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Abstract
The numerous applications of internet of things (IoT) and sensor networks combined with specialized devices used in each has 
led to a proliferation of domain specific middleware, which in turn creates interoperability issues between the corresponding 
architectures and the technologies used. But what if we wanted to use a machine learning algorithm to an IoT application 
so that it adapts intelligently to changes of the environment, or enable a software agent to enrich with artificial intelligence 
(AI) a smart home consisting of multiple and possibly incompatible technologies? In this work we answer these questions 
by studying a framework that explores how to simplify the incorporation of AI capabilities to existing sensor-actuator net-
works or IoT infrastructures making the services offered in such settings smarter. Towards this goal we present eVATAR+, 
a middleware that implements the interactions within the context of such integrations systematically and transparently from 
the developers’ perspective. It also provides a simple and easy to use interface for developers to use. eVATAR+ uses JAVA 
server technologies enhanced by mediator functionality providing interoperability, maintainability and heterogeneity support. 
We exemplify eVATAR+ with a concrete case study and we evaluate the relative merits of our approach by comparing our 
work with the current state of the art.
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1 Introduction

One common requirement for the constituents of sensor-
actuator networks and IoT infrastructures is that they should 
access and transform the environment in which they are 
situated. Consider, for example, the “smarter planet” vision 
where cognitive AI is applied on sensors and actuators 
embedded in physical objects found in every environment 
of human activity (IBM Watson IoT 2017). Such a vision to 
apply AI to a global network of sensors is further reinforced 
by analogous efforts [see Google DeepMind (2018), Ten-
sorFlow (2016)], who are showing an increasing interest in 
home automation technologies (see Nest Labs 2019), IoT 
platforms (see Google Cloud IoT 2018) and smart services 
(see Amazon Web Services IoT 2018). Similar ideas, for 

example Sundmaeker et al. (2010) and earlier works such 
as that of de Bruijn and Stathis (2003), require things to 
“interact and communicate among themselves and with the 
environment by exchanging information sensed about it 
while reacting autonomously to the physical world events 
and influencing it by running processes that trigger actions 
and create services with or without direct human interven-
tion”. The adoption of these ideas for a variety of popu-
lar applications that provide smart electronic services for 
domestic, healthcare and work environments suggest that 
their supporting technologies are here to stay.

However, the numerous application areas requiring IoT 
and sensor-actuator networks combined with the specialized 
devices used in each has led to the creation of countless 
specialized middleware. Zachariah et al. (2015) show that 
this problem has led to a multiplicity of problem specific 
middleware, creating interoperability issues between the 
architectures they enable due to the diversity in the tech-
nologies used and the architectural approaches to IoT. For 
example, Hydra [see Eisenhauer et al. (2009), LinkSmart 
(2018)] abstracts devices as services using semantic ontolo-
gies to implement discovery while Google Fit (2018) uses 
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a representational state transfer (RESTful) application pro-
gramming interface (API) as discussed in Fielding (2000) 
and does not use high level abstractions for incorporating 
new devices in its architecture. Google Cloud IoT (2018) 
and Amazon Web Services IoT (2018) on the other hand 
work with edge-based services (closer to the sensors/things, 
localised services) and cloud based web services. They both 
require from devices and settings to run their proprietary 
software to access their infrastructures and their cloud web-
services that include powerful machine learning and analyt-
ics functionalities.

But what if we wanted to apply a machine learning algo-
rithm to an existing IoT setting to add further intelligence 
to the environment (e.g. Mehmood et al. 2019), or enable a 
software agent to enrich with AI capabilities a smart home 
(e.g. Poncela et al. 2018) consisting of multiple and not nec-
essarily interoperable technologies? We are trying to answer 
these questions through a framework that demonstrates how 
to simplify the incorporation of AI capabilities to existing 
sensor-actuator networks or IoT infrastructures making the 
services offered in such settings smarter. Yet another IoT or 
sensor network middleware directly connecting the low level 
sensors and physical devices with AI capabilities would only 
contribute to the existing mosaic of available middleware. 
As the current state of the art indicates, such attempt would 
inevitably be application/hardware specific and not very use-
ful to most existing systems. Instead we want to integrate, 
when possible, with existing settings and make them smarter 
with the added benefit of interoperability between heteroge-
neous and diverse IoT architectures.

Working at this level would take away the specialized 
sensor and smart device integration complexities that has 
led to the multitude of IoT middleware approaches and 
would allow the middleware to work with existing settings 
instead of requiring their replacement. In this context, we 
argue that what will simplify a developer’s task is a more 
customized middleware that takes into account the par-
ticularities of binding an AI to a sensor/actuator network 
to make their integration transparent and systematic. The 
reason why integration transparency is important is that it 
can abstract away the low-level details of how an AI discov-
ers and interacts with a set of a sensors and actuators, as in 
Görgü et al. (2018). In other words, the system developer 
that uses eVATAR+ in an application would describe AIs 
and devices using abstractions and the middleware would 
bind them to each-other and route messages between them 
without the developer having to deal with or have knowledge 
of how this is done inside the middleware i.e. transparently. 
Systematization refers to providing developers with a stand-
ard way of implementing the specific type of integrations 
that involve AI platforms and sensor/actuator/smart device 
networks. We aspire to simplify the task of integrating agent 
AI with sensor, actuator and smart device networks and a 

way of achieving this is by using a familiar and easy to use 
API. Interoperability and heterogeneity are also important 
features of the discussed middleware because a middleware 
would not be of much use if it contradicted its intrinsic goal 
to interconnect heterogeneous software.

Our middleware is associated with an interaction para-
digm for binding AI capabilities with sensor, actuator and 
smart devices; the capabilities will be part of intelligent 
agents using different agent models (Kakas et al. 2008) or 
architectures (Witkowski and Stathis 2004). According to 
Heim (2007), an interaction paradigm is a model or pattern 
of human–computer interaction encompassing all aspects of 
interaction, including physical, virtual, perceptual and cog-
nitive. Our middleware’s paradigm is inspired by the famil-
iar concept of avatar as it has been popularised in virtual 
reality and computer games applications. However, instead 
of representing a user in a virtual environment, our avatar 
architecture explores the reverse arrangement, viz., where 
an AI agent running in an electronic environment is bound 
with an avatar body that is essentially comprised of sensors, 
actuators and smart devices deployed in a physical world. 
In this new view, the AI provides an invisible mind that 
controls a physical body, thus adding an anthropomorphic 
dimension to the integrated system. According to Epley et al. 
(2007) human-like qualities enable robotic and AI systems 
to become more familiar and comprehensible by both end 
users and developers. Thus, we used the notion of the avatar 
to conceptualize and develop a familiar, comprehensible and 
therefore intuitive interaction paradigm for the systematiza-
tion of interactions between AI programs and heterogeneous 
sensor, actuator and smart device technologies.

