objects instead of constructing
them internally.

The OAuth2 protocol (OAuth2 2018) is used for authen-
tication and authorization for the agents and the devices
that connect to the middleware and the communications are

Fig. 2 The reference architec-
ture of eVATAR+

2970 N. Dipsis, K. Stathis

1 3

secured with TLS protocol (TLS 2018) as per standard. In
an example application a user would login using a password
and acquire an expiring session token. Agents and devices in
the application would use the expiring token to authenticate
their communications with eVATAR + . In addition, in our
proof-of-concept prototype we strive to keep the system with
the latest versions of the libraries and software used (such
as DropWizard and Jetty). Further considerations regarding
this issue are more relevant for a commercial deployment of
the system and therefore are beyond the scope of this work.

The application block, refers to the term used in the Drop-
Wizard framework for the centralized piece of code that puts
everything together and runs the server (or microservice in
a different architectural context).

Having identified an appropriate technological framework
for our middleware, we can now proceed with the descrip-
tion of the design of eVATAR+ within the particular frame-
work. In the following, we will describe only the relevant
functionality and classes that are needed to implement the
integrations omitting details about configuration, authentica-
tion and parts of functionality that come as standard with the
DropWizard framework.

3.2 The controller layer

Describing the eVATAR+ API would be a good starting
point for providing an overview of what eVATAR+ does.
The eVATAR+ API allows entities to interact with other
entities via eVATAR+ by sending and receiving JSON
objects. eVATAR+ provides a REST/JSON API for inter-
operability and easy integration. REST APIs dominate the
Internet because they are easy to use and widely known.
Similarly, JSON is lightweight and intrinsically designed
for describing data in way that is easy to be read by humans.
Thus, the proposed middleware becomes accessible to a
wide audience of developers. Any existing AI software tech-
nology or IoT/sensor network middleware and gateway, sen-
sor, actuator, sensor-actuator, smart appliance or IoT device
that has the resources to make REST calls can interact with
eVATAR+ and participate in the proposed architecture ena-
bling interoperability and heterogeneity.

The API allows the integrated devices and software to
establish loosely coupled, asynchronous coarse grain com-
munications between them. Most devices in modern smart
homes and especially IoT infrastructures tend to feature
connectivity and computing capabilities and show auton-
omy on their own or as part of a local setting that uses a
gateway that controls them. Consequently, there is no need
for a fine grain communication between a software agent
and a physical device. Instead a sensor can use the API
to PUT sensory data to eVATAR+ while the agent would
be polling to GET the sensory data or an agent can PUT
a request to be temporarily stored in eVATAR+ while an

actuator, or a sensor actuator or an IoT device would be
polling to GET the request (or set of requests) and carry
on the appropriate tasks in the physical world.

The API work in eVATAR+ is performed in the
“controller layer” by resource classes which model the
resources exposed in our RESTful API (i.e. the Jersey
handlers of the http requests Fig. 2). The resource layer
is essentially a handler to the Jetty server managing API
calls. The UML diagram below shows the main resource
classes of eVATAR+ (Diagram 1).

Agents and devices register by POSTing their descrip-
tions in JSON format to eVATAR+ (see Table 2). The
device description object in JSON always contains a type
tag indicating whether it is a sensor, actuator or smart
appliance (including IoT devices). There is a “description”
element where we can describe the device and what it does
and this description can be used (future work) for display
purposes in a UI. The metadata section is important as it
uses an array describing the particulars of the device such
as the status of the sensor (e.g. 1 for sensed motion 0 for
the opposite) and its location. There is no limitation in
what we can put in the metadata section. The “name” ele-
ment should contain a unique name for the device.

The agent description object in JSON similarly con-
tains its type and description as well as an array of device
descriptions. Its device description in the agent object has
the exact same structure as the standalone JSON descrip-
tions of the physical devices. eVATAR+ then performs
discovery by matching the required by the agent device
descriptions to already registered descriptions of sensors
and actuators and maps the compatible ones. A required
by an agent device and a physical device are compatible if
their metadata arrays have the same values. For example
in Table 2 shown below the required motion sensor and
the physical motion sensor have the same values in their
metada arrays (“metadata”:[“status”]).

When we POST a description, eVATAR+ returns JSON
objects containing unique identifying (Ids) Long integer
numbers for the entities being described. As we can expect
the device will receive a unique Id that it will be using for
every future communication with eVATAR+ and the agent
will receive a unique Id for itself and an array of identifiers
for every required device that it describes.

Agent registration messages like the one of Table 2 are
handled by the AgentResource class in Fig. 3 and in par-
ticular by the registerAgent handler function that deals
with the agent registration. Similarly, device registration
are handled by the DeviceResource class and the register-
Device handler function. The locality element allows us to
determine a particular sensor/device and comes handy in
settings where we have the same type of sensors/devices. It
takes a string that can describe a location or an identifier.

2971A RESTful middleware for AI controlled sensors, actuators and smart devices

1 3

Other API functions handled by the DeviceResource and
the AgentResource handlers:

The register devices PUT sensory data with messages like
the ones in Table 4 below and the agent is polling the mid-
dleware to GET this sensory data. In general, when a device
or an agent make a PUT rest call with an action request or
to send sensory data, they include JSON objects like the
ones of Table 4. These calls include the Id (e.g. 334) that
was returned to them by eVATAR+ when they registered by
POSTing their descriptions.

We notice that the message JSON objects contain a meta-
data section that has elements with names that match the

String values in the metadata array of the corresponding
device registration description JSON object (see Table 2).

3.3 The Business Layer

The business layer in eVATAR+ implements the business
logic that supports the resource (controller) layer. As we
have seen in the architecture the classes in the business layer
are called services and they enable the REST API handlers
in the resources layer to interact with the persistence layer
indirectly while also providing the business logic to oper-
ate on the data sent to and from the DAO and the client.

Table 2 API for registration by POSTing JSON descriptions of agents and devices

Agent Registration Device Registration

POST /api/v1/agent

Agents POST JSON objects containing registration
metadata that describes the functionality they
require. For example:

JSON Object
{

"type": "agent",
"description": "Jade agent",
"devices":
[

{
"type": "sensor",
"name": "requiredsensor1",
"description": "motion",
"locality": "livingroom",
"metadata":
["status"]

},
{

"type": "actuator",
"name": "requiredswitch1",
"description": "lightswitch",
"locality": "089e8eejd",
"metadata":
["set"]

}
]

}

Returns JSON Object:

{"agentId": "123",
"devices":
[{"name":"requiredsensor1",

"deviceId": "232"},
{"name": "requiredswitch1",

"deviceId": "552"}]}

POST /api/v1/device

Sensors, actuators, smart and IoT devices, gateways
controlling multiple POST JSON objects containing
registration metadata that describes the functionality
they provide. For example:

JSON Object
{
"type": "sensor",
"name": "motionsensor1",
"description": "motion",
"locality": "livingroom",
"metadata":["status"]

}

Returns JSON Object:

{
"name": "motionsensor1",
"deviceId": "123"

}

2972 N. Dipsis, K. Stathis

1 3

Figure 4 shows a UML class diagram of the most important
Service classes in the business layer. We can see that they
all have the same superclass the “Service” class that calls
the DAO (data access object) functionality enabling them to
interact with the persistence layer and the database. We use a
separate service layer not having the resource classes calling
the DAO directly because it enables the controller layer to
be independent from the data storage and we can add extra
business logic here.

