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Abstract Forest fires are a major contributor of atmospher-
ic gaseous and particulate pollutants. With respect to forest
fires, Greece faces one of Europe’s most severe problems
during summer. To create a forest fire emissions inventory,
a database which holds data for forest fires in Greece during
the period 1997-2003 was established in this study and a
methodology for the quantification of both gaseous and
particulate matter emissions from forest fires was devel-
oped. The contribution of forest fire pollutant emissions to
the total anthropogenic and natural emissions in Greece has
been estimated in detail for a specific period during July
2000 when widespread forest fires occurred in the Greek
mainland. The mesoscale air quality modeling system
UAM-AERO was used to quantify the contribution of
forest fire emissions to the air pollution levels in Greece,
and it was calculated that the forest fire emissions were the
largest contributors to the air pollution problem in regions
tens of kilometers away from the fire source during this
period. The wildfire emissions were calculated to cause an
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increase in the average PM,o concentration, organic aerosol
mass, and gaseous concentration of several pollutants,
among them CO, NO,, and NH;. An average contribution
of 50% to the PM,, concentration over the region around
the burnt area and downwind of the fire source (approximately
500 km) is calculated with a maximum of 80%, whereas, for
CO, the average contribution was 50% during this period. The
theoretical calculations were compared with in situ observa-
tions of smoke aerosols captured by a backscatter lidar system
over the Greater Athens Basin as well as with surface
observations of NO, and O3 and the calculated concen-
trations were in better agreement with observations when
forest fire emissions were included in the model calculations.

Keywords Forest fire - Emissions - Modeling - UAM-AERO

Introduction

In forest fires are emitted significant amounts of gaseous
and particulate matter pollutants into the atmosphere. Forest
fires can play a significant role in atmospheric chemistry
and contribute to climate change (Luterbacher et al. 2004;
MacCracken et al. 1986; Penner et al. 1991; Stohl et al.
2007; UCAR 1986). Stohl et al. (2007) showed that
agricultural fires in Eastern Europe can significantly alter
the air pollution levels in the European Arctic. Forest fires
can affect the physicochemical properties of the atmo-
sphere, via the release of significant amounts of particulate
matter, which interact with solar radiation (Andreae 1991;
Andreae and Merlet 2001; Holben et al. 1991; Pace et al.
2005; Trentmann et al. 2005). Black carbon, for example,
absorbs solar radiation strongly (Martins et al. 1998), and
biomass burning is responsible for as much as 45% of the
emissions of black carbon on a global scale (Andreae et al.
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1996). Atmospheric particulate matter (PM) also acts as
cloud condensation nuclei (CCN), which are important for
the radiation balance and the hydrological cycle. Future
climate warming may enhance the occurrence and impact
of forest fires on regional air quality (Schar et al. 2004).

Forest fire emissions can be important for local air
pollution levels (IPCC 2007; Sandberg et al. 1978). Accord-
ing to the CORINAIR-1990 inventory, forest fires contribute
0.2% to the emissions of NO,, 0.5% to the emissions of non-
methane volatile organic compounds, 0.2% to the emissions
of CHy, 1.9% to the emissions of CO, 1.2% to the emissions
N,O, and 0.1% to the emissions of NH; in Europe (EMEP/
CORINAIR 2002). As these emissions are constrained to
short time periods and limited areas, the impact is more
severe for public health [such as respiratory symptoms and
illnesses including bronchitis, asthma, pneumonia and upper
respiratory infection, impaired lung function, and cardiac
diseases (Bowman and Johnston 2005; EC 1997)].

Unlike other anthropogenic sources, forest and agricul-
tural biomass fire emissions are poorly quantified in the
literature due to the difficulties in estimating their temporal
and spatial distribution (Andreae 1991; Dennis et al. 2002;
Hays et al. 2005; Junquera et al. 2005). Furthermore, the
smoke production can vary by an order of magnitude or
more from year to year (Andreae 1991). The process of
burning consists of many stages, producing different
compounds at each one of them, while the burnt material
is inhomogeneous and difficult to describe in mathematical
terms. This fact may cause significant differences between
predicted and observed levels of air pollution.