The notion of a software component acting like a mind 
to control another software component representing a body 
with sensors and actuators is not new, for example see the 
agent architecture described in Stathis et al. (2004). We 
essentially augment that architecture to control physical sen-
sors and actuators. Also, an important focus of our work is to 
produce middleware that implements such interaction trans-
parently, i.e. a developer can bind AI agents with specific 
sensors and actuators for free and thus concentrate on other 
aspects, viz. the modelling of the application level interac-
tion between components (e.g. Stathis and Sergot 1996), its 
specification and architecture (e.g. Stathis 2000), and their 
implications on a specific domain (e.g. Cohen and Stathis 
2001). The resulting middleware is called eVATAR+, a 
play with the words electronic and avatar to denote that it 
enables an entity in an electronic environment to have an 
avatar through specific sensors and actuators situated in the 
physical environment (see Fig. 1 in the next section for an 
example use).

eVATAR+ is an evolution of our previous work with 
the EVATAR system (see Dipsis and Stathis 2010 and 
Dipsis and Stathis 2009). The older version featured a 
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message-oriented middleware with a centralized broker and 
XML based messaging that was enabled by adaptors that 
were running on the various communicating entities (agents 
and devices) implemented on a service-oriented architecture 
(see Dipsis and Stathis 2012). The new version discussed 
here, however, is a substantial reengineering of the previous 
system as a web server with enhanced mediation capabilities 
and a RESTful API for easier interaction with third party 
software (vs the cumbersome and complicated XML ontolo-
gies of the older version). In addition, we present here an 
approach that utilizes widely-used technologies integrated 
in such a way that can be easily replicated by developers.

To present our approach, the paper is structured as fol-
lows. In Sect. 2, we take a look at current state of the art of 
middleware that could enable the connection of AI capa-
bility to existing smart home and IoT settings and identify 
potential shortcomings. In Sect. 3, we describe our approach 
attempting to overcome these shortcomings where we pre-
sent the architecture of eVATAR+ and its instantiation. Then 
in Sect. 4 we present a case study that illustrates the type 
of applications we envisage when using eVATAR+, par-
ticularly in the area of AI enabled smart homes. Finally, 
we summarise our contributions in Sect. 5 where we also 
present our plans for future work.

2  State of the art

A plethora of middleware for the IoT community is already 
available, see Ngu et al. (2016) for more details. We have 
selected here from the current state-of-the-art those mid-
dleware that could support AI to sensor, actuator and IoT 

device integration and we evaluate them against the fol-
lowing requirements. Particularly, we will be focusing on 
the following characteristics that could simplify the pro-
posed integrations:

• API technology prevalence of use for the development 
of similar APIs and API level of complexity indicating 
ease of use;

• a systematic and familiar way for implementing the 
integrations between AI and IoT/Sensor networks;

• integration transparency.

Agent based middleware intrinsically support agent AI 
to sensor network integration. They are used to imple-
ment software agents on sensor and actuator networks. 
Specifically, an intelligent agent is commonly deployed 
on a single sensor/actuator/device node. Agents running 
on a node react to their environment in ways that support 
complex tasks requiring intelligence. However, key frame-
works under this approach such as SensorWare in Boulis 
et al. (2007), Impala in Liu and Martonosi (2003), Agilla 
in Fok et al. (2009), Smart Messages in Kang et al. (2004), 
Ubiware in Michal et al. (2009) and UbiRoad in Terziyan 
et al. (2009) are usually implemented with an intrinsic 
support of a single hardware/software platform overlook-
ing heterogeneity issues and also they are usually bound 
to a single AI platform.

More generally, deploying intelligent applications using 
this type of middleware that implements software agents can 
be a challenging task due to: (a) hardware limitations; (b) the 
complexity of programming decentralized nodes to exchange 
increased volumes of context data about the environment 
and coordinate their activities to support cooperative tasks; 
(c) proprietary APIs. In environments with fast and reliable 
networking connectivity such as in smart homes (our area of 
interest), there are commonly facilities for centralized pro-
cessing and the sensors and actuators are usually either static 
(wired) or wireless. Decentralized (node level) computation 
is not as critical in such settings. Therefore we see that agent 
based middleware provide with a systematic way of integrat-
ing agents with sensor and actuator networks but they tend to 
be complex to use and application/domain/platform specific.

A more common approach follows a service oriented 
architecture (SOA) paradigm to implement middleware that 
provide with ways to interconnect sensor (and actuator) net-
work nodes, IoT and smart home devices. Such middleware 
components focus on connectivity, interoperability and on 
low-level tasks such as gathering information from sensors 
or controlling actuators. The SOA paradigm enables middle-
ware to also implement integrations with external applica-
tions through the representation of nodes in a sensor/actuator 
network as services and external systems as service consum-
ers, for example in our case an AI agent. In this way such 

Fig. 1  Example of a smart home system that uses a middleware 
implemented following the avatar framework (e.g. eVATAR+). The 
locks indicate secure communications
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middleware can support data integrations in which a sensor 
network produces data used by external systems.

SOA-based middleware components such as Hydra 
(LinkSmart) (Eisenhauer et al. 2009), TinySOA (Rezgui and 
Eltoweissy 2007), USEME (Cañete et al. 2009) and SIXTH 
(O’Hare et  al. 2012), NOSA (Chu et  al. 2006), OASiS 
(Kushwaha et al. 2007), SenseWrap (Evensen and Meling 
2009), MUSIC (Rouvoy et al. 2009) and SOCRADES (Gui-
nard et al. 2010) provide services for the integration with an 
AI program. Web-server based middleware exposing their 
services using RESTful APIs such as Kaa-IoT Technologies 
(2017), Konker Labs (2017) and DataArt Solutions, Device-
Hive (2017) work in a similar way. However, they do not 
provide a systematic way for linking AI capabilities to a sen-
sor and actuator network that abstracts away from the low-
level details of how this is achieved, nor do they achieve this 
linking in a transparent way. In order to make this process 
systematic and transparent we would require a middleware 
that looks at the integration from an application perspective. 
SOA-based middleware for sensor actuator networks tend to 
focus on gathering information from sensors and they tend 
to ignore how to use this information effectively at a higher-
level. SOA based middleware can achieve the integrations 
and they tend to offer industry standard API interactions 
that are familiar to a wide range of engineers and develop-
ers but their intrinsic focus is the interconnectivity of sen-
sors, actuators and IoT devices because this is what they are 
designed to do. Therefore they do not offer a systematic and 
transparent way enabling developers to integrate AI agents 
to existing IoT and sensor/network ecosystems because they 
were not designed for this particular type of integrations.

Pervasive and Ambient Intelligence middleware such 
as SALSA in Favela et al. (2004), RoboCare in Bahadori 
(2005), the middle layer in Kim et al. (2007) and ReMMoC 
in Grace et al. (2005) are more flexible in terms of creating 
application specific solutions that use the data of low-level 
sensor/actuator network middleware. However, none of these 
middleware satisfies both required characteristics for: (a) a 
systematic integration (providing developers with a standard 
way for implementing the specific type of integrations that 
involve AI platforms and sensors and actuator networks) and 
(b) transparency (abstracting the low-level details of how an 
AI discovers and interacts with a set of a sensors and actua-
tors). In general, state of the art IoT middleware such as the 
ones mentioned above and other notable examples such as 
PEIS (Saffiotti et al. 2008) and iCore (Giaffreda 2013) could 
also potentially enable architectures that integrate AI with 
IoT infrastructures, sensors and actuators. A downside in 
the above approaches is that there is usually a steep learning 
curve when attempting to integrate such middleware into 
a new system or use their APIs that tend to be complex, 
proprietary and targeting specialized audiences (due to the 
IoT middleware pluralism). Furthermore, being middleware, 

they intrinsically focus on connectivity and interoperabil-
ity between different elements of sensor/actuator networks, 
smart home and IoT infrastructures as opposed to simplicity 
and integration transparency. We also considered middle-
ware approaches for robotics such as MARIE (Cote et al. 
2006) and Player (Gerkey et  al. 2003) that can achieve 
integrations between AI programs and sensor and actuator 
networks, but they also do not satisfy the systematic integra-
tion and transparency requirements. Google Fit (2018) is 
another example of a body network middleware that is appli-
cation specific and thus not suitable for the purposes of our 
research for a middleware capable of integrating various AI 
software with existing IoT and sensor network ecosystems.