With regards to the business logic, eVATAR+ imple-
ments in the services layer the mediator design pattern, as
described in Gamma (1995). The agents/AI software and
the sensor networks/IoT settings do not exchange mes-
sages directly but via eVATAR+’s mediator functionality.
The mediator pattern reduces communication complexity
between multiple endpoints and it supports loose coupling
(this way a change in the code of one participant would not
require a change in the code of the other and thus the code
is easier to maintain). The mediator behavioural pattern in
eVATAR+ is supported by the processes of discovery and
binding. In eVATAR+ discovery is the process by which
an agent finds (discovers) the set of sensors, actuators and
devices that it requires in order to sense and act in the physi-
cal world. We saw that during the registration stage, an agent
will POST a description JSON object. This JSON object also
includes a set of descriptions of required sensors, actuators
and devices. Discovery in eVATAR+ is the process of find-
ing sensors/actuators/device records in the database that are
compatible to the ones described in the agent description.
The compatibility is determined by comparing their meta-
data elements. For example, in Table 2 we see the motion
sensor required by the agent and the device description
(of the motion sensor in the right) have identical strings
in their metadata arrays of strings (“metadata”:[“status”]).
eVATAR+ would consider them as compatible. Discov-
ery is implemented in the DeviceService class of Fig. 4
(“discoverCompatibleDevice()”).

Binding is the result of the discovery and it essentially
means that eVATAR+ maps required by an agent devices to
physical devices and when a message from a required device
is received, eVATAR+ will make it available to the mapped
(mapped) physical device and the opposite. The mapping
logic is implemented in the DeviceMapService class.

If an agent/AI software upon registration does not find
a suitable physical device for all the required device in its
description it will poll eVATAR+ to check if one is found
later on (see Table 3). After this point agents can interact
with the physical devices by sending messages such as the
ones in Table 4. Agents and devices use their own device Ids
when making GET REST calls and eVATAR+ uses these Ids
to identify their mapped counterparts in the persistence layer
(see below). The mapped device will access the message
when it polls eVATAR+ for its messages (Table 4). This way
the different communication endpoints are loosely coupled,
do not communicate directly with each other and thus eVA-
TAR+ implements the mediator functionality.

3.4 Persistence layer

The business logic of eVATAR+ is supported by the per-
sistence mechanism that uses a relational database (Post-
greSQL). The services in the business layer use the DAO
object to interact with the database of Fig. 5 that shows the
most important to the described framework database tables.

The posted JSON descriptions of agents and devices that
are handled by the Jersey REST API handler (in the control-
ler layer) of eVATAR+ are represented in the software as
JPA entities (Java Persistence API—https ://docs.oracl e.com/
javae e/6/tutor ial/doc/bnbqa .html) and persisted in the data-
base. JPA entities are used for mapping Java objects to rela-
tional database tables and in particular they are Java objects
whose non-transient fields should be persisted to a relational
database (according to Oracle). An agent entity Java object
in other words contains all the data fields of the JSON object

Fig. 3 UML diagram of key classes in the resource layer (we show only the important aspects)

https://docs.oracle.com/javaee/6/tutorial/doc/bnbqa.html
https://docs.oracle.com/javaee/6/tutorial/doc/bnbqa.html

2973A RESTful middleware for AI controlled sensors, actuators and smart devices

1 3

Fig. 4 UML class diagram
of the most important service
classes in the business layer

2974 N. Dipsis, K. Stathis

1 3

Table 3 API calls for updating and deleting agent and devices registrations in eVATAR+

Handler resource API

AgentResource GET/api/v1/agent/devices/{agentId}
Agents poll eVATAR+ for new device bindings in the case that they have not found a match to all the required devices upon

initial registration. The agentId is the identifier returned by eVATAR+ upon registration
AgentResource PUT/api/v1/agent/{agentId}

Agents update their registration metadata by sending JSON objects with the same structure as the ones in the registration in
Table 2. The agentId is the identifier returned by eVATAR+ upon registration

DeviceResource PUT/api/v1/device/{deviceId}
Sensors, actuators, smart and IoT devices, gateways controlling multiple devices update their registration metadata by sending

JSON objects with the same structure as the ones in the registration in Table 2. The deviceId is the identifier returned by
eVATAR+ upon registration

AgentResource DELETE/api/v1/agent/{agentId}
Agents can delete their data from the middleware and deregister (agentId is above)

DeviceResource DELETE/api/v1/device/{deviceId}
Sensors, actuators, smart and IoT devices, gateways controlling multiple devices can delete their data from the middleware

and deregister (deviceId as above)

Table 4 JSON objects for PUT calls to send action requests/store sensory data and GET calls for polling eVATAR+ for action requests and
stored data

Agent Devices

GET /api/v1/message/{232}

Agents poll the middleware and download sensory
data if there is any. For example:
poll message from agent for data from motion sensor
that is associated with the agent device Id 232.
According to the mapping table the physical motion
sensor associated with it has Id 334. eVATAR+ will
return from the database what is stored for 334.

PUT /api/v1/message/{334}

Devices with sensing capabilities (sensors, actuators,
sensor/actuators, IoT devices) send sensory data to
the middleware in encoded within series of JSON
objects. For example: motion sensor with id 334
storing sensory data.

JSON Object:
{

“msgType”: “sensory_data”
"metadata":
{
“status”: “1”,
}

}

PUT /api/v1/message/{552}

Agents send action requests to the middleware
encoded within JSON objects. For example: agent
sends an action request via agent device Id 552.

JSON Object:
{

“msgType”: “action_request”
"metadata":
{
“set”: “ON”

}
}

GET /api/v1/message/{156}

Sensors, actuators, smart and IoT devices, gateways
controlling multiple devices poll the middleware and
download any requests for them encoded as JSON
objects.
Poll message from device with Id
156 for action requests from agent
via mapped agent deviceId 552.

