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Abstract
Odometry is crucial for robot navigation, particularly in situations where global positioning methods like global positioning
system are unavailable. The main goal of odometry is to predict the robot’s motion and accurately determine its current
location. Various sensors, such as wheel encoder, inertial measurement unit (IMU), camera, radar, and Light Detection and
Ranging (LiDAR), are used for odometry in robotics. LiDAR, in particular, has gained attention for its ability to provide rich
three-dimensional (3D) data and immunity to light variations. This survey aims to examine advancements in LiDAR odometry
thoroughly. We start by exploring LiDAR technology and then scrutinize LiDAR odometry works, categorizing them based
on their sensor integration approaches. These approaches include methods relying solely on LiDAR, those combining LiDAR
with IMU, strategies involving multiple LiDARs, and methods fusing LiDAR with other sensor modalities. In conclusion,
we address existing challenges and outline potential future directions in LiDAR odometry. Additionally, we analyze public
datasets and evaluation methods for LiDAR odometry. To our knowledge, this survey is the first comprehensive exploration
of LiDAR odometry.
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1 Introduction

The history of odometry in robotics has seen a significant
evolution, marked by key milestones and influential liter-
ature [63, 96, 159]. In the early stages, odometry heavily
relied on wheel encoders and dead reckoning methods [28].
However, the accuracy of wheel odometry was constrained
by sensor errors stemming from wheel slippage and algo-
rithmic inaccuracies. During this phase, researchers explored
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alternative approaches, shifting their focus to other sensors,
such as range sensors and visual sensors. Therewas a concur-
rent surge in the field of computer vision, witnessing rapid
developments in visual odometry studies [38, 111, 121].
Simultaneously, studies emerged concentrating on obtain-
ing odometry through the use of range sensors [92, 93],
along with the advancement of scan registration algorithms
such as Iterative Closest Point (ICP) [9]. These two major
research streams—range sensor-based odometry and visual
odometry—represent a critical juncture in the historical evo-
lution of robotic odometry.

Further into this period, range sensors advanced and 3D
LiDAR emerged as a transformative technology capable of
measuring the surrounding space in 3D, surpassing tradi-
tional 2Dmeasurements. Despite substantial progress, visual
odometry faces limitations, particularly in low-light condi-
tions, restricting its applicability, such as during nighttime
operations. Recognizing the importance of precise location
data for autonomous robots in decision-making [58, 60, 97,
118, 119, 147], researchers turned their attention to LiDAR,
which scans the surroundings in 3D while remaining unaf-
fected by lighting conditions. This led to a rapid evolution in
range sensor-based odometry using LiDAR [125, 126, 162].
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Fig. 1 Structure of LiDAR odometry survey. Section 2 explores the
intricacies of LiDAR technology. Sections 3, 4, 5 and 6 investigate the
LiDAR odometry under different sensor modalities. Section 7 intro-

duces the ongoing challenges in LiDAR odometry. Finally, Sect. 8
presents the public datasets, evaluation metrics, and benchmark results

This evolution prompts a focused review of odometry works
leveraging LiDAR.

In previous research, Mohamed et al. [96] extensively
reviewed approaches of odometry, placing a particular
emphasis on visual-based methods. Conversely, Jeon et al.
[59] presented a survey specifically tailored for unmanned
aerial vehicles (UAV), focusing on the performance of visual
odometry algorithms when implemented on NVIDIA Jet-
son platforms. Their assessment considered factors such
as odometry accuracy and resource utilization (CPU and
memory usage) across different Jetson boards and trajec-
tory scenarios. Wang and Menenti [143] summarized the
major applications of odometry, pointing out an expected
shift toward addressing challenges in the field. Meanwhile,
Li and Ibanez-Guzman [82] provided a detailed review of
automotive LiDAR technologies and associated perception
algorithms, exploring various components, advantages, chal-
lenges, and emerging trends inLiDARperception systems for
autonomous vehicles. Focusing on LiDAR-only odometry,
Jonnavithula et al. [63] categorized existing works into point
correspondence, distribution correspondence, and network
correspondence-based methodologies. They also conducted
performance evaluations for LiDAR-only odometry litera-
ture. Similarly, Zou et al. [180] performed a comprehensive
analysis and comparison of LiDAR simultaneous localiza-
tion and mapping (SLAM) for indoor navigation, detailing
strengths and weaknesses across real-world environments.

Notably, our review addresses a gap observed in exist-
ing surveys. While previous works have delved into specific
aspects of LiDAR odometry, none have completely covered
all methodologies. Therefore, our review aims to provide
a thorough examination, encompassing not only LiDAR-
only odometry but also approaches that successfully integrate
other sensors for accurate LiDAR odometry.