In the current paper, the focus is on the construction of
an emission inventory from forest fires in Greece for the
period 1997-2003 in conjunction with a modeling study to
quantify the effect on air quality from extensive forest fires
in the Greek mainland during July 2000. Greece faces one
of Europe’s most severe problems concerning forest fires.
Forests, partly forested areas, brush lands, and pastures cover
approximately the two thirds of Greece (131,957 km?)
(Dimitrakopoulos 1994). Each year, the area burnt in Greece
is larger than 10% of the total burnt forested area in South
Europe (European Communities 2001). The total area burnt
per fire event in Greece is larger than anywhere else in Europe.
It has been estimated that 0.394 km? is burnt in every forest
fire in Greece compared to 0.300 km? in Spain, 0.200 km? in
Italy, and 0.153 km? in Portugal (Dimitrakopoulos 1990).

Materials and methods
Quantification of forest fire emissions

In this study, we quantified gaseous and particulate matter
emissions from forest fires in Greece. The pollutants
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studied are the main products of forest fires: CO,, CO,
nonmethane hydrocarbons (NMHCs: C3;Hg, CoH,, CoHo,
CsHg, n-C4Hy(), particulate matter (as TSP), nitrogen
compounds (NO,, NHj3, N,0), and sulfur compounds
(mostly SO,). Also emitted from forest fires are species
such as H,, COS, and CH;Cl which are not studied further
as they are of minor importance to tropospheric chemistry
even though their consequences to the stratosphere are not
negligible (Andreae 1991). In particular, we estimated the
forest fire emissions for the period 12—16 July 2000 during
which widespread forest fires occurred in the Greek
mainland. In this context, a database which holds data on
forest fires in Greece during the period 1997-2003 was
created. The database contains data for the time and
location of fire, duration, area, and type of vegetation burnt
which were obtained from the Ministry of Rural Develop-
ment and Foods, General Directorate for Development and
Protection of Forests and Natural Environment in Greece.
The emissions of the main pollutants produced during
forest fires were then calculated and integrated in emission
inventories of anthropogenic and natural occurring emis-
sions (Aleksandropoulou and Lazaridis 2004).

The quantification of emissions during forest fires was
performed in the following steps: (1) estimation of the
biomass burnt, (2) estimation of the total carbon emitted, (3)
calculation of the emissions of carbon compounds (CO,,
CH,, CO, NMHCs), (4) estimation of the total nitrogen
emitted, (5) calculation of the emissions of nitrogen
compounds, (6) calculation of the emissions of sulfur
compounds (SO,), (7) estimation of the total suspended
particulate matter (TSP) emitted, and (8) redistribution of
the TSP regarding their size and chemical composition.

The estimation of the burnt biomass is rather complicat-
ed as it depends on many parameters. The burning material
is inhomogeneous, adding complexity to the emission
estimates. Forest fire fuels include all the materials that
can be affected by a fire such as shrubs, trees, leaves,
branches, barks, and all the organic matter that is present in
the upper layers of the ground. In particular, the amount of
the dry biomass burnt (M in kilograms) is estimated after
Seiler and Crutzen (1980):

M=axbxAxB (1)

where A is the area burnt (in square meters), B is the mean
biomass quantity per area unit (in kilograms per square
meter), a is the fraction of biomass above the surface, and b
is the burning efficiency of the vegetation which exists
above the ground. The coefficients B, a, and b depend on
the type of the ecosystem (dimensionless). The classifica-
tion used in the present study is based on the studies of
Seiler and Crutzen (1980) and EMEP/CORINAIR (2002).
The burnt biomass per area unit (in kilograms per square
meter) has a value of 2.81 for Mediterranean forest, 2.40 for
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scrubland, and 0.36 for grassland (EMEP/CORINAIR
2002; Seiler and Crutzen 1980).

The main carbon compounds emitted from a forest fire
are carbon monoxide, carbon dioxide, methane, and hydro-
carbons. The quantity of carbon emitted (in kilograms) is
estimated as:

C=045xM (2)

where 0.45 is the mean mass fraction of carbon in dry
biomass (with mass M in kilograms) and is considered
independent of the type of biomass.

The emissions of carbon compounds (£;) are calculated
using the following expression:

Ej=¢xgxC (3)

where j is the compound, & is the portion of the total
carbon emitted as compound j, and ¢; is the conversion
factor from emissions in C equivalent to emission in mass
of single compounds (in tons). The average molecular
weight of NMHCs is assumed equal to 37 g/mol following
the speciation of Radke et al. (1991): 35% CsHg, 30%
C2H2, 16% C2H2, 14% C3H8, 5% I’l-C4H10 (by mass).