2975A RESTful middleware for AI controlled sensors, actuators and smart devices

1 3

for the agent. The hibernate ORM framework persists such
entities as relational database records (agent records in
Fig. 5). Similarly, a device (sensor, actuator, IoT device)
description is sent in JSON object format, converted into
a device JPA entity and persisted in the database as device
records (Fig. 5). We saw that the POSTed agent description
contained an array of required device descriptions. These
will also be stored in the relational database just like their
real counterparts. The JPA entities that will be stored as
PostgreSQL records (Listing 1).

Every agent and device record in the database has a
unique identifier (Id). The database stores agent records as
referencing multiple required device records (this is an “one-
to-many” relationship Fig. 5). This means that when we store
an agent, besides the agent record the database stores new
records for every sensor/actuator/device that it requires and
all these records have also their own unique Ids. These are
the Ids that are returned to the agent (receives its own agent
Id and the Ids of all its required device database records) as

a response to a POST description call when it registers. The
registerAgent function in the business layer returns the agent
and device records that include the Ids making them avail-
able to the API. The Ids are used for further communication
with eVATAR+. Similarly, registerDevice will return the
deviceId.

The persistence layer also the business layer functionality
that implements discovery, binding and the mediator pat-
tern. When a required device by the agent is compatible to
a physical device that has been registered and has a record
stored in the database, eVATAR+ updates a database table
that stores a mapping of their identifiers (in our example
device Id 232 with device Id 334). This is the “device_map”
table in Fig. 5 (Listing 2).

Now we say that the required device by the agent is bound
to the real device and this enables an exclusive communi-
cation between the agent and that particular device. When
the agent polls (GET) for sensory data for deviceId (232 in
our example) using the Id of the requested motion sensor,

Fig. 5 Entity relationship
diagram with the main tables
required by eVATAR+

2976 N. Dipsis, K. Stathis

1 3

eVATAR+ uses the “device_map” table in the database that
has it mapped with 334. Then it will use the mapped Id (334)
to retrieve all stored messages from the device with Id 334 if
any and return them to the agent that contains the required
device with Id 232. The aforementioned process illustrates
how the persistence layer supports our implementation of
the Mediator pattern. The agent and the devices do not talk
directly to each other. Instead they communicate via a shared
memory space in eVATAR+ thus achieving loose coupling.
For fine grain communication, if needed, Jersey supports
streaming and it is similar to uploading a file one end and
downloading it on the other end. On our setting though the
costly streaming should be rarely needed.

After describing all key components of eVATAR+ the
following UML activity diagram would provide the reader
with an overview of what happens eVATAR+ receives a
message.

Having described the most important aspects of the eVA-
TAR+ architecture and design we can exemplify its use with
a case study.

4 Case study: agent capabilities in Google
NEST

In this section we discuss a case study exemplifying how
eVATAR+ (and its associated architectural framework)
binds AIs with sensors and actuators in a systematic, secure
and transparent manner. The presented case study intends
to provide insight about the type of applications eVATAR+
is designed to support. In our case study our goal is to show
how we can use eVATAR+ to enable a Jade (Bellifemine
et al. 2007) MAS agent to integrate with an Nest application
in order to become an actor within a Nest smart home setting
by reading sensory events within it and also creating events.
We have selected NEST because it offers a well-documented
API, a simulator and is also a widely used in modern house-
holds allowing us to demonstrate how eVATAR+ would be
applied in such a setting.

4.1 The scenario

Let us consider that we have a Nest application control-
ling a Nest smart home setting. We are going to show how
a developer can use eVATAR+ to enrich the smart home
setting with software agent capabilities. We are going to
show how the Nest application uses the eVATAR+ API to
register the smart home devices and how an agent registers
its interest for smart home devices by using the same API.
eVATAR+ will perform discovery and bind the agent to a set
of smart home devices enabling it to apply its functionalities
to the smart home.

Initially we used the Nest Home Simulator (https ://devel
opers .nest.com/guide s/home-simul ator) that allows us to
easily simulate events in the smart home that were also made
available to the Jade agent via eVATAR+ . We will show
how to enable an agent to sense the simulation environment
by receiving e.g. motion detection events from a camera
(Fig. 6) and perform actions in it e.g. control a thermostat.
The simulation uses exactly the same API as the real sensors
and actuators and we could switch our application to a real
environment without making any changes to our application.
In the second part we exemplify this point by replacing the
Nest simulator with a Nest thermostat (as the simulation
cannot coexist with the physical Nest devices in the same
setting). Figure 7 illustrates an overview of the architecture
that would enable a Jade agent (Bellifemine et al. 2007) to
control Google Nest devices.

Google Nest and Google IoT infrastructures offer a com-
plete solution for connecting, processing, storing and ana-
lysing data both at the edge and in the cloud. Their infra-
structure software is not accessible to developers in any
way other than via using their public APIs. Nest offers a
RESTful API, therefore a Nest application making REST
calls to Nest should also be capable of making REST calls
to eVATAR+ and use its API. In our scenario we will inte-
grate a Nest smart home application with a Jade agent via
eVATAR+ .

4.2 The smart home setting

The Nest home simulator is a self-contained application for
creating virtual versions of the Nest physical devices. Inter-
action with the Nest home simulator is identical to the inter-
action with a similar setting consisting of physical devices
including authentication and identical REST API calls to
communicate with the devices, whether virtual or physical.
The added benefit of the simulator is that it simulates condi-
tions that would be expensive and time-consuming to rep-
licate in a real world setting. Our Nest application connects
to simulations of:

• smart thermostats that can read and set current tempera-
ture, set target temperature, read humidity levels.

• smart cameras that also perform motion detection cloud
storage and send notifications.

• Smoke and carbon monoxide alarms that trigger as
expected a smoke and CO alarm.

The following snapshot of the Nest simulator shows a
virtual camera and how we can set events that will be sensed
by it.

The simulation enables us to generate different types of
events such as sound, motion, smoke, carbon monoxide leak
and temperature related events to name a few. These events

https://developers.nest.com/guides/home-simulator
https://developers.nest.com/guides/home-simulator

2977A RESTful middleware for AI controlled sensors, actuators and smart devices

1 3

are sensed by the virtual devices and we can access them via
the Nest REST API. Also, we can use the same API to alter
the state of the devices in the simulation, for example to set
the target temperature of the thermostat.

We implemented our Nest application in Java. An exam-
ple call to Nest for setting the target temperature of a Nest
Thermostat would look like shown in Table 5.

In order for an application to interact with the NEST
infrastructure, it needs to authenticate itself using OAuth
2.0 after which it receives an access token (long alphanu-
merical token that will be used by the API calls to verify
that the application is authorised to control the devices).
Having a Nest application that interacts with the Nest
devices (in the simulation) using the REST API of Nest
we can pursue the goal of this case study which is to show
how we can enrich an application in the Nest environment
with agent capabilities. To achieve this, the Nest applica-
tion should use the eVATAR+ API to register the simu-
lation devices with eVATAR+. We remind that in order
to register the devices, the Nest application will need to
POST to eVATAR+ their descriptions using JSON. In

order to create the JSON description of e.g. a smoke and
CO sensor we would need to extract the useful features of
the particular sensor. In our case, the place to look at is at
the JSON objects that are already defining its interaction
with Nest.