Google Cloud IoT (2018) offers a solution for connect-
ing, processing, storing and analysing data both at the 
edge and in the cloud. A similar approach is followed by 
Amazon Web Services IoT (2018). The downside of these 
approaches is that they require proprietary software to be 
run on the devices, sensors and actuators in order to par-
ticipate in their infrastructures and they limit the AI to the 
services offered by their private clouds. Thus, they are not 
easily interoperable with different technologies.

Atmojo et al. (2015) propose an approach for designing 
AmI systems based on the use of a concurrent program-
ming language called SystemJ. SystemJ programs control 
heterogeneous sensor/actuator nodes to implement dis-
tributed AmI systems. SystemJ runs on the Java Virtual 
Machine and provides high-level abstracted objects, sig-
nals and channels, for communications between different 
software entities and the nodes. It can be a complemen-
tary approach to eVATAR+ as it is generally designed to 
implement programmable distributed systems consisting 
of sensors and actuators while eVATAR+ is designed to 
make them more intelligent.

The following table summarizes the representative list of 
middleware that were considered.

Table 1 suggests that there is paucity of frameworks that 
enable the linking of the computation and functionality of 
AI programs to networked sensor/actuation devices in a way 
that fulfils all desired characteristics that were identified in 
the Introduction i.e. offering: a simple, familiar and easy to 
use API, a systematic and familiar way for implementing 
the integrations and integration transparency. We therefore 
found an opportunity to build upon experience gained from 
current research and proposed our own approach, eVA-
TAR+. Our approach is tailor made to the particularities of 
integrating agent AI to sensor-actuator networks, IoT set-
tings and smart homes offering a systematic and transparent 
way to achieve this (similarly to the agent based middleware) 
while at the same time offering a commonly used and famil-
iar approach to API interactions. Furthermore, another goal 
of our middleware was independence of AI agent or IoT/
sensor network platforms.
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3  EVATAR+

In order to ground our discussion on eVATAR+ and exem-
plify its concepts we consider as our motivating applica-
tion one that needs to use IoT integration for a smart home. 
The way we envisage the use of eVATAR+ middleware 
for this class of applications, is depicted in Fig. 1 below.

Figure 1 illustrates an AI agent interacting with smart 
appliances, smart phones and with a gateway that controls 
a smart home sensors and actuators. eVATAR+ is installed 
in the edge of the local network and interacts with an AI in 
the cloud. In other settings the AI software would typically 
run locally or on a smart phone.

The main idea behind the middleware is to enable AI 
programs/agents to register with it by sending abstract 
descriptions of the functionalities they require in the 
search of a new avatar. The avatar would be a set of 
physical devices that also register with the middleware 
by sending abstract descriptions of their functionalities. 
eVATAR+ performs discovery by matching the registered 
agents with suitable registered devices. It will then map 
them together in a way that the agent is able to send action 
requests to the devices or receive sensory data from them, 
thus enabling it to enhance existing sensor networks or 
IoT settings with AI capabilities. This way the devices 
will constitute the avatar body of the agent in the physical 
world.

Throughout the paper and for presentation simplicity 
whenever we speak about physical devices, we refer to 
physical devices as exposed to eVATAR+ via:

• a sensor and actuator network middleware
• an IoT infrastructure
• a smart home application
• directly in the case that they are “smart” and capable 

of supporting the calls required by the eVATAR+ API.

Only in the last case eVATAR+ would communicate 
with the devices directly. Still, whether the software that 
registers a device is run on the device itself or whether it 
is run in a controller gateway that exposes its functional-
ity to eVATAR+, the functionality of the latter will remain 
the same. In other words, the way eVATAR+ will perform 
registration, discovery, binding and mediation of messages 
does not depend on the type of communication supported by 
the endpoint devices, as long as they are capable of using 
its API. Therefore, for simplicity we will be using the word 
device, sensor or actuator for all above cases as aliases to 
an exposed device, exposed sensor or an exposed actuator.

Having an idea of how a smart home application using 
eVATAR+ looks like (Fig. 1), we can now proceed with 
describing the middleware, starting with the architecture.

3.1  The architecture of eVATAR+

Figure 2 presents the building blocks of the reference archi-
tecture for eVATAR+. In this section we will refer to this 
architecture to present the implementation choices and func-
tionality of the middleware.

The architecture assumes that any external resource such 
as sensors, actuators, smart devices and the AI software 
should call the middleware’s API that uses REST (Fielding 
2000) and JavaScript Object Notation (JSON) to exchange 
messages (JSON 2017). This allows a feedback loop 
between sensor data that trigger the AIs to select actions 
(using cognitive capabilities such as decision making, plan-
ning, learning and reactivity or social capabilities such as 
cooperation or negotiation) and then instruct the sensor and 
actuator network to perform these actions.

In order to simplify a developer’s task we have selected 
implementation technologies that would enable deployment 
to the cloud, on a dedicated board computer (e.g. Raspberry 
Pi 2018), on an existing local server/pc or a smartphone. As 
a result, we have chosen the DropWizard framework (Drop-
Wizard 2017) that is essentially a collection of Java libraries 
glued together to enable RESTful server applications. The 
benefit of using DropWizard is that it enables the implemen-
tation of lightweight monolith servers and microservices. 
The latter can be deployed in the cloud as well as on already 
existing local server PC, dedicated board computers and 
smartphones. All options except the one of the dedicated 
board computer would alleviate the need for another device 
in the smart home. This way we can view eVATAR+ as a 
low footprint add-on to an existing architecture.

As we can see in Fig. 2 eVATAR+ uses a Jetty container 
(Jetty 2018) handled by Jersey that enables us to implement 
in Java a handler that supports the REST API (Jersey 2018).

The persistence layer of eVATAR+ supports the busi-
ness logic with a relational database. We have chosen to use 
PostgreSQL because it is a powerful, open source object-
relational database system. It supports multiple datatypes, 
scalability, a good online support community, it is being 
constantly improved and updated, it is cross-platform and 
has good administrative tools (pgAdmin, DBeaver). In our 
typical so far web server setting, the persistence layer uses 
the hibernate object relational mapping (ORM) framework 
that is responsible for saving the entity that is a Java object 
as a relational database record (Hibernate 2018). Most of the 
libraries that we use are part of the DropWizard framework. 
Furthermore, we implement the data access object (DAO) 
design pattern to provide an abstract interface and access to 
a database by using the ORM. It provides and includes all 
basic create, read, update, delete (CRUD) methods to inter-
act with the database. The DAO is as light as possible and 
exists solely to provide a connection to the database.
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Furthermore, in our web server architecture of Fig. 2 
there is a service layer which can be described as a layer 
between the resources in the controller layer and the DAO 
class in the persistence layer. The service layer is called by 
the resource layer and makes use of the DAO to interact with 
the database. The service layer provides the business logic 
to operate on the data sent to and from the DAO and the 
client. This is why we all this layer as the business layer in 
the architecture of Fig. 2. Another reason for using an extra 
service layer to add business logic is security. A service 
layer that has no relation to the DB, makes it more difficult 
to access the DB from the client unless it goes through the 
service. If the DB cannot be accessed directly from the cli-
ent then an attacker taking over the client will need to hack 
the service layer as well before gaining access to the data. 
In the service layer we implement mediator functionality, 

see Gamma (1995). To support the mediations we also 
implement discovery of suitable sensors and actuators to 
an agents’ requirements and their binding i.e. the creation 
of exclusive communication relationships between agent 
components and physical sensor, actuators and devices (see 
below for more details and clarity).