The nitrogen compounds used in the present study is
nitrogen dioxide, nitrogen protoxide, and ammonia. The
emitted nitrogen mass (in kilograms) is estimated by:

N = 0.0045 x M (4)

where 0.0045 is the mass fraction of nitrogen in dry
biomass (with mass M in kilograms) and is assumed to be
the same for all species. The emissions (in kilograms) of the
nitrogen compounds are:

E=gx8xN (5)

where j is the compound, &; is the fraction of total nitrogen
emitted as compound j, and ¢; is the conversion factor from
emissions in N equivalent to emissions in mass of single
compounds (in tons). The values of factors &; and J; for
each vegetation species are taken from Trozzi et al. (2002)
and EMEP/CORINAIR (2002).

The main sulfur compound emitted from forest fires is
sulfur dioxide. The mass of SO, emitted (in kilograms) is
estimated by:

Es=16x1072xC=0.72x107 x M. (6)

Finally, the total mass of particulate matter emitted from
forest fires (in kilograms) is found from:

MTSP = 0.0085 x M (7)

where 0.0085 is the mass fraction of total suspended
particulate matter (TSP) of dry biomass (M in kilograms)
(US EPA 1995). The calculated PM emissions are distrib-
uted in nine size bins: (1) d,<0.08, (2) 0.08<d,<0.16, (3)
0.16<d,<0.31, (4) 0.31<d,<0.62, (5) 0.62<d,<1.25, (6)

1.25<d,<2.50, (7) 2.50<d,<5.00, (8) 5.00<d,<10.0, and
(9) dp,>=10 (d, is the aerodynamic mass diameter in
micrometers). Particulate matter emissions, which are made
up mainly of organic and elemental carbon, were chemi-
cally resolved after Lurmann et al. (1997).

Model description and initialization/modeling approach

In the current work, concentrations of aerosols and gaseous
pollutants were modeled using the UAM-AERO mesoscale
modeling system (STI 1996). Two separate simulations
were performed; one including anthropogenic, natural, and
forest fire emissions (scenario I) and one including only
forest fire emissions (scenario II). The simulations were
carried out to quantify the contribution of the forest fire
emissions to the ambient concentration of aerosols and
gaseous pollutants.

The UAM-AERO mesoscale model is a gas/aerosol air
quality model that is based on the model UAM version IV
(Lurmann et al. 1997) and it is designed to simulate the
atmospheric processes governing ambient concentrations of
both gaseous pollutants and particulate matter. The model
simulates the effects of emissions, horizontal and vertical
transport and dispersion, chemical reactions, and dry deposi-
tion on atmospheric concentrations of pollutants. The UAM-
AERO model incorporates a chemically resolved aerosol
model with the major primary and secondary particulate
matter components including elemental and organic carbon
(OC), sulfate, nitrate, ammonium, water, sodium, chloride,
and crustal material. Internally mixed aerosol is assumed and,
at each particular particle size, the aerosol has the same
chemical composition. Condensable organics are simulated
using the yields reported by Pandis et al. (1992). Production
of sulfuric acid from aqueous phase oxidation was also
included. Gas/aerosol equilibrium is computed using the
SEQUILIB algorithm (Pilinis and Seinfeld 1987).

The UAM-AERO model allows the use of various
alternative chemical mechanisms. The one employed for this
case study was the carbon bond-IV (CB-IV) where species
are lumped according to the type of their C—C bonds. A large
number of reactions, involving 47 species were taken into
account. In addition, several modifications were introduced
in the UAM-AERO mesoscale model compared to the
standard UAM-IV model, including new preprocessors for
biogenic and natural emissions (Aleksandropoulou and
Lazaridis 2004; Spyridaki et al. 2006), new deposition
routines, and inorganic equilibrium chemistry module.
Moreover, gas-to-particle conversion routines were included
for treating secondary formed inorganic and organic
aerosols (Lurmann et al. 1997).

During a forest fire, there is a large positive heat flux at
the surface leading to very unstable conditions in the
atmosphere and a deeper boundary layer. An algorithm
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developed to account for these conditions is adopted in the
current work (Gurer and Georgopoulos 2001).