As we can see in Listing 3 we can encapsulate the
description of the Nest API JSON object into the meta-
data section of eVATAR+ and this way all features of the
sensor are potentially accessible to the agent. In practice,
when we integrate AI functionality into an existing setting
we normally do not intend to replace all native control and
sensing functions with new ones stemming from the AI
(e.g. agent) component. Instead, we select those useful to
the agents’ goals and capabilities.

In Listing 4 we see a more compact description that
only contains information that would be useful to an agent.
We also see how an API call by the Nest application to
eVATAR+ would look like. In particular this call sends
the state of the sensor for it to be read by the agent (see
chapter 3 for more information).

Fig. 6 The Google Nest simulation. Here we see a camera sensor. Notice that we can set motion and sound events that will be sensed by the
camera, their duration, even a streaming video status

2978 N. Dipsis, K. Stathis

1 3

Fig. 7 Jade agents applied to a Google Nest smart home setting. The setting is inspired by the example architecture in https ://devel opers .googl
e.com/nest/guide s/archi tectu re

Table 5 API reference to POST and GET calls to Nest for reading and setting the temperature of a Nest thermostat

API Description

POST

https://developer-api.nest.com/devices/thermostats/device_id/

Java Jersey client call

client.target("https://developer-
api.nest.com/devices/thermostats/").
path(your_thermostat_device_id).
request().
header("Content-Type", "application/json;charset=UTF-8").
header("Authorization", "Bearer "+ authorisationToken.trim()).
accept(MediaType.APPLICATION_JSON).
post(Entity.json(theromstatRequest) , Integer.class);

POST: set the target temperature of the

thermostat

The ORM object theromstatRequest

corresponds to the following JSON:

{target_temperature_c: 22}

Returns: number

Example: 21.5

Range: 9-32

https://developers.google.com/nest/guides/architecture
https://developers.google.com/nest/guides/architecture

2979A RESTful middleware for AI controlled sensors, actuators and smart devices

1 3

4.3 The multi‑agent system

Jade applications (Bellifemine et al. 2007) are implemented
in Java. We implemented for the purposes of our case study
a single Jade agent that would interact via eVATAR+ with
the Nest smart home. We saw that the Nest application
would POST three devices to eVATAR+: a smart camera, a
smart thermostat and a smoke and CO sensor. In Listing 4
we saw the JSON description for eVATAR+ of the smoke_
co_alarm. The smart camera and smart thermostat were
similarly described. On the other end our Jade agent sent
a JSON object describing three required devices (matching
the physical devices of the Nest smart home) (Listing 5).

Our agent features cyclic behaviours (atomic behaviours
that must be executed forever). There are cyclic behaviours
polling the state of sensors, e.g. periodically requesting the
last change in the state of the camera sensor and update the
internal state of the agent with the acquired information.
Other cyclic behaviours consult the current internal state of
the agent that is essentially a collection of data structures
reflecting the sensory data describing the physical environ-
ment and send action requests via eVATAR+. The following
JAVA code sample illustrates an example of an implementa-
tion of the sensing behaviour in the Jade agent (we notice
that it uses the JAVA API to eVATAR+) (Listing 6).

Similarly, cyclic agent behaviours check variables like
“motion_sensed” and send action requests to Nest devices
via eVATAR+ and the application.

4.4 Completing the Picture

The Nest application registers the Nest devices and the MAS
registers the descriptions of the devices it requires. eVA-
TAR+ performs discovery as described in 3.3 and binds the
required devices to the physical ones. This way Jade has
access to the existing Nest application and can add intelli-
gent and interoperable behaviours. In our simulation we can
create events e.g. set the smoke alarm go and the Jade will be
polling the smoke and CO sensor and as soon as it receive a
smoke event it will send a notification (for the purposes of
our test it sends an email). In general for the purposes of our
integration capability evaluation we had Jade sending emails
of describing events that we set in motion in the Nest simula-
tion that were sensed by the sensors and sent to eVATAR+.
Also, Jade was able to change the state thermostat and this
way we show how the agent becomes another actor in the
Nest environment capable of reading and creating events.

We also implemented an integration with a real thermo-
stat simply by replacing the simulation with the real smart
home. No code changes where required apart from the

Agent Device

@Table(name="agent")
public class Agent {

@Id
@Column(name = "id", columnDefinition = "serial")
@GeneratedValue(strategy=GenerationType.IDENTITY
)
private Long id; //A unique identifier for the interactor.

@Column(name = "type")
private String type;

@Column(name = "description")
private String description;

//The required devices
@OneToMany(mappedBy="agent")
private List<Device> devices = new ArrayList<>();

//Getters and setters
}

@Table(name="device")
public class Device {

@Id
@Column(name = "id", columnDefinition = "serial")

@GeneratedValue(strategy=GenerationType.IDENTITY
)

private Long id; //A unique identifier for the interactor.

@Column(name = "type")
private String type;

@Column(name = "bound")
private Boolean isBound;

@Column (name = "description")
private String description;

@ElementCollection
private List<String> metadata = new ArrayList<>();

@ManyToOne
private Agent agent;

//Getters and setters
}

Listing 1 JPA entities representing an agent and a device. This is how they will be stored in the relational database. Note that the required
devices of the agent use the same type of device records as the physical devices

2980 N. Dipsis, K. Stathis

1 3

configuration to target the different setting (Listings 1, 2, 3,
4, 5, 6, Diagram 1).

5 Conclusions and future work

We have presented eVATAR+, a framework with an associ-
ated middleware that binds systematically and transparently
interactions between AI capabilities and existing sensor-
actuator networks or IoT infrastructures, thus making the

services offered in such settings smarter the context of such
integrations while providing a simple and easy to use inter-
face for developers to use. Our evaluation of current state of
the art middleware with regards to the integration of sensor
actuator networks and IoT settings with AI agents resulted
in a set of characteristics that were used in the design of
eVATAR+. We exemplified eVATAR+ with a concrete case
study that illustrated a possible use of eVATAR+ and dem-
onstrated a systematic and transparent integration of AI plat-
form functionality (implemented in the Jade agent platform)

@Table(name="device_map")
public class DeviceMap {

@Id
@Column(name = "id", columnDefinition = "serial")
@GeneratedValue(strategy=GenerationType.IDENTITY)
private Long id;

@OneToOne (fetch=FetchType.LAZY)
private Device agentDevice;

@OneToOne(fetch=FetchType.LAZY)
private Device physicalDevice;