In this architecture the resource layer is independent of 
the data storage engine. To further ensure layer independ-
ence we use dependency injection for simplifying testing 
and improving decoupling. Dependency injection is a prac-
tice where objects are designed in a manner where they 
receive instances of other objects instead of constructing 
them internally.

The OAuth2 protocol (OAuth2 2018) is used for authen-
tication and authorization for the agents and the devices 
that connect to the middleware and the communications are 

Fig. 2  The reference architec-
ture of eVATAR+
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secured with TLS protocol (TLS 2018) as per standard. In 
an example application a user would login using a password 
and acquire an expiring session token. Agents and devices in 
the application would use the expiring token to authenticate 
their communications with eVATAR + . In addition, in our 
proof-of-concept prototype we strive to keep the system with 
the latest versions of the libraries and software used (such 
as DropWizard and Jetty). Further considerations regarding 
this issue are more relevant for a commercial deployment of 
the system and therefore are beyond the scope of this work.

The application block, refers to the term used in the Drop-
Wizard framework for the centralized piece of code that puts 
everything together and runs the server (or microservice in 
a different architectural context).

Having identified an appropriate technological framework 
for our middleware, we can now proceed with the descrip-
tion of the design of eVATAR+ within the particular frame-
work. In the following, we will describe only the relevant 
functionality and classes that are needed to implement the 
integrations omitting details about configuration, authentica-
tion and parts of functionality that come as standard with the 
DropWizard framework.

3.2  The controller layer

Describing the eVATAR+ API would be a good starting 
point for providing an overview of what eVATAR+ does. 
The eVATAR+ API allows entities to interact with other 
entities via eVATAR+ by sending and receiving JSON 
objects. eVATAR+ provides a REST/JSON API for inter-
operability and easy integration. REST APIs dominate the 
Internet because they are easy to use and widely known. 
Similarly, JSON is lightweight and intrinsically designed 
for describing data in way that is easy to be read by humans. 
Thus, the proposed middleware becomes accessible to a 
wide audience of developers. Any existing AI software tech-
nology or IoT/sensor network middleware and gateway, sen-
sor, actuator, sensor-actuator, smart appliance or IoT device 
that has the resources to make REST calls can interact with 
eVATAR+ and participate in the proposed architecture ena-
bling interoperability and heterogeneity.

The API allows the integrated devices and software to 
establish loosely coupled, asynchronous coarse grain com-
munications between them. Most devices in modern smart 
homes and especially IoT infrastructures tend to feature 
connectivity and computing capabilities and show auton-
omy on their own or as part of a local setting that uses a 
gateway that controls them. Consequently, there is no need 
for a fine grain communication between a software agent 
and a physical device. Instead a sensor can use the API 
to PUT sensory data to eVATAR+ while the agent would 
be polling to GET the sensory data or an agent can PUT 
a request to be temporarily stored in eVATAR+ while an 

actuator, or a sensor actuator or an IoT device would be 
polling to GET the request (or set of requests) and carry 
on the appropriate tasks in the physical world.

The API work in eVATAR+ is performed in the 
“controller layer” by resource classes which model the 
resources exposed in our RESTful API (i.e. the Jersey 
handlers of the http requests Fig. 2). The resource layer 
is essentially a handler to the Jetty server managing API 
calls. The UML diagram below shows the main resource 
classes of eVATAR+ (Diagram 1).

Agents and devices register by POSTing their descrip-
tions in JSON format to eVATAR+ (see Table 2). The 
device description object in JSON always contains a type 
tag indicating whether it is a sensor, actuator or smart 
appliance (including IoT devices). There is a “description” 
element where we can describe the device and what it does 
and this description can be used (future work) for display 
purposes in a UI. The metadata section is important as it 
uses an array describing the particulars of the device such 
as the status of the sensor (e.g. 1 for sensed motion 0 for 
the opposite) and its location. There is no limitation in 
what we can put in the metadata section. The “name” ele-
ment should contain a unique name for the device.

The agent description object in JSON similarly con-
tains its type and description as well as an array of device 
descriptions. Its device description in the agent object has 
the exact same structure as the standalone JSON descrip-
tions of the physical devices. eVATAR+ then performs 
discovery by matching the required by the agent device 
descriptions to already registered descriptions of sensors 
and actuators and maps the compatible ones. A required 
by an agent device and a physical device are compatible if 
their metadata arrays have the same values. For example 
in Table 2 shown below the required motion sensor and 
the physical motion sensor have the same values in their 
metada arrays (“metadata”:[“status”]).

When we POST a description, eVATAR+ returns JSON 
objects containing unique identifying (Ids) Long integer 
numbers for the entities being described. As we can expect 
the device will receive a unique Id that it will be using for 
every future communication with eVATAR+ and the agent 
will receive a unique Id for itself and an array of identifiers 
for every required device that it describes.

Agent registration messages like the one of Table 2 are 
handled by the AgentResource class in Fig. 3 and in par-
ticular by the registerAgent handler function that deals 
with the agent registration. Similarly, device registration 
are handled by the DeviceResource class and the register-
Device handler function. The locality element allows us to 
determine a particular sensor/device and comes handy in 
settings where we have the same type of sensors/devices. It 
takes a string that can describe a location or an identifier. 
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Other API functions handled by the DeviceResource and 
the AgentResource handlers:

The register devices PUT sensory data with messages like 
the ones in Table 4 below and the agent is polling the mid-
dleware to GET this sensory data. In general, when a device 
or an agent make a PUT rest call with an action request or 
to send sensory data, they include JSON objects like the 
ones of Table 4. These calls include the Id (e.g. 334) that 
was returned to them by eVATAR+ when they registered by 
POSTing their descriptions.

We notice that the message JSON objects contain a meta-
data section that has elements with names that match the 

String values in the metadata array of the corresponding 
device registration description JSON object (see Table 2).

3.3  The Business Layer

The business layer in eVATAR+ implements the business 
logic that supports the resource (controller) layer. As we 
have seen in the architecture the classes in the business layer 
are called services and they enable the REST API handlers 
in the resources layer to interact with the persistence layer 
indirectly while also providing the business logic to oper-
ate on the data sent to and from the DAO and the client. 

Table 2  API for registration by POSTing JSON descriptions of agents and devices

Agent Registration Device Registration

POST /api/v1/agent

Agents POST JSON objects containing registration 
metadata that describes the functionality they 
require. For example:

JSON Object
{

"type": "agent",
"description": "Jade agent",
"devices": 
[

{
"type": "sensor",
"name": "requiredsensor1",
"description": "motion",
"locality": "livingroom",
"metadata":
["status"]

},
{

"type": "actuator",
"name": "requiredswitch1",
"description": "lightswitch",
"locality": "089e8eejd",
"metadata":
["set"]    

}  
]

}

Returns JSON Object:

{"agentId": "123", 
"devices": 
[{"name":"requiredsensor1", 

"deviceId": "232"},
{"name": "requiredswitch1", 

"deviceId": "552"}]}

POST /api/v1/device

Sensors, actuators, smart and IoT devices, gateways 
controlling multiple POST JSON objects containing 
registration metadata that describes the functionality 
they provide. For example:

JSON Object
{
"type": "sensor",
"name": "motionsensor1",
"description": "motion",
"locality": "livingroom",
"metadata":["status"]

}

Returns JSON Object:

{
"name": "motionsensor1", 
"deviceId": "123"

}
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Figure 4 shows a UML class diagram of the most important 
Service classes in the business layer. We can see that they 
all have the same superclass the “Service” class that calls 
the DAO (data access object) functionality enabling them to 
interact with the persistence layer and the database. We use a 
separate service layer not having the resource classes calling 
the DAO directly because it enables the controller layer to 
be independent from the data storage and we can add extra 
business logic here.