The model was applied over a domain (58 x74 grid
points of area 10x10 km?) which covers all of the Greek
mainland, most of the islands, and parts of the contiguous
countries with five vertical layers, two below and three
above the diffusion break. Topography and land use data
were obtained from previous studies (Aleksandropoulou
and Lazaridis 2004). The meteorological inputs were
obtained using a numerical weather prediction (NWP)
model with an extended treatment of clouds and precipita-
tion. This model is based on the limited-area model
NORLAM from the Norwegian Meteorological Institute
(Gronaas et al. 1987; Nordeng 1986). The cloud process
extensions are developed at the University of Bergen and
documented in Sundqvist (1998), Sundqvist et al. (1989),
and Kvamste (1992).

Annular anthropogenic emission inventories for gaseous
species and aerosols were derived from the UNECE/EMEP
database (EMEP/CORINAIR 2002; Webdab 2002). The
dataset includes also gaseous emissions from ships (local
and international sea traffic; Lavender 1999). The method-
ology for the spatial mapping of anthropogenic emissions
and the estimation of biogenic and natural occurring
emissions was presented by Aleksandropoulou and Lazaridis
(2004). Temporal allocation of emissions was computed based
on the seasonal, day-to-day, and day—night variation of
emission factors (EMEP-MSC/W 2003; Spyridaki et al. 20006).

The emissions of gaseous and particulate matter pollu-
tants from forest fires were estimated using the emission
methodology presented above. The location of the forest
fires in the forest fire database is given in latitude—longitude
of the starting point of each fire. The spreading of the forest
fire was assumed to follow an ellipsoidal pattern with the
major axis along the wind direction and with the fire in one
of the foci of the ellipse (e.g., Anderson et al. 1982;
Andrews and Chase 1989; Arora and Boer 2005; Richards
1990). In this way, the burnt areas were transferred to the
grid used in the present study. Also, the forest fires were
separated to study each fire as many hourly events
depending on their duration.

Initial and boundary conditions for the gaseous species
were obtained from the NILU-CTM model (Flatay et al.
2000) and on particulate matter from the EMEP model
(ApSimon et al. 2001).

Results and discussion
Forest fire emissions

The historical trend in wildfires in Greece is presented in
Table 1. Data presented for the period 1960-1996 are
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Table 1 Forest fires in Greece (1960-2003)

Year Number of Burnt area Mean area burnt
wildfires (kmz) per fire event
(km?)
1960-1969 7,240 1,238 0.17
1970-1979 7,534 2,038 0.20
1980-1989 12,653 5,242 0.39
1990 1,091 338.8 0.31
1991 1,118 212.3 0.19
1992 1,815 420.0 0.23
1993 2,417 470.0 0.19
1994 2,074 540.0 0.26
1995 1,572 251.9 0.16
1996 1,757 229.0 0.13
1997 2,271 496.2 0.22
1998 605 583.8 0.97
1999 513 439 0.09
2000 1,469 991.7 0.68
2001 1,313 167.7 0.13
2002 572 343 0.06
2003 622 30.5 0.05
Period average 1,291 333 0.22

derived from Dimitrakopoulos (1994) and Xanthopoulos
(1997). The data for the period 1997-2003 are calculated
based on data provided by the Greek Ministry of Rural
Development and Foods. The mean area burnt per fire
event raised from 0.17 km? during the decade 19601969
to 0.20 km? (1970-1979) and 0.39 km® (1980-1989)
(Dimitrakopoulos 1994). During the period 1990-1999,
the mean area burnt per fire dropped to 0.28 km”. Changes
may be attributed to variable meteorological conditions and
differences in extensive dry conditions during summer. In

Table 2 Emissions from forest fires during July 2000 in Greece

Pollutant Emissions (t)
Carbon compounds CO, 2,201,836
CcO 157,789
CHy4 10,820
NMHCs 14,178
Total C mass 676,240
Nitrogen compounds NO, 5,410
NH; 1,217
N,O 270
Total N mass 6,762
Sulfur compounds SO, 1,082
Particulate matter TSP 12,773
PM;, 11,496
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addition, a downward trend in the total area burnt per year
has been noticed during the last decade. However, it is
depicted that, during the year 2000, the area burnt was the
largest of the past 40 years.