//Getters and setters
}

Listing 2 JPA entity representing the mapping between a requested
agent device database record that has been registered via the agent
registration process and a physical device record that was stored via
the physical device registration. This mapping is stored in the rela-
tional database. Note: (i) the required devices of the agent use the

same type of device records as the physical devices. (ii) this table
enables the routing of messages from the agent with the requested
device Id to the physical device with the mapped device Id and the
opposite

Nest (smoke_co_alarms) eVATAR+ (smoke_co_alarms)

{
"device_id" : "aDevId",
"locale" : "en-UK",
"software_version" : "1.01",
"structure_id" : "aStructId",

{
"type": "sensor",
"name": " smoke_co_alarms1",

"description":"smoke_co_alarms",
"metadata":[

"name" : "Hallway (upstairs)",
"name_long" : "Hallway Protect
(upstairs)",
"last_connection" : "aTime",
"is_online" : true,
"battery_health" : "ok",
"co_alarm_state" : "ok",
"smoke_alarm_state" : "ok",
"is_manual_test_active" : true,
"last_manual_test_time" : "aTime2",
"ui_color_state" : "gray",
"where_id" : "aWhereId...",
"where_name" : "Hallway"
}

"device_id",
"locale","software_version",
"structure_id","name",
"name_long","last_connection",
"is_online", "battery_health",
"co_alarm_state",
"smoke_alarm_state",
"is_manual_test_active",
"last_manual_test_time",
"ui_color_state","where_id",
"where_name"]

}

Listing 3 Encapsulating the native description to an eVATAR+ JSON description

2981A RESTful middleware for AI controlled sensors, actuators and smart devices

1 3

with a smart home setting that contains physical sensors and
actuators (Nest Simulation, Nest smart home). More specifi-
cally, we have shown that eVATAR+ features a standard and
systematic way of achieving the integrations by:

• abstracting sensor, actuator and AI program functionality
by describing it using simple and readable JSON docu-
ments;

• using standard RESTful API calls to enable sensors to
PUT sensory data in eVATAR+ that was read by polling
agents (GET calls) as well as to enable agents to PUT
action requests in eVATAR+ that were read by polling
actuators (there was no need to write extra code for deal-
ing with how the integrations between agents).

In addition, we illustrated how agents via eVATAR+ per-
formed transparently dynamic discovery and binding to the
physical sensors and actuators without the developers having
to deal with the low level implementation of how the dis-
covery and the binding are achieved within the middleware.

Systematic and transparent integrations already point to
a simpler task for integrating AI with sensor networks/IoT
environments. Furthermore, our choice of JSON/REST style
integrations that are abundant in today’s Internet technolo-
gies due to their simplicity and ease of use further enhances
our goal to simplify developers’ tasks when attempting the
integrations described in this paper.

As part of our future work plans we will explore the pos-
sibility of providing a qualitative analysis of the followed

approach and start a discussion as part of a research paper
about the merits of providing systematic and transparent
middleware solutions not just in the area of IoT. We will
also explore the possibilities of implementing an application
that integrates AI (e.g. Jade agents or use a machine learning
component) with existing sensor/actuator technologies such
as Google Nest, the Zigbee wireless standard (ZigBee 2019),
Arduino (2017), Google Assistant (2017), Amazon Alexa
(2017), and IFTTT (2019) among others. The proprietary
nature of these technologies and the competing standards
tend to lead to interoperability issues between them and
the lack of a systematic way for implementing integrations.
There are not many systems allowing the control of differ-
ent competing technologies from a single user interface. We
intend to overcome this problem by integrating their APIs
with eVATAR+ enabling a centralized control unit that uses
a learning AI and a UI (User Interface) for user input. We
intend to investigate the possibilities and the advantages/
disadvantages of deploying the application as part of an
Android app (DropWizard that implements eVATAR+ can
run on Android devices) and/or on the cloud or a dedicated
low-cost device deployed in the edge.

We also plan to look into deploying eVATAR+ in a
variety of settings and applications domains. For example
we intend to investigate the possibility of deploying eVA-
TAR+ as part of ecosystems integrating sensor networks
with cloud based architectures that provide semantic world
knowledge in the form of linked open data. We will then
evaluate our approach in conjunction with approaches like

Useful Description Example eVATAR+ API call

{
"type": "sensor",
"name": "smoke_co_alarms1",

"description":"smoke_co_alarms",
"metadata":[
"device_id",
"locale",
"structure_id","name",
"name_long","last_connection",
"is_online",
"co_alarm_state",
"smoke_alarm_state",
"where_id",
"where_name"]

}

PUT /api/v1/data/sensor/{334}
{
“msgType”: “sensory_data”
"metadata":
{
"device_id" : "aDevId",
"locale" : "en-UK",
"structure_id" : "aStructId",
"name" : "Hallway (upstairs)",
"name_long" : "Hallway Protect

(upstairs)",
"last_connection" : "aTime",
"is_online" : true,
"co_alarm_state" : "ok",
"smoke_alarm_state" : "ok",
"where_id" : "aWhereId...",
"where_name" : "Hallway"

}
}

Listing 4 Useful JSON description to the smoke_co_alarm. The agent does not need to know about “software_version”, “battery_health”, “is_
manual_test_active”, “last_manual_test_time”, “ui_color_state” etc

2982 N. Dipsis, K. Stathis

1 3

SPITFIRE (Pfisterer et al. 2011; Chatzigiannakis et al. 2012)
that provides vocabularies to integrate descriptions of sen-
sors and things with the “linked open data” cloud, describes
their high-level states and provides search for sensors and
things based on their states. Similarly to eVATAR+, they
also claim ease of use due to the fact that they use commonly
used and familiar technologies. In their case any application
experts who are able to publish web pages should also be
able to use SPITFIRE. They also provide a qualitative evalu-
ation of their approach.

In view of extending the functionality of eVATAR+ and
potentially adopting more flexible deployment possibilities
we will look at deploying it as part of a microservices archi-
tecture. DropWizard is a common framework for developing
microservices as well as web servers. Every DropWizard
microservice would have the exact same layers and com-
ponents within the DropWizard framework i.e. a Jetty con-
tainer, Jersey REST API controller, a services business logic
layer, ORM framework and its own database. Spring Boot
(2019) offers a similar architecture with a difference that

Agent Description

{
"type": "agent",
"description": "Jade agent",
"devices":
[

{
"type": "sensor",
"name": "required_smoke_co_alarms_1",
"description": "smoke_co_alarms",
"metadata":["device_id", "locale", "structure_id","name",

"name_long", "is_online", "co_alarm_state",
"smoke_alarm_state","where_id", "where_name"]

},
{

"type": "sensor-actuator",
"name": "thermostats_1",
"description": "thermostats",
"metadata":["device_id","locale","structure_id", "name",