With regards to the business logic, eVATAR+ imple-
ments in the services layer the mediator design pattern, as 
described in Gamma (1995). The agents/AI software and 
the sensor networks/IoT settings do not exchange mes-
sages directly but via eVATAR+’s mediator functionality. 
The mediator pattern reduces communication complexity 
between multiple endpoints and it supports loose coupling 
(this way a change in the code of one participant would not 
require a change in the code of the other and thus the code 
is easier to maintain). The mediator behavioural pattern in 
eVATAR+ is supported by the processes of discovery and 
binding. In eVATAR+ discovery is the process by which 
an agent finds (discovers) the set of sensors, actuators and 
devices that it requires in order to sense and act in the physi-
cal world. We saw that during the registration stage, an agent 
will POST a description JSON object. This JSON object also 
includes a set of descriptions of required sensors, actuators 
and devices. Discovery in eVATAR+ is the process of find-
ing sensors/actuators/device records in the database that are 
compatible to the ones described in the agent description. 
The compatibility is determined by comparing their meta-
data elements. For example, in Table 2 we see the motion 
sensor required by the agent and the device description 
(of the motion sensor in the right) have identical strings 
in their metadata arrays of strings (“metadata”:[“status”]). 
eVATAR+ would consider them as compatible. Discov-
ery is implemented in the DeviceService class of Fig. 4 
(“discoverCompatibleDevice()”).

Binding is the result of the discovery and it essentially 
means that eVATAR+ maps required by an agent devices to 
physical devices and when a message from a required device 
is received, eVATAR+ will make it available to the mapped 
(mapped) physical device and the opposite. The mapping 
logic is implemented in the DeviceMapService class.

If an agent/AI software upon registration does not find 
a suitable physical device for all the required device in its 
description it will poll eVATAR+ to check if one is found 
later on (see Table 3). After this point agents can interact 
with the physical devices by sending messages such as the 
ones in Table 4. Agents and devices use their own device Ids 
when making GET REST calls and eVATAR+ uses these Ids 
to identify their mapped counterparts in the persistence layer 
(see below). The mapped device will access the message 
when it polls eVATAR+ for its messages (Table 4). This way 
the different communication endpoints are loosely coupled, 
do not communicate directly with each other and thus eVA-
TAR+ implements the mediator functionality.

3.4  Persistence layer

The business logic of eVATAR+ is supported by the per-
sistence mechanism that uses a relational database (Post-
greSQL). The services in the business layer use the DAO 
object to interact with the database of Fig. 5 that shows the 
most important to the described framework database tables.

The posted JSON descriptions of agents and devices that 
are handled by the Jersey REST API handler (in the control-
ler layer) of eVATAR+ are represented in the software as 
JPA entities (Java Persistence API—https ://docs.oracl e.com/
javae e/6/tutor ial/doc/bnbqa .html) and persisted in the data-
base. JPA entities are used for mapping Java objects to rela-
tional database tables and in particular they are Java objects 
whose non-transient fields should be persisted to a relational 
database (according to Oracle). An agent entity Java object 
in other words contains all the data fields of the JSON object 

Fig. 3  UML diagram of key classes in the resource layer (we show only the important aspects)

https://docs.oracle.com/javaee/6/tutorial/doc/bnbqa.html
https://docs.oracle.com/javaee/6/tutorial/doc/bnbqa.html
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Fig. 4  UML class diagram 
of the most important service 
classes in the business layer
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Table 3  API calls for updating and deleting agent and devices registrations in eVATAR+

Handler resource API

AgentResource GET/api/v1/agent/devices/{agentId}
Agents poll eVATAR+ for new device bindings in the case that they have not found a match to all the required devices upon 

initial registration. The agentId is the identifier returned by eVATAR+ upon registration
AgentResource PUT/api/v1/agent/{agentId}

Agents update their registration metadata by sending JSON objects with the same structure as the ones in the registration in 
Table 2. The agentId is the identifier returned by eVATAR+ upon registration

DeviceResource PUT/api/v1/device/{deviceId}
Sensors, actuators, smart and IoT devices, gateways controlling multiple devices update their registration metadata by sending 

JSON objects with the same structure as the ones in the registration in Table 2. The deviceId is the identifier returned by 
eVATAR+ upon registration

AgentResource DELETE/api/v1/agent/{agentId}
Agents can delete their data from the middleware and deregister (agentId is above)

DeviceResource DELETE/api/v1/device/{deviceId}
Sensors, actuators, smart and IoT devices, gateways controlling multiple devices can delete their data from the middleware 

and deregister (deviceId as above)

Table 4  JSON objects for PUT calls to send action requests/store sensory data and GET calls for polling eVATAR+ for action requests and 
stored data

Agent Devices

GET /api/v1/message/{232}

Agents poll the middleware and download sensory 
data if there is any. For example:
poll message from agent for data from motion sensor 
that is associated with the agent device Id 232. 
According to the mapping table the physical motion 
sensor associated with it has Id 334. eVATAR+ will 
return from the database what is stored for 334.

PUT /api/v1/message/{334}

Devices with sensing capabilities (sensors, actuators, 
sensor/actuators, IoT devices) send sensory data to 
the middleware in encoded within series of JSON 
objects. For example: motion sensor with id 334 
storing sensory data.

JSON Object:
{

“msgType”: “sensory_data”
"metadata": 
{ 
“status”: “1”,
}

}

PUT /api/v1/message/{552}

Agents send action requests to the middleware 
encoded within JSON objects. For example: agent 
sends an action request via agent device Id 552. 

JSON Object:
{

“msgType”: “action_request”
"metadata": 
{ 
“set”: “ON”

}
}

GET /api/v1/message/{156}

Sensors, actuators, smart and IoT devices, gateways 
controlling multiple devices poll the middleware and 
download any requests for them encoded as JSON 
objects.
Poll message from device with Id 
156 for action requests from agent 
via mapped agent deviceId 552.
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for the agent. The hibernate ORM framework persists such 
entities as relational database records (agent records in 
Fig. 5). Similarly, a device (sensor, actuator, IoT device) 
description is sent in JSON object format, converted into 
a device JPA entity and persisted in the database as device 
records (Fig. 5). We saw that the POSTed agent description 
contained an array of required device descriptions. These 
will also be stored in the relational database just like their 
real counterparts. The JPA entities that will be stored as 
PostgreSQL records (Listing 1).

Every agent and device record in the database has a 
unique identifier (Id). The database stores agent records as 
referencing multiple required device records (this is an “one-
to-many” relationship Fig. 5). This means that when we store 
an agent, besides the agent record the database stores new 
records for every sensor/actuator/device that it requires and 
all these records have also their own unique Ids. These are 
the Ids that are returned to the agent (receives its own agent 
Id and the Ids of all its required device database records) as 

a response to a POST description call when it registers. The 
registerAgent function in the business layer returns the agent 
and device records that include the Ids making them avail-
able to the API. The Ids are used for further communication 
with eVATAR+. Similarly, registerDevice will return the 
deviceId.

The persistence layer also the business layer functionality 
that implements discovery, binding and the mediator pat-
tern. When a required device by the agent is compatible to 
a physical device that has been registered and has a record 
stored in the database, eVATAR+ updates a database table 
that stores a mapping of their identifiers (in our example 
device Id 232 with device Id 334). This is the “device_map” 
table in Fig. 5 (Listing 2).