The total number of fires in Greece during the year 2000
was 1,469 and the total area burnt was 991.7 km?. Of the
total area burnt by forest fires, more than 0.5 km?* was burnt
by individual fires in 86% of the cases. Specifically, in July
2000, 269 wildfires were recorded in Greece with a total
area burnt of 626 km?. Forest fires emissions are considered
to be of anthropogenic nature because 94% of the forest
fires during the study period were man made as indicated in
the report of the Ministry of Rural Development and Foods,
General Directorate for Development and Protection of
Forests and Natural Environment in Greece. The mean
duration of each forest fire was found to be about 48 h
during July 2000. It is also important to notice that 28 forest
fires lasted for more than 1 week.

The long duration of the forest fires resulted in a large
area burnt per fire event. Fifty-three forest fires burnt more
than 1 km? each (data not shown). The onset and spreading
of a forest fire depends on the type of vegetation. The
vegetation types used in the present study were Mediterra-
nean forests, scrubland, and grassland. Using these catego-
ries and the methodology described above, the biomass
burnt during July 2000 was estimated to be about 1.5 Mt.

The emissions of gaseous and particulate matter pollu-
tants were estimated using the emission methodology

presented above. The total emissions of gaseous and
particulate matter pollutants under study during July 2000
are presented in Table 2. The anthropogenic emissions are
derived from EMEP-MSC/W, Inventory Review (2004)
(gaseous compounds), EMEP (2002), and EMEP-MSC/W
(2002). It is observed that pollutant emissions from forest
fires make up a considerable fraction of the total emissions
in Greece. Their contribution varies from 1% to 22% with
the greater values found for particulate matter (22%) and
carbon monoxide (17.3%) and the lower values for SO,
(0.3%) and N,O (0.9%). Emissions of HCs account for
the 15% of the total anthropogenic emissions, CH, and
NH; 3%, and NO, 1.5% of the national total during July
2000.

In July 2000, the more severe (as regards the total area
burnt) forest fire events occurred during the period 10-16.
The UAM-AERO mesoscale model was run for the forest
fire episodes during the period 12—16 July. During this
period, the emissions of particulate matter and several
gaseous pollutants from forest fires on the local scale (focus
on the burnt area only) were significantly greater than the
total anthropogenic emissions. The ratio between emission
rates from forest fires to those from other anthropogenic
activities ranged from 6x10> to 1.8x10° for OC and
between 2x10° and 6x10* for elemental carbon. High
ratios were also estimated for CO (between 5x 10 and 7 x
10%), SO, (between 1x10" and 4x10?%), NH; (between 1 x
10% and 8.5x107), and NO, (between 1x10° and 1.1x10%).

Fig. 1 Satellite picture of the
geographical extent of smoke
originating mainly from

forest fires at the northern
Peloponnesus (Greece) (NOAA-
14) on 13 July 2000 (14:42
UTC). Circles depict the areas
where forest fire events (single
or more than one) occurred
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Verification/validation of model results

The UAM-AERO model was applied to model summer
forest fire events between 12 and 16 July 2000. The
occurrence of large forest fires in the Greek mainland
during this period is documented from air quality and lidar
measurements and satellite images (Balis et al. 2003;
Eleftheriadis et al. 2005; Sciare et al. 2003; Smolik et al.
2003). In particular, satellite pictures (captured by the
NOAA Geostationary Operational Environmental Satellite
[GOES] sensor) provide evidence for long-range transport
of the forest fire emissions above Greece. The forest fire
plume originating at the northern Peloponnesus (west of
Athens) passing over the Greater Athens Area (GAA) and
extending to the central Aegean Sea and Turkey on 13 July
2000 (14:42 UTC) is shown in Fig. 1. The geographical
pattern of the fire plume was calculated with the UAM-
AERO model (e.g., in Fig. 9a,b, the concentrations of fine

particles and CO resulting from forest fires only are
depicted) and is in agreement with the satellite image.