"name_long","last_connection", "is_online",
"target_temperature_c","target_temperature_high_c",
"target_temperature_low_c","ambient_temperature_c",
"humidity","where_id","where_name”]

} ,
{

"type": "sensor_actuator",
"name": "cameras_1",
"description": "cameras",
"metadata":["device_id","software_version","structure_id",

"where_id","where_name","name",
"name_long","is_online","is_streaming",
"web_url","app_url","activity_zones",
"public_share_url","snapshot_url",
{"last_event":["has_sound","has_motion","has_person",

"start_time","end_time","urls_expire_time",
"web_url","app_url","image_url",
"animated_image_url","activity_zone_ids"]}}

]
}

]
}

Listing 5 JSON description of an agent requiring a smoke_co_alarm, a smart thermostat and a smart camera

2983A RESTful middleware for AI controlled sensors, actuators and smart devices

1 3

it provides a variety of choices for particular technologies
used e.g. tomcat as an alternative to jetty. A transition from
a DropWizard web server to a microservices architecture
would involve using the exact same architecture and dividing
the business logic and distributing the overall functionality
into different microservices by: (a) dividing the database
tables, (b) dividing the REST API and (c) dividing the busi-
ness logic in the services layer.

The current version of EVATAR+ could be viewed as a
monolithic server. At this stage there is no justification for
implementing eVATAR+ using microservices as the busi-
ness logic revolves around a specific task i.e. the integra-
tion of AI with sensor networks. Furthermore, we could add
eVATAR+ as it is to existing microservices architectures as
a separate microservice. In the future we would like to see
eVATAR+ presenting more intelligent functionality e.g. to
support operations on historic events, that clearly constitute
big data, needed to train an AI model.

When we add this extended functionality it would be
logical to migrate to a microservices architecture where
one microservice would be responsible for integrations of
AI with sensor/actuator networks, another for dealing with
data analytics and possibly a third one for authentication and

user management. The fact that every DropWizard server
and microservice has the same layered architecture would
make the transition easier as it would involve splitting the
code and the database but keeping the same structure. Fur-
thermore, we will also investigate ways to improve opera-
tions at a streaming level for example for anomaly detection.
This would fit in with a new microservices architecture and
architecturally deployed before a load balancing server that
routes the data to the different microservices.

In terms of currently proposed deployment of eVA-
TAR+ the data is not anticipated to reach high enough vol-
umes that would significantly affect performance especially
with the addition of in memory caching such as memory
caching of Redis (2019). However, storage based message
switching using a faster database technology and poten-
tially with a smaller footprint such as a NoSQL/key-value
database is a possible direction to explore if performance
is affected by high data volumes. In this context, we will
need to weigh the benefits of selecting such a technology
instead of using a relational database that would support
more complex business logic as we add new features and
possibly data analytics.

/* Add the CyclicBehaviour for sensing using the Camera Sensor. */
addBehaviour(new CyclicBehaviour(this) {
/* The motion sensor of the Jade agent */
public void action() {
if(motion_sensed == false)
{

LOG("Sensing motion");

/* The motion sensor s/w using the eVATAR+ API poll for Sensory data (GET). */
CameraEntityRepresentation cameraEntityRepresentation

= (CameraEntity) api.poll(“cameras_1”);

/* If the received message indicates motion detection... */

if (cameraEntityRepresentation.getLast_event().getHas_motion() == true)
{
/* update internal variable that a motion was sensed */

motion_sensed = true;
}

}
}

});

Listing 6 A sensing behaviour of the Jade agent

2984 N. Dipsis, K. Stathis

1 3

Acknowledgements We wish to thank the anonymous reviewers for
their constructive comments on a previous version of this work.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Amazon Alexa (2017). http://alexa .amazo n.com/. Accessed 30 Sep
2017

Amazon Web Services IoT (2018) https ://aws.amazo n.com/iot/.
Accessed 28 Sep 2018

Arduino (2017). http://www.ardui no.cc. Accessed 30 Sep 2017

Atmojo UD, Salcic Z, Wang KIK et al (2015) System-level approach to
the design of ambient intelligence systems based on wireless sen-
sor and actuator networks. J Ambient Intell Hum Comput 6:153.
https ://doi.org/10.1007/s1265 2-014-0221-3

Bahadori S et al (2005) Towards ambient intelligence for the domes-
tic care of the elderly. Ambient Intelligence, pp 15–38

Bellifemine FL, Caire G, Greenwood D (2007) Developing multi-
agent systems with Jade. Wiley, Hoboken

Boulis A, Han C, Shea R, Srivastava M (2007) SensorWare: pro-
gramming sensor networks beyond code update and querying.
Pervasive Mob Comput 3(4):386–412

Cañete E, Chen J, Díaz M, Llopis L and Rubio B (2009) A service-
oriented middleware for wireless sensor and actor networks. In:
Proceedings of 6th Int. Conf. on information technology: new
generations, pp 575–580

Chatzigiannakis I, Hasemann H, Karnstedt M, Kleine O, Kröller A,
Leggieri, Pfisterer D, Römer K, Truong C (2012) True self-con-
figuration for the IoT. In: Proceedings of the 3rd international
conference on the internet of things (IOT), pp 9–15

Chu X, Kobialka T, Durnota B and Buyya R (2006) Open sensor
web architecture: core services. In: Proc. 4th ICISIP, pp 98–103

Diagram 1 UML activity diagram describing what happens when eVATAR+ receives a message

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://alexa.amazon.com/
https://aws.amazon.com/iot/
http://www.arduino.cc
https://doi.org/10.1007/s12652-014-0221-3

2985A RESTful middleware for AI controlled sensors, actuators and smart devices

1 3

Cohen M, Stathis K (2001) Strategic change stemming from E-com-
merce: implications of multi-agent systems in the supply chain.
J Strateg Change 10:139–149. https ://doi.org/10.1002/jsc.524

Cote C, Brosseau Y, Létourneau D, Raievsky C, Michau F (2006)
Robotic software integration using MARIE. Int J Adv Robot Syst
3(1):55–60

DataArt Solutions, DeviceHive (2017) Open source IoT data platform
with the wide range of integration options. https ://devic ehive
.com/. Accessed 20 Nov 2017

de Bruijn O, Stathis K (2003) Socio-cognitive grids: the net as a univer-
sal human resource. Socio-cognitive grids: the net as a universal
human resource. In: Kameas A, Streitz N (eds) Proceedings of the
conference of “tales of the disappearing computer”, CTI Press,
Santorini, pp 211–218

Dipsis N, Stathis K (2009) Internalizing unknown objects by means of
perception and communication in multi-agent systems. In: Pro-
ceedings of the 5th international conference on intelligent environ-
ments (IE’09), Barcelona, Spain, IOS Press, pp 499–509