The structure of this survey, illustrated in Fig. 1, unfolds
as follows: Sect. 2 initiates an exploration of LiDAR sen-
sors. Subsequently, we categorize LiDARodometry based on
sensor modality and delve into each category within respec-
tive sections. Section 3 is dedicated to methods that solely
rely on LiDAR, while Sect. 4 outlines LiDAR odometry

works that integrate IMU sensor with LiDAR. Section 5 pro-
vides insights into odometry employing multiple LiDARs.
In Sect. 6, we examine the fusion of LiDAR sensor with
other sensors, such as a camera. Following this, we delve into
the unresolved challenges within LiDAR odometry. Finally,
our survey concludes by discussing available public datasets
and evaluation metrics, supplemented by the presentation of
benchmark results. The key contributions of this paper are as
follows:

• Our paper offers a comprehensive review of LiDAR
odometry following the progression of the technology.
We categorize the review into the following sections:
LiDAR preliminary, LiDAR-only odometry, LiDAR-
inertial odometry, multiple LiDARs, and fusion with
other sensors.

• Our paper explores unresolved challenges in LiDAR
odometry, offering insights and directions for future
research. By addressing these challenges, we aim to
catalyze advancements that enhance the accuracy and
robustness of LiDAR odometry.

• Our paper scrutinizes existing public datasets, high-
lighting their distinctive characteristics. Furthermore, we
provide an overview of the evaluation metrics utilized in
relevant studies and present benchmark results.

2 LiDAR preliminary

To understand the progress and challenges in LiDAR odom-
etry, it is essential first to grasp the basics of LiDAR sensors.
This section investigates the fundamental principles and dif-
ferent categories of LiDAR sensors.

2.1 Light detection and ranging

LiDAR, an acronym for Light Detection And Ranging,
is a powerful remote sensing technology employed for
measuring distances and constructing highly detailed 3D rep-
resentations of objects and environments [67, 117, 146]. The
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sensing process commences with a LiDAR system emitting
laser pulses toward a designated area. When these pulses
encounter obstacles, a portion of the light reflects back to
the LiDAR sensor. Measuring the time each laser pulse takes
to return and leveraging the constant speed of light, LiDAR
calculates the distance to the target.

Applied systematically across large areas and synthe-
sized into distance measurements, LiDAR produces a point
cloud—a collection of numerous points in 3D space. These
points effectively map the 3D shape and features of the area
or object. In essence, LiDAR facilitates the creation of highly
detailed and accurate 3D representations of the surrounding
world, proving invaluable in various fields such as geospa-
tial mapping [18, 37], autonomous navigation [63, 180], and
environmental monitoring [145, 169].

2.2 LiDAR categorization

LiDAR can be categorized based on their distinct imag-
ing architectures and measurement principles, as extensively
discussed in previous survey [117]. Imaging mechanisms
of LiDAR can be classified into three main categories:
mechanical LiDARs, scanning solid-state LiDARs, and flash
LiDARs with non-scanning architectures. Regarding mea-
surement principles, the primary types comprise pulsed Time
of Flight (ToF), Amplitude Modulated Continuous Wave
(AMCW), and Frequency Modulated Continuous Wave
(FMCW)LiDARs. Additionally, LiDARs can be further sub-
classified based on attributes such as detection range, field of
view (FOV), and wavelength, as discussed in other literature
[8, 73]. However, in this paper, we concentrate on mechani-
cal LiDARs, scanning solid-state LiDARs, ToF LiDARs, and
FMCWLiDARs, as these variants of LiDAR hold significant
relevance in the context of LiDAR odometry.

2.2.1 Imagingmechanisms

Mechanical LiDARs, one of the most established configu-
rations, operate using a rotating assembly to direct a laser
beam across different angles. While mechanical LiDAR has
proven reliable in measurement quality, it is subject to lim-
itations associated with its mechanical components. These
include susceptibility to degradation over time, necessitat-
ing regular maintenance to ensure optimal functionality. The
inherent moving parts can also result in slower data acqui-
sition speeds and increased vulnerability to vibrations and
external shocks.

In contrast, scanning solid-state LiDAR systems eliminate
the need for mechanical rotation with diverse mechanisms.
Some apply Mirror Microelectromechanical (MEMS) [52]
technology, which utilizes a stationary laser directed at the
small electromechanical mirrors, adjusting the tilt angle with
input voltage difference as a substitute for rotational compo-

nents. Another solution is adopting an optical phased array
(OPA) [48] system. OPA establishes phase modulators to
modulate the wave shapes similarly to a phased array radar.

Particularly, scanning solid-state LiDAR with Risley
prisms [84] represents a notable innovation in LiDAR com-
munity. Risley prisms allow rapid and controlled beam
steering without physical movement, resulting in a more
compact and robust system suitable for demanding appli-
cations. Despite the disadvantages of limited FOV, this
mitigates potential issues related to component degrada-
tion and extends the LiDAR system’s operational lifespan.
Their intricate scanning patterns also ensure exhaustive envi-
ronmental mapping, a critical aspect for achieving reliable
LiDAR odometry. Figure2 visually represents distinguish-
ing scanning patterns of LiDARs.