The transport of the fire plume over GAA was evident in
gaseous compounds concentration measurements in Athens
and at the vertical profile of PM;, obtained by lidar
measurements during the period of simulation. In particular,
Fig. 2 shows the calculated surface layer concentration of
NO, and O3 in the GAA as a function of time during the
period 13—16 July 2000 for scenarios I and II together with
their measured concentration at urban and suburban
background stations in Athens. Urban background data
were collected at the “Nea Smirni” station (EEA’s Euro-
Airnet network station code 105) and suburban background
data at the “Lykovrisi” station (EEA’s EuroAirnet network
station code 102) from the airbase of EEA. Measurements
of ozone and NO, at surface stations were made on an
hourly basis throughout the period (Fig. 2a,b). The surface
measurements from Athens for NO, and O; compared with
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the calculations (Fig. 2a,b) show that the calculated
concentrations are lower than the observed NO, concen-
trations in the Athens Metropolitan Area and in qualitative
agreement with the measurements. For ozone, the calculat-
ed concentrations are much lower than the observed ones
while the diurnal variation is in agreement (Pearson R for
suburban and urban background stations is 0.5 and 0.6,
respectively; Fig. 2b). The elevated ozone concentrations
observed at the suburban background station in the Athens
Greater Area on 13 July is not observed in the calculations.
Also, in other pollutant events arising from biomass fire
emissions, it has turned out to be difficult to reproduce the
observed ozone concentrations in the smoke plume several
days downwind of the source (Stohl et al. 2007).

In addition, laser range-resolved (lidar) measurements
of the aerosol vertical profile were performed on 13 July
2000, over the GAA by a single backscattering system
(Papayannis and Chourdakis 2002) at 532 nm (Fig. 3a).
The vertical profile of the aerosol backscatter coefficient
Baer(z) (Weitkamp et al. 2005) is shown at 15:00-17:00 UT
from 0.5 to 4.5 km above sea level. The smoke layer has a
multistructural profile and is mainly visible around 15:00
UT between 2 and 3.5 km height. Later (between 16:00 and
17:00 UT), it was less pronounced and moved from the
source area to the Aegean Sea, as also captured by the
NOAA GOES sensor (Fig. 1; satellite data). Backtrajecto-
ries calculated using the HYSPLIT-4.6 code (Draxler and
Rolph 2003; Rolph 2003) for the air masses ending at 15:00

Fig. 3 a Acrosol vertical profile a 4500 =
(aerosol backscatter coefficient) 4=
obtained by a single elastic lidar 4000 o
system at 532 nm over Athens i
between 15:00 and 17:00 UT 13 12 §
July 2000. b Calculated PM, 3500 vt
vertical profile 16:00-19:00 UT {504
above the Athens metropolitan ’é“ anon 4 ¢
area resulted (scenario II, forest ~ oy
fire emissions only) T 5
® 2500 4 5
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UT over the GAA area on 13 July at 2,000 and 3,000 m, the
height where the lidar observed the smoke plume, are
shown in Fig. 4. These air masses passed over the forest
fires a few hours earlier.

The vertical profiles of PM;, calculated with the UAM-
AERO model between 16:00 and 19:00 UT for the Athens
metropolitan area are shown in Fig. 3b. There are two
maxima in the calculated profiles, at 1 km and another close
to 3.5 km. The calculated maximum concentration above
1.5 km is found at 18:00 UT, but the calculated profile did
not reproduce the observed maximum at 3 km seen in
Fig. 3a. The time of passage of the smoke plume across the
GAA was approximately the same in the observed profile
and the calculated one, however. The model did not
reproduce the observed vertical aerosol profile well around
the time of its maximum. The lifting of the forest fire PM
emissions to the lower free troposphere is underestimated in
the calculations, and the coarse vertical resolution in the
model introduces too rapid mixing.

Fig. 4 Backtrajectories

calculated using the HYSPLIT-
4.6 code for air masses ending at
15:00 UT 3 km above GAA 13

Contribution of forest fire emissions to air quality in Greece

The simulations were carried out using the UAM-AERO
model to quantify the contribution of the forest fire
emissions to the ambient concentration of aerosols and
gaseous pollutants. We concentrate mainly on the impact of
forest fire emissions on the air quality at the surface level
(first layer of the UAM-AERO model) in Greece.