Dipsis N, Stathis K (2010) EVATAR—a prototyping middleware
embodying virtual agents to autonomous robots. In: Augusto JC,
Corchado JM, Novais P, Analide C (eds) Ambient intelligence and
future trends-international symposium on ambient intelligence
(ISAm I 2010). Advances in soft computing, vol 72. Springer,
Berlin

Dipsis N, Stathis K (2012) Ubiquitous agents for ambient ecologies.
Pervasive Mob Comput 8(4):562–574

DropWizard (2017). https ://www.dropw izard .io/1.3.5/docs/.
Accessed 30 Sep 2017

Eisenhauer M, Rosengren P, Antolin P (2009) A development plat-
form for integrating wireless devices and sensors into ambient
intelligence systems. In: Proceedings of SECON 2009, com-
munication society conference on IEEE, Rome

JPA Entities (2018) Java persistence API–entity. https ://docs.oracl
e.com/javae e/6/tutor ial/doc/bnbqa .html. Accessed 2 Mar 2018

Epley N, Waytz A, Cacioppo JT (2007) On seeing human: a three-
factor theory of anthropomorphism. Psychol Rev 114:864–886

Evensen PL, Meling H (2009) A service oriented middleware with
sensor virtualization and self-configuration. In: Proc. int. conf.
intelligent sensors, sensor networks and information process-
ing (ISSNIP)

Favela J, Rodriguez M, Preciado A, Gonzalez V (2004) Integrating
context-aware public displays into a mobile hospital information
system. IEEE Trans Inf Technol Biomed 8(3):279–286

Fielding RT (2000) Architectural styles and design of network-based
software architectures. www.ics.uci.edu/field ing/pubs/disse rtati
on/top.htm

Fok CL, Roman GC, Lu C (2009) Agilla: a mobile agent middleware
for self-adaptive wireless sensor networks. ACM Trans Auton
Adapt Syst (TAAS) 4(3):16

Gamma E (1995) Design patterns: elements of reusable object-ori-
ented software. Addison-Wesley, Reading

Gerkey B, Vaughan R, Howard A (2003) The player/stage project:
tools for multi-robot and distributed sensor systems. In: Pro-
ceedings of the 11th int. conf. advanced robot, pp 317–323

Giaffreda R (2013) iCore: a cognitive management framework for
the internet of things. The future internet. Lecture notes in com-
puter science, vol 7858. Springer, Berlin

Google Assistant (2017). https ://assis tant.googl e.com. Accessed 30
Sep 2017

Google Cloud IoT (2018). https ://cloud .googl e.com/solut ions/iot/.
Accessed 28 Sep 2018

Google DeepMind (2018). https ://deepm ind.com/. Accessed 2 Mar
2018

Google Fit (2018). https ://devel opers .googl e.com/fit/. Accessed 27
Sep 2018

Görgü L, Kroon B, O’Grady MJ et al (2018) Sensor discovery in
ambient IoT ecosystems. J Ambient Intell Hum Comput 9:447.
https ://doi.org/10.1007/s1265 2-017-0623-0

Grace P, Blair GS, Samuel S (2005) A reflective framework for dis-
covery and interaction in heterogeneous mobile environments.
ACM SIGMOBILE Mob Comput Commun Rev 9(1):2

Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D (2010) Inter-
acting with the SOA-based internet of things: discovery, query,
selection, and on-demand provisioning of web services. IEEE
Trans Serv Comput 3(3):223–235

Heim S (2007) The resonant interface HCI foundations for interac-
tion design. Addison Wesley, Boston

Hibernate (2018) Hibernate relational mapping—ORM. http://hiber
nate.org/orm/. Accessed 19 Aug 2018

IBM Watson IoT (2017) IBM watson internet of things platform
(IoT). http://www.ibm.com/inter net-of-thing s/. Accessed 29
Jan 2017

IFTTT (2019) If this then that. https ://ifttt .com/. Accessed 7 May 2019
Jersey (2018) RESTful web services in Java. https ://jerse y.githu b.io/

docum entat ion/lates t/index .html. Accessed 5 Apr 2018
Jetty (2018) Eclipse Jetty Web server and javax.servlet container. http://

www.eclip se.org/jetty /. Accessed 15 Jun 2018
JSON (2017). https ://www.json.org/. Accessed 30 Sep 2017
Kaa-IoT Technologies (2017) Kaa open-source IoT platform—IoT

cloud platform the internet of things solutions and applications
that set the standard. https ://www.kaapr oject .org/. Accessed 10
Nov 2017

Kakas A, Mancarella P, Sadri F, Stathis K, Toni F (2008) Compu-
tational logic foundations of KGP agents. J Artif Intell Res
33(1):285–348

Kang P, Borcea C, Xu G, Saxena A, Kremer U, Iftode L (2004)
Smart messages: a distributed computing platform for networks
of embedded systems. Comput J Special Focus Mob Pervasive
Comput 47:475–494

Kim T, Choi S, Kim J (2007) Incorporation of a software robot and a
mobile robot using a middle layer. IEEE Trans Syst Man Cybern
Part C 37(6):1342–1348

Konker Labs (2017) Konker—your solutions connected in a fast and
simple way. http://www.konke rlabs .com/. Accessed 11 Nov 2017

Kushwaha M, Amundson I, Koutsoukos X, Neema S, Sztipanovits J
(2007) OASiS: A programming framework for service-oriented
sensor networks. Communication systems software and middle-
ware (COMSWARE 2007), pp 1–8

LinkSmart (2018). https ://www.links mart.eu/. Accessed 5 Apr 2018
Liu T, Martonosi M (2003) Impala: a middleware system for manag-

ing autonomic, parallel sensor systems. ACM SIGPLAN Notices
38(10):107–118

Mehmood F, Ullah I, Ahmad S et al (2019) Object detection mecha-
nism based on deep learning algorithm using embedded IoT
devices for smart home appliances control in CoT. J Ambient
Intell Hum Comput. https ://doi.org/10.1007/s1265 2-019-01272 -8

Michal N, Artem K, Oleksiy K, Sergiy N, Michal S, Vagan T (2009)
Challenges of middleware for the internet of things. automation
control—theory and practice. InTech

NEST (2018) Nest Home Simulator. https ://devel opers .nest.com/guide
s/home-simul ator. Accessed 28 Nov 2018

Nest architecture (2019). https ://devel opers .googl e.com/nest/guide s/
archi tectu re. Accessed 10 Jul 2019

Nest Labs (2019) Home Automation Nest Labs. https ://store .googl
e.com/us/categ ory/conne cted_home. Accessed 10 Jul 2019

Ngu A, Gutierrez M, Metsis V, Nepal S, Sheng Q (2016) IoT middle-
ware: a survey on issues and enabling technologies. IEEE Internet
Things J. https ://doi.org/10.1109/jiot.2016.26151 80