Now we say that the required device by the agent is bound 
to the real device and this enables an exclusive communi-
cation between the agent and that particular device. When 
the agent polls (GET) for sensory data for deviceId (232 in 
our example) using the Id of the requested motion sensor, 

Fig. 5  Entity relationship 
diagram with the main tables 
required by eVATAR+
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eVATAR+ uses the “device_map” table in the database that 
has it mapped with 334. Then it will use the mapped Id (334) 
to retrieve all stored messages from the device with Id 334 if 
any and return them to the agent that contains the required 
device with Id 232. The aforementioned process illustrates 
how the persistence layer supports our implementation of 
the Mediator pattern. The agent and the devices do not talk 
directly to each other. Instead they communicate via a shared 
memory space in eVATAR+ thus achieving loose coupling. 
For fine grain communication, if needed, Jersey supports 
streaming and it is similar to uploading a file one end and 
downloading it on the other end. On our setting though the 
costly streaming should be rarely needed.

After describing all key components of eVATAR+ the 
following UML activity diagram would provide the reader 
with an overview of what happens eVATAR+ receives a 
message.

Having described the most important aspects of the eVA-
TAR+ architecture and design we can exemplify its use with 
a case study.

4  Case study: agent capabilities in Google 
NEST

In this section we discuss a case study exemplifying how 
eVATAR+ (and its associated architectural framework) 
binds AIs with sensors and actuators in a systematic, secure 
and transparent manner. The presented case study intends 
to provide insight about the type of applications eVATAR+ 
is designed to support. In our case study our goal is to show 
how we can use eVATAR+ to enable a Jade (Bellifemine 
et al. 2007) MAS agent to integrate with an Nest application 
in order to become an actor within a Nest smart home setting 
by reading sensory events within it and also creating events. 
We have selected NEST because it offers a well-documented 
API, a simulator and is also a widely used in modern house-
holds allowing us to demonstrate how eVATAR+ would be 
applied in such a setting.

4.1  The scenario

Let us consider that we have a Nest application control-
ling a Nest smart home setting. We are going to show how 
a developer can use eVATAR+ to enrich the smart home 
setting with software agent capabilities. We are going to 
show how the Nest application uses the eVATAR+ API to 
register the smart home devices and how an agent registers 
its interest for smart home devices by using the same API. 
eVATAR+ will perform discovery and bind the agent to a set 
of smart home devices enabling it to apply its functionalities 
to the smart home.

Initially we used the Nest Home Simulator (https ://devel 
opers .nest.com/guide s/home-simul ator) that allows us to 
easily simulate events in the smart home that were also made 
available to the Jade agent via eVATAR+ . We will show 
how to enable an agent to sense the simulation environment 
by receiving e.g. motion detection events from a camera 
(Fig. 6) and perform actions in it e.g. control a thermostat. 
The simulation uses exactly the same API as the real sensors 
and actuators and we could switch our application to a real 
environment without making any changes to our application. 
In the second part we exemplify this point by replacing the 
Nest simulator with a Nest thermostat (as the simulation 
cannot coexist with the physical Nest devices in the same 
setting). Figure 7 illustrates an overview of the architecture 
that would enable a Jade agent (Bellifemine et al. 2007) to 
control Google Nest devices.

Google Nest and Google IoT infrastructures offer a com-
plete solution for connecting, processing, storing and ana-
lysing data both at the edge and in the cloud. Their infra-
structure software is not accessible to developers in any 
way other than via using their public APIs. Nest offers a 
RESTful API, therefore a Nest application making REST 
calls to Nest should also be capable of making REST calls 
to eVATAR+ and use its API. In our scenario we will inte-
grate a Nest smart home application with a Jade agent via 
eVATAR+ .

4.2  The smart home setting

The Nest home simulator is a self-contained application for 
creating virtual versions of the Nest physical devices. Inter-
action with the Nest home simulator is identical to the inter-
action with a similar setting consisting of physical devices 
including authentication and identical REST API calls to 
communicate with the devices, whether virtual or physical. 
The added benefit of the simulator is that it simulates condi-
tions that would be expensive and time-consuming to rep-
licate in a real world setting. Our Nest application connects 
to simulations of:

• smart thermostats that can read and set current tempera-
ture, set target temperature, read humidity levels.

• smart cameras that also perform motion detection cloud 
storage and send notifications.

• Smoke and carbon monoxide alarms that trigger as 
expected a smoke and CO alarm.

The following snapshot of the Nest simulator shows a 
virtual camera and how we can set events that will be sensed 
by it.

The simulation enables us to generate different types of 
events such as sound, motion, smoke, carbon monoxide leak 
and temperature related events to name a few. These events 

https://developers.nest.com/guides/home-simulator
https://developers.nest.com/guides/home-simulator
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are sensed by the virtual devices and we can access them via 
the Nest REST API. Also, we can use the same API to alter 
the state of the devices in the simulation, for example to set 
the target temperature of the thermostat.

We implemented our Nest application in Java. An exam-
ple call to Nest for setting the target temperature of a Nest 
Thermostat would look like shown in Table 5.

In order for an application to interact with the NEST 
infrastructure, it needs to authenticate itself using OAuth 
2.0 after which it receives an access token (long alphanu-
merical token that will be used by the API calls to verify 
that the application is authorised to control the devices). 
Having a Nest application that interacts with the Nest 
devices (in the simulation) using the REST API of Nest 
we can pursue the goal of this case study which is to show 
how we can enrich an application in the Nest environment 
with agent capabilities. To achieve this, the Nest applica-
tion should use the eVATAR+ API to register the simu-
lation devices with eVATAR+. We remind that in order 
to register the devices, the Nest application will need to 
POST to eVATAR+ their descriptions using JSON. In 

order to create the JSON description of e.g. a smoke and 
CO sensor we would need to extract the useful features of 
the particular sensor. In our case, the place to look at is at 
the JSON objects that are already defining its interaction 
with Nest.

As we can see in Listing 3 we can encapsulate the 
description of the Nest API JSON object into the meta-
data section of eVATAR+ and this way all features of the 
sensor are potentially accessible to the agent. In practice, 
when we integrate AI functionality into an existing setting 
we normally do not intend to replace all native control and 
sensing functions with new ones stemming from the AI 
(e.g. agent) component. Instead, we select those useful to 
the agents’ goals and capabilities.

In Listing 4 we see a more compact description that 
only contains information that would be useful to an agent. 
We also see how an API call by the Nest application to 
eVATAR+ would look like. In particular this call sends 
the state of the sensor for it to be read by the agent (see 
chapter 3 for more information).

Fig. 6  The Google Nest simulation. Here we see a camera sensor. Notice that we can set motion and sound events that will be sensed by the 
camera, their duration, even a streaming video status
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Fig. 7  Jade agents applied to a Google Nest smart home setting. The setting is inspired by the example architecture in https ://devel opers .googl 
e.com/nest/guide s/archi tectu re

Table 5  API reference to POST and GET calls to Nest for reading and setting the temperature of a Nest thermostat

API Description

POST

https://developer-api.nest.com/devices/thermostats/device_id/

Java Jersey client call

client.target("https://developer-
api.nest.com/devices/thermostats/").
path(your_thermostat_device_id).
request().
header("Content-Type", "application/json;charset=UTF-8").
header("Authorization", "Bearer "+ authorisationToken.trim()).
accept(MediaType.APPLICATION_JSON).
post(Entity.json(theromstatRequest) , Integer.class);

POST: set the target temperature of the 

thermostat

The ORM object theromstatRequest 

corresponds to the following JSON:

{target_temperature_c: 22}

Returns: number

Example: 21.5

Range: 9-32

https://developers.google.com/nest/guides/architecture
https://developers.google.com/nest/guides/architecture
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4.3  The multi‑agent system

Jade applications (Bellifemine et al. 2007) are implemented 
in Java. We implemented for the purposes of our case study 
a single Jade agent that would interact via eVATAR+ with 
the Nest smart home. We saw that the Nest application 
would POST three devices to eVATAR+: a smart camera, a 
smart thermostat and a smoke and CO sensor. In Listing 4 
we saw the JSON description for eVATAR+ of the smoke_
co_alarm. The smart camera and smart thermostat were 
similarly described. On the other end our Jade agent sent 
a JSON object describing three required devices (matching 
the physical devices of the Nest smart home) (Listing 5).