The contribution of forest fires emissions to the ambient
concentrations of gaseous and aerosol pollutants is impor-
tant on the regional scale as also shown in other studies
(Junquera et al. 2005; Stohl et al. 2007). The contribution
of the forest fire emissions was calculated by comparison
with simulations of gaseous and aerosol pollution levels
over the GAA performed with the two different scenarios.
In particular, the calculated concentration of CO reached
values close to 450 ppb (maximum contribution ~30%;
Fig. 5a) based on forest fire emissions only (scenario IT) on
14-15 July and with the same emission assumptions NO,
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approached 10 ppb (maximum contribution ~38%; Fig. 2a).
The contribution to PM; from the forest fire emissions was
calculated to exceed 30 upg/m’ at times (maximum
contribution ~44%; Fig. 5b). The contribution to ozone
from the forest fire emissions is calculated to be quite small
(maximum contribution ~19%; Fig. 2b), although the
scenario II calculation in this case is not reliable since the
formation and concentration of ozone depends in a
nonlinear way on the precursor concentrations. However,
the measured data showed an increased level of O; which
corresponds to the elevated PM levels observed by lidar on
13 July.

In addition, the contribution of the forest fire emissions
was calculated by comparison with simulations of gaseous
and aerosol pollution levels in the eastern Mediterranean
without the forest fire emissions, as performed by Lazaridis
et al. (2005) and Spyridaki et al. (2006). In this case, the

average fine particulate matter concentration in the south-
eastern part of the modeled area were less than about
2 ug/m’ while it exceeded 20 pg/m’ during the forest fire
events (scenario II; Fig. 7).

Figures 6 and 7 show the spatial distribution of organic
mass (OM) in the particulate phase (where OM=1.4-OC;
Quinn et al. 2000) and PM, s, respectively, as derived from
model simulations including only the emissions from the
forest fire events on 14 July 2000 (scenario II). The surface
concentration fields of NO,, NH;, and CO for the same
scenario (II) are shown in Fig. 8. These pollutants are
representative of the forest fire emissions. The surface
concentrations at 1 AM. on 14 July 2000 are shown in
Figs. 6 and 7, while the fields in Fig. 8 are taken at 1 AM.
on 13 July 2000. The calculations illustrate the combined
effect of chemical transformation and dispersion of the
forest fire emissions. The contribution of forest fires to

@ Springer



152

Air Qual Atmos Health (2008) 1:143-158

OM (ug/m3) 14 July Hour: 1 Level; 1

Fig. 6 The concentration of
particulate organic matter in the
lowest model layer in micro-
grams per cubic meter at 1 AM.
on 14 July 2000 with only forest
fire emissions included
(scenario 1I)

the fraction of organic matter in PMj, (Fig. 6) exceeded
2 pg/m® more than 500 km from the forest fire sources,
while to the concentration of fine aerosols (PM, s5) (Fig. 7)
reached 20 ug/m3, 10 ppb to NO,, 0.5 ppb to NH3, and
100 ppb to CO concentrations (Fig. 8).

Figure 9 shows the surface concentration maps of fine
particles (PM, 5) and carbon monoxide that originated from
the forest fires as simulated by the UAM-AERO model
(scenario II, only forest fire emissions). The contribution of
forest fire emissions to the PM, 5 concentrations over the
burnt area reached values was close to 15 ug/m’, whereas
for CO concentrations, the maximum contribution inside
the plume (areas downwind of the fire sources) was above
100 ppb. The simulation results show the same geograph-
ical smoke pattern as the satellite picture giving a
qualitative agreement between model results and satellite
observations (Fig. 1).

The contribution of the forest fire emissions to the
ambient particulate matter and gaseous species concentra-
tions in Greece is calculated by comparing the results of the
runs of scenarios I and II. The contribution (percentage) of
forest fire emissions to the CO concentrations in the lowest
model layer on 18:00 pM. 13 July is shown in Fig. 10. The
contribution of forest fire emissions to the CO concentra-
tion in the lowest model layer (surface) is more than 50%
over the areas affected by the fire plumes (the maximum
contribution was approximately 80%) at this time, indicat-
ing that the forest fires make large contributions to ambient
CO. Figure 10 demonstrates the regional character of the
forest fire emission contribution to elevated CO levels over
a large portion of the Aegean Sea and parts of Turkey.