OAuth2 (2018) OAuth2 Protocol authorization. https ://oauth .net/2/.
Accessed 22 Sep 2018

https://doi.org/10.1002/jsc.524
https://devicehive.com/
https://devicehive.com/
https://www.dropwizard.io/1.3.5/docs/
https://docs.oracle.com/javaee/6/tutorial/doc/bnbqa.html
https://docs.oracle.com/javaee/6/tutorial/doc/bnbqa.html
http://www.ics.uci.edu/fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/fielding/pubs/dissertation/top.htm
https://assistant.google.com
https://cloud.google.com/solutions/iot/
https://deepmind.com/
https://developers.google.com/fit/
https://doi.org/10.1007/s12652-017-0623-0
http://hibernate.org/orm/
http://hibernate.org/orm/
http://www.ibm.com/internet-of-things/
https://ifttt.com/
https://jersey.github.io/documentation/latest/index.html
https://jersey.github.io/documentation/latest/index.html
http://www.eclipse.org/jetty/
http://www.eclipse.org/jetty/
https://www.json.org/
https://www.kaaproject.org/
http://www.konkerlabs.com/
https://www.linksmart.eu/
https://doi.org/10.1007/s12652-019-01272-8
https://developers.nest.com/guides/home-simulator
https://developers.nest.com/guides/home-simulator
https://developers.google.com/nest/guides/architecture
https://developers.google.com/nest/guides/architecture
https://store.google.com/us/category/connected_home
https://store.google.com/us/category/connected_home
https://doi.org/10.1109/jiot.2016.2615180
https://oauth.net/2/

2986 N. Dipsis, K. Stathis

1 3

O’Hare GMP, Muldoon C, O’Grady MJ, Collier RW, Murdoch O,
Carr D (2012) Sensor web interaction. Int J Artif Intell Tools
21(02):1240006

Pfisterer D, Römer K, Bimschas D, Kleine O, Mietz R, Truong C,
Hasemann H, Kröller A, Pagel M, Hauswirth M, Karnstedt M,
Leggieri M, Passant A, Richardson R (2011) SPITFIRE: toward a
semantic web of things. IEEE Commun Mag 49(11):40–48

Poncela A, Coslado F, García B et al (2018) Smart care home system:
a platform for eAssistance. J Ambient Intell Hum Comput. https
://doi.org/10.1007/s1265 2-018-0979-9

Raspberry Pi (2018). https ://www.raspb erryp i.org/. Accessed 5 Apr
2018

Redis (2019). In-memory data structure project. https ://redis .io/.
Accessed 07 May 2019

Nest API reference (2019). https ://codel abs.devel opers .googl e.com/
codel abs/wwn-api-quick start /. Accessed 10 Jul 2019

Rezgui A, Eltoweissy M (2007) Service-oriented sensor–actuator net-
works: promises, challenges, and the road ahead. Comput Com-
mun 30(13):2627–2648

Rouvoy R et al (2009) Middleware support for self-adaptation in ubiq-
uitous and service-oriented environments. Software engineering
for self-adaptive systems. Springer, New York, pp 164–182

Saffiotti A, Broxvall M, Gritti M, LeBlanc K, Lundh R, Rashid J, Seo
B, Cho Y (2008) The PEIS-ecology project: vision and results. In:
Proceedings of EEE/RSJ international conference on intelligent
robots and systems, pp 2329–2335

SmartThings (2018) SmartThings developer documentation. http://
docs.smart thing s.com/. Accessed 2 Dec 2018

Spring Boot (2019) An application framework and inversion of con-
trol container for the Java platform. https ://sprin g.io/proje cts/sprin
g-boot. Accessed 7 May 2019

Stathis K (2000) A game-based architecture for developing interactive
components in computational logic. J Funct Logic Progr (5)

Stathis K, Sergot M (1996) Games as a metaphor for interactive sys-
tems. In: Sasse MA, Cunningham RJ, Winder RL (eds) People
and computers XI. Springer, London

Stathis K, Kakas AC, Lu W, Demetriou N, Endriss U, Bracciali A
(2004) PROSOCS: a platform for programming software agents
in computational logic. In: Proceedings of the 4th international
symposium AT2AI-4—EMCSR 2004 Session M, pp 523–528

Sundmaeker H, Guillemin P, Friess P, Woelfflé S (2010) Vision and
challenges for realising the Internet of things. Publications Office
of the European Union, Luxembourg

TensorFlow (2016) TensorFlow—an open source software library for
machine intelligence. https ://www.tenso rflow .org/. Accessed 2
Mar 2016

Terziyan V, Kaykova O, Zhovtobryukh D (2009) UbiRoad: semantic
middleware for context-aware smart road environments. In: Proc.
of fifth international conference on internet and web applications
and services (ICIW), pp 295–302

TLS (2018) Transport layer security. https ://www.gov.uk/gover nment /
publi catio ns/email -secur ity-stand ards/trans port-layer -secur ity-tls.
Accessed 5 Apr 2018

Witkowski M, Stathis K (2004) A dialectic architecture for compu-
tational autonomy. In: Nickles M, Rovatsos M, Weiss G (eds)
Agents and computational autonomy. AUTONOMY. Lecture
notes in computer science, vol 2969. Springer, Berlin

Zachariah T, Klugman M, Campbell B, Adkins J, Jackson N, Dutta
P (2015) The internet of things has a gateway problem. In: Pro-
ceedings of the 16th international workshop on mobile computing
systems and applications (HotMobile ‘15). ACM, New York, NY,
USA, pp 27–32

ZigBee (2019) ZigBee wireless standard. https ://www.zigbe e.org/.
Accessed 10 Jul 2019

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s12652-018-0979-9
https://doi.org/10.1007/s12652-018-0979-9
https://www.raspberrypi.org/
https://redis.io/
https://codelabs.developers.google.com/codelabs/wwn-api-quickstart/
https://codelabs.developers.google.com/codelabs/wwn-api-quickstart/
http://docs.smartthings.com/
http://docs.smartthings.com/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://www.tensorflow.org/
https://www.gov.uk/government/publications/email-security-standards/transport-layer-security-tls
https://www.gov.uk/government/publications/email-security-standards/transport-layer-security-tls
https://www.zigbee.org/

	A RESTful middleware for AI controlled sensors, actuators and smart devices
	Abstract
	1 Introduction
	2 State of the art
	3 EVATAR+
	3.1 The architecture of eVATAR+
	3.2 The controller layer
	3.3 The Business Layer
	3.4 Persistence layer

	4 Case study: agent capabilities in Google NEST
	4.1 The scenario
	4.2 The smart home setting
	4.3 The multi-agent system
	4.4 Completing the Picture

	5 Conclusions and future work
	Acknowledgements
	References