Our agent features cyclic behaviours (atomic behaviours 
that must be executed forever). There are cyclic behaviours 
polling the state of sensors, e.g. periodically requesting the 
last change in the state of the camera sensor and update the 
internal state of the agent with the acquired information. 
Other cyclic behaviours consult the current internal state of 
the agent that is essentially a collection of data structures 
reflecting the sensory data describing the physical environ-
ment and send action requests via eVATAR+. The following 
JAVA code sample illustrates an example of an implementa-
tion of the sensing behaviour in the Jade agent (we notice 
that it uses the JAVA API to eVATAR+) (Listing 6).

Similarly, cyclic agent behaviours check variables like 
“motion_sensed” and send action requests to Nest devices 
via eVATAR+ and the application.

4.4  Completing the Picture

The Nest application registers the Nest devices and the MAS 
registers the descriptions of the devices it requires. eVA-
TAR+ performs discovery as described in 3.3 and binds the 
required devices to the physical ones. This way Jade has 
access to the existing Nest application and can add intelli-
gent and interoperable behaviours. In our simulation we can 
create events e.g. set the smoke alarm go and the Jade will be 
polling the smoke and CO sensor and as soon as it receive a 
smoke event it will send a notification (for the purposes of 
our test it sends an email). In general for the purposes of our 
integration capability evaluation we had Jade sending emails 
of describing events that we set in motion in the Nest simula-
tion that were sensed by the sensors and sent to eVATAR+. 
Also, Jade was able to change the state thermostat and this 
way we show how the agent becomes another actor in the 
Nest environment capable of reading and creating events.

We also implemented an integration with a real thermo-
stat simply by replacing the simulation with the real smart 
home. No code changes where required apart from the 

Agent Device

@Table(name="agent")
public class Agent {

@Id
@Column(name = "id", columnDefinition = "serial")
@GeneratedValue(strategy=GenerationType.IDENTITY
)
private Long id; //A unique identifier for the interactor.

@Column(name = "type")
private String type;

@Column(name = "description")
private String description;

//The required devices
@OneToMany(mappedBy="agent") 
private List<Device> devices = new ArrayList<>();

//Getters and setters
}

@Table(name="device")
public class Device {

@Id
@Column(name = "id", columnDefinition = "serial")

@GeneratedValue(strategy=GenerationType.IDENTITY
)

private Long id; //A unique identifier for the interactor.

@Column(name = "type")
private String type;

@Column(name = "bound")
private Boolean isBound;

@Column (name = "description")
private String description;

@ElementCollection
private List<String> metadata = new ArrayList<>();

@ManyToOne
private Agent agent;

//Getters and setters
}

Listing 1  JPA entities representing an agent and a device. This is how they will be stored in the relational database. Note that the required 
devices of the agent use the same type of device records as the physical devices
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configuration to target the different setting (Listings 1, 2, 3, 
4, 5, 6, Diagram 1).

5  Conclusions and future work

We have presented eVATAR+, a framework with an associ-
ated middleware that binds systematically and transparently 
interactions between AI capabilities and existing sensor-
actuator networks or IoT infrastructures, thus making the 

services offered in such settings smarter the context of such 
integrations while providing a simple and easy to use inter-
face for developers to use. Our evaluation of current state of 
the art middleware with regards to the integration of sensor 
actuator networks and IoT settings with AI agents resulted 
in a set of characteristics that were used in the design of 
eVATAR+. We exemplified eVATAR+ with a concrete case 
study that illustrated a possible use of eVATAR+ and dem-
onstrated a systematic and transparent integration of AI plat-
form functionality (implemented in the Jade agent platform) 

@Table(name="device_map")
public class DeviceMap {

@Id
@Column(name = "id", columnDefinition = "serial") 
@GeneratedValue(strategy=GenerationType.IDENTITY)
private Long id;

@OneToOne (fetch=FetchType.LAZY)
private Device agentDevice;

@OneToOne(fetch=FetchType.LAZY)
private Device physicalDevice;

//Getters and setters
}

Listing 2  JPA entity representing the mapping between a requested 
agent device database record that has been registered via the agent 
registration process and a physical device record that was stored via 
the physical device registration. This mapping is stored in the rela-
tional database. Note: (i) the required devices of the agent use the 

same type of device records as the physical devices. (ii) this table 
enables the routing of messages from the agent with the requested 
device Id to the physical device with the mapped device Id and the 
opposite

Nest (smoke_co_alarms) eVATAR+ (smoke_co_alarms)

{
"device_id" : "aDevId",
"locale" : "en-UK",
"software_version" : "1.01",
"structure_id" : "aStructId",

{
"type": "sensor",
"name": " smoke_co_alarms1",

"description":"smoke_co_alarms",
"metadata":[

"name" : "Hallway (upstairs)",
"name_long" : "Hallway Protect 
(upstairs)",
"last_connection" : "aTime",
"is_online" : true,
"battery_health" : "ok",
"co_alarm_state" : "ok",
"smoke_alarm_state" : "ok",
"is_manual_test_active" : true,
"last_manual_test_time" : "aTime2",
"ui_color_state" : "gray",
"where_id" : "aWhereId...",
"where_name" : "Hallway"
}

"device_id",
"locale","software_version",
"structure_id","name",
"name_long","last_connection",
"is_online", "battery_health",
"co_alarm_state",
"smoke_alarm_state",
"is_manual_test_active",
"last_manual_test_time",
"ui_color_state","where_id",
"where_name"]

}

Listing 3  Encapsulating the native description to an eVATAR+ JSON description
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with a smart home setting that contains physical sensors and 
actuators (Nest Simulation, Nest smart home). More specifi-
cally, we have shown that eVATAR+ features a standard and 
systematic way of achieving the integrations by:

• abstracting sensor, actuator and AI program functionality 
by describing it using simple and readable JSON docu-
ments;

• using standard RESTful API calls to enable sensors to 
PUT sensory data in eVATAR+ that was read by polling 
agents (GET calls) as well as to enable agents to PUT 
action requests in eVATAR+ that were read by polling 
actuators (there was no need to write extra code for deal-
ing with how the integrations between agents).

In addition, we illustrated how agents via eVATAR+ per-
formed transparently dynamic discovery and binding to the 
physical sensors and actuators without the developers having 
to deal with the low level implementation of how the dis-
covery and the binding are achieved within the middleware.

Systematic and transparent integrations already point to 
a simpler task for integrating AI with sensor networks/IoT 
environments. Furthermore, our choice of JSON/REST style 
integrations that are abundant in today’s Internet technolo-
gies due to their simplicity and ease of use further enhances 
our goal to simplify developers’ tasks when attempting the 
integrations described in this paper.