The percentage contribution of forest fires emissions
(scenario II) to the total concentration of particulate matter
(scenario I) in the lowest model layer on 13 July at 18:00 p.m.

fine PM (ug/m3) 14 July Hour:1 Level:1

Fig. 7 The concentration of fine
particulate matter (PM, s) in the
lowest model layer in micro-
grams per cubic meter at 1 AM.
on 14 July 2000 with only forest
fire emissions included
(scenario II)
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Fig. 8 The concentration in
parts per billion of a NO,, b
NH;, and ¢ CO at 1 AM. on 13
July 2000 in scenario II (forest
fire emissions only)

(15:00 UTC) is shown in Fig. 11 . The average forest fire ~ smoke plume at this time. In addition, for fine particles, the
emission contribution to PM;, is around 50% (with  forest fire emission contribution averages 70% (maximum
maximum values reaching 75%) over areas tens of kilo-  ~87%) in line with the emission profiles of particles from
meters away from the fire source which are affected by the  forest fires. The contribution from forest fire emissions to the
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Fig. 9 Calculated
concentrations of a PM, 5 and b
CO on 13 July 2000 (15:00
UTC) in the lowest model layer
for scenario II (forest fire
emissions only)

Fig. 10 Contribution
(percentage) of forest fires to the
surface CO concentration on

13 July at 18:00 pm.
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Fig. 11 Calculated contribution

PM10 (percentage ( % }) 13 July Hour: 18 Level: 1

(percentage) of forest fire
emissions to the concentrations
in the surface layer on 13 July at
18:00 pMm. for PM;q

ambient concentration of coarse particles is around to 10%
(maximum ~31%) in the areas receiving the smoke plumes
on 13 July at 18:00 pm.

Finally, the change in the particulate matter size
distribution due to the forest fire events on 13 July is
shown in Fig. 12. The distributions presented in Fig. 12
refer to the results from the model simulation including all
anthropogenic and natural emissions but not including
forest fires (Spyridaki et al. 2006) and to the simulation
including all emissions in the model domain (scenario I-
total). The distributions refer to the average PM;, levels
calculated for the lowest model layer in the Athens
metropolitan area (37°58" N, 23°43" E) during the period
of lidar measurements (Fig. 4) where the passage of the
smoke over the Athens area was identified. The forest fires
contributed significantly to the ambient PM;, levels and
changed the shape of the size distribution. The forest fire

Fig. 12 Comparison of average

emissions gave rise to a considerable increase in the fine
fraction of the size distribution with an increase of the
ultrafine to coarse ratio from about 0.40 to 0.80 as shown in
Fig. 12.

Conclusions

A database of the forest fires in Greece, for the years 1997—
2003, has been created. A downward trend in the total area
burnt per year has been noticed during the last decade. The
maximum area burnt occurred in 2000. Based on the above
database, a methodology for the estimation of gaseous and
particulate pollutants was developed. The speciation and
quantification of the emissions depends on the type of
vegetation. The air pollution load at a certain location is
related to the time and space evolution of the fire event and

Size distribution (July 13, 2000, 18:00) —not including forest fires

. el - . —Total
PM, size distributions in the 30 1
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the meteorological conditions, factors which influence the
amount of pollutants emitted and the degree of dispersion
of the plume.

Forest fire simulations were performed using the UAM-
AERO air quality model in conjunction with the forest fire
emission inventories developed in this study. The simula-
tion period coincided with the period of maximum burnt
area (13—16 July 2000).

The simulations performed have shown that the impact
of the forest fire emissions on air quality during the period
13-16 July 2000 exceed the impact of anthropogenic
pollution close to the forest fire sources (approximately
500 km downwind of the forest fire source). Forest fire
emissions have significant buoyancy due to the heat that
develops while burning which together with the regional
winds are spreading the emissions and their products over a
large area that exceeds the region of Greece. There is a
strong regional transport aspect of forest fire events. Forest
fires have been found to increase the ambient level of CO,
NO,, NH3, and particulate matter. An average contribution
to the PM( concentration of 50% has been calculated over
the areas receiving the smoke plumes. Forest fires cause an
increase mainly in the ambient concentration of fine
particles over the areas receiving the smoke plumes
(average contribution of 70%), whereas for coarse particles,
the corresponding number is small (contribution of 10%).

The smoke aerosol plume was forecasted by our model
and observed over the GAA by a single elastic lidar system
at 532 nm. Evaluation of the simulations’ results via
comparison with experimental data in future studies could
help toward an optimization of the emission factors used.
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