As part of our future work plans we will explore the pos-
sibility of providing a qualitative analysis of the followed 

approach and start a discussion as part of a research paper 
about the merits of providing systematic and transparent 
middleware solutions not just in the area of IoT. We will 
also explore the possibilities of implementing an application 
that integrates AI (e.g. Jade agents or use a machine learning 
component) with existing sensor/actuator technologies such 
as Google Nest, the Zigbee wireless standard (ZigBee 2019), 
Arduino (2017), Google Assistant (2017), Amazon Alexa 
(2017), and IFTTT (2019) among others. The proprietary 
nature of these technologies and the competing standards 
tend to lead to interoperability issues between them and 
the lack of a systematic way for implementing integrations. 
There are not many systems allowing the control of differ-
ent competing technologies from a single user interface. We 
intend to overcome this problem by integrating their APIs 
with eVATAR+ enabling a centralized control unit that uses 
a learning AI and a UI (User Interface) for user input. We 
intend to investigate the possibilities and the advantages/
disadvantages of deploying the application as part of an 
Android app (DropWizard that implements eVATAR+ can 
run on Android devices) and/or on the cloud or a dedicated 
low-cost device deployed in the edge.

We also plan to look into deploying eVATAR+ in a 
variety of settings and applications domains. For example 
we intend to investigate the possibility of deploying eVA-
TAR+ as part of ecosystems integrating sensor networks 
with cloud based architectures that provide semantic world 
knowledge in the form of linked open data. We will then 
evaluate our approach in conjunction with approaches like 

Useful Description Example eVATAR+ API call

{
"type": "sensor",
"name": "smoke_co_alarms1",

"description":"smoke_co_alarms",
"metadata":[
"device_id",
"locale",
"structure_id","name",
"name_long","last_connection",
"is_online", 
"co_alarm_state",
"smoke_alarm_state",
"where_id",
"where_name"]

}

PUT /api/v1/data/sensor/{334}
{
“msgType”: “sensory_data”
"metadata": 
{
"device_id" : "aDevId",
"locale" : "en-UK",
"structure_id" : "aStructId",
"name" : "Hallway (upstairs)",
"name_long" : "Hallway Protect   

(upstairs)",
"last_connection" : "aTime",
"is_online" : true,
"co_alarm_state" : "ok",
"smoke_alarm_state" : "ok",
"where_id" : "aWhereId...",
"where_name" : "Hallway"

}
}

Listing 4  Useful JSON description to the smoke_co_alarm. The agent does not need to know about “software_version”, “battery_health”, “is_
manual_test_active”, “last_manual_test_time”, “ui_color_state” etc
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SPITFIRE (Pfisterer et al. 2011; Chatzigiannakis et al. 2012) 
that provides vocabularies to integrate descriptions of sen-
sors and things with the “linked open data” cloud, describes 
their high-level states and provides search for sensors and 
things based on their states. Similarly to eVATAR+, they 
also claim ease of use due to the fact that they use commonly 
used and familiar technologies. In their case any application 
experts who are able to publish web pages should also be 
able to use SPITFIRE. They also provide a qualitative evalu-
ation of their approach.

In view of extending the functionality of eVATAR+ and 
potentially adopting more flexible deployment possibilities 
we will look at deploying it as part of a microservices archi-
tecture. DropWizard is a common framework for developing 
microservices as well as web servers. Every DropWizard 
microservice would have the exact same layers and com-
ponents within the DropWizard framework i.e. a Jetty con-
tainer, Jersey REST API controller, a services business logic 
layer, ORM framework and its own database. Spring Boot 
(2019) offers a similar architecture with a difference that 

Agent Description

{
"type": "agent",
"description": "Jade agent",
"devices":
[

{
"type": "sensor",
"name": "required_smoke_co_alarms_1",
"description": "smoke_co_alarms",
"metadata":["device_id", "locale", "structure_id","name",

"name_long", "is_online", "co_alarm_state",
"smoke_alarm_state","where_id", "where_name"]

},
{

"type": "sensor-actuator",
"name": "thermostats_1",
"description": "thermostats",
"metadata":["device_id","locale","structure_id", "name",

"name_long","last_connection", "is_online",
"target_temperature_c","target_temperature_high_c",
"target_temperature_low_c","ambient_temperature_c",
"humidity","where_id","where_name” ]

} ,
{

"type": "sensor_actuator",
"name": "cameras_1",
"description": "cameras",
"metadata":["device_id","software_version","structure_id",

"where_id","where_name","name",
"name_long","is_online","is_streaming",
"web_url","app_url","activity_zones",
"public_share_url","snapshot_url",
{"last_event":["has_sound","has_motion","has_person",

"start_time","end_time","urls_expire_time",
"web_url","app_url","image_url",
"animated_image_url","activity_zone_ids"]}}

]
}

]
}

Listing 5  JSON description of an agent requiring a smoke_co_alarm, a smart thermostat and a smart camera
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it provides a variety of choices for particular technologies 
used e.g. tomcat as an alternative to jetty. A transition from 
a DropWizard web server to a microservices architecture 
would involve using the exact same architecture and dividing 
the business logic and distributing the overall functionality 
into different microservices by: (a) dividing the database 
tables, (b) dividing the REST API and (c) dividing the busi-
ness logic in the services layer.

The current version of EVATAR+ could be viewed as a 
monolithic server. At this stage there is no justification for 
implementing eVATAR+ using microservices as the busi-
ness logic revolves around a specific task i.e. the integra-
tion of AI with sensor networks. Furthermore, we could add 
eVATAR+ as it is to existing microservices architectures as 
a separate microservice. In the future we would like to see 
eVATAR+ presenting more intelligent functionality e.g. to 
support operations on historic events, that clearly constitute 
big data, needed to train an AI model.

When we add this extended functionality it would be 
logical to migrate to a microservices architecture where 
one microservice would be responsible for integrations of 
AI with sensor/actuator networks, another for dealing with 
data analytics and possibly a third one for authentication and 

user management. The fact that every DropWizard server 
and microservice has the same layered architecture would 
make the transition easier as it would involve splitting the 
code and the database but keeping the same structure. Fur-
thermore, we will also investigate ways to improve opera-
tions at a streaming level for example for anomaly detection. 
This would fit in with a new microservices architecture and 
architecturally deployed before a load balancing server that 
routes the data to the different microservices.

In terms of currently proposed deployment of eVA-
TAR+ the data is not anticipated to reach high enough vol-
umes that would significantly affect performance especially 
with the addition of in memory caching such as memory 
caching of Redis (2019). However, storage based message 
switching using a faster database technology and poten-
tially with a smaller footprint such as a NoSQL/key-value 
database is a possible direction to explore if performance 
is affected by high data volumes. In this context, we will 
need to weigh the benefits of selecting such a technology 
instead of using a relational database that would support 
more complex business logic as we add new features and 
possibly data analytics.

/* Add the CyclicBehaviour for sensing using the Camera Sensor. */
addBehaviour(new CyclicBehaviour(this) {   
/* The motion sensor of the Jade agent */
public void action()  {    
if(motion_sensed == false)
{

LOG("Sensing motion");

/* The motion sensor s/w using the eVATAR+ API poll for Sensory data (GET). */
CameraEntityRepresentation cameraEntityRepresentation

= (CameraEntity) api.poll(“cameras_1”);

/* If the received message indicates motion detection... */

if (cameraEntityRepresentation.getLast_event().getHas_motion() == true)
{
/* update internal variable that a motion was sensed */

motion_sensed = true;
}

}      
} 

} );

Listing 6  A sensing behaviour of the Jade agent
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