2.2.2 Measurement principles

ToF LiDAR operates by emitting laser pulses and measur-
ing the time it takes for these pulses to return after bouncing
off a target. The distance to the target is calculated using
the speed of light and the time the laser pulse takes. This
straightforward method provides high-resolution distance
measurements, making it a popular choice. However, one
limitation of ToF LiDAR is its susceptibility to external light
sources, which can reduce the signal-to-noise ratio (SNR)
[72].

On the other hand, FMCW LiDAR executes by continu-
ously projecting lightwith a varying frequency and analyzing
the frequency shift of the reflected light. This frequency shift
is directly proportional to the target’s distance, enabling pre-
cise distance measurements. FMCW LiDAR offers several
notable advantages, including inherent resilience to interfer-
ence due to its continuous wave signal, which helps mitigate
issues caused by multi-path reflections. Moreover, FMCW
LiDAR provides the relative velocity of the objects by ana-
lyzing the frequency shift, which proves particularly valuable
in dynamic environments. However, it is important to note
that FMCW LiDAR systems tend to be more intricate and
potentially pricier compared to ToF LiDARs.

LiDAR technologies, each possessing unique strengths,
play an integral role in LiDAR odometry. Tailored to diverse
operational needs, they can provide a range of options for
capturing accurate depth data across different applications.

3 LiDAR-only odometry

LiDAR-only odometry determines a robot’s position by
analyzing consecutive LiDAR scans. This involves the appli-
cation of scanmatching, awell-known technique in computer
vision, pattern recognition, and robotics. LiDAR-only odom-
etry can be classified into three types based on how scan
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Fig. 2 Diverse LiDAR Scanning Patterns. The figure depicts repeti-
tive and non-repetitive patterns among the LiDAR scanning patterns.
In (a), Velodyne VLP-16, a mechanical LiDAR, shows a vertical
channel-based repetitive pattern. In (b), Livox Mid-70, a scanning
solid-state LiDAR with Risley prisms, displays a unique lotus-shaped,
non-repetitive pattern

matching is performed: (1) directmatching, (2) feature-based
matching, and (3) deep learning-basedmatching.A summary
of the LiDAR-only odometry literature is listed in Table 1.

3.1 Direct matching

The direct matching method directly calculates the transfor-
mation between two consecutive LiDAR scans, representing
the most straightforward approach in LiDAR-only odome-
try. The ICP algorithm [9] is a commonly used technique
for estimating this transformation iteratively by minimiz-
ing an error metric, typically the sum of squared distances
between the matched point pairs. Robot odometry is derived
by calculating the transformation between each pair of con-
secutive scans using the ICP algorithm. However, the ICP
algorithm has drawbacks, including susceptibility to local
minima, which necessitates a reliable initial guess. The algo-
rithm is also sensitive to noise, such as dynamic objects.
Additionally, its iterative nature can result in computational
expense, sometimes causing prohibitively slow computation
speed. Consequently, substantial efforts have been dedi-
cated to enhancing the performance of the ICP algorithm
for improved odometry.

TrimmedICP (TrICP) [26] enhances the conventional ICP
algorithm by employing the least trimmed squares method
instead of the standard least squares method. This mod-
ification improves computation speed and robustness by
minimizing the sum of squared residuals for a subset of
points with the smallest squared residuals. Point-to-plane
ICP, introduced byChen andMedioni [25], refines the perfor-
mance of the traditional point-to-point ICP by incorporating
information about prevalent planes in real-world situations.
Generalized-ICP [122] integrates point-to-point ICP and
point-to-plane ICP within a probabilistic framework, lever-
aging the covariance of points during the minimization step.
This approachmaintains the speed and simplicity of the stan-

dard ICP while demonstrating superior robustness against
noise and outliers. NICP [123] extends Generalized-ICP by
evaluating distances in 6D space, including 3D point coordi-
nates and corresponding surface normals in themeasurement
vector. LiTAMIN [156] and LiTAMIN2 [157] support faster
registration throughpoint reduction andmodify the cost func-
tion of traditional ICP for robust registration.

Paired with the ICP algorithm, the Normal Distribution
Transform (NDT) [10] algorithm provides an alternative that
eliminates the challenging task of establishing point corre-
spondences. The NDT algorithm aligns two point clouds
by creating a normal distribution associated with the point
cloud. It determines a transformation that aligns the point
clouds based on the likelihood within the spatial probability
function. Hong and Lee [53] enhance the conventional NDT
algorithm by introducing a probabilistic NDT representation.
They assign probabilities to point samples, addressing the
degeneration effect by incorporating computed covariance.
Their studydemonstrates that probabilisticNDToutperforms
traditional NDT in odometry estimation.

Despite advancements in scan-to-scan matching algo-
rithms, their accuracy is inherently limited. Consequently,
recent LiDAR odometry works predominantly estimate the
robot’s pose by utilizing both scan-to-scan and scan-to-map
matching. IMLS-SLAM [32] estimates odometry through
Implicit Moving Least Square (IMLS) representation-based
scan-to-map matching. DLO [20] creates a submap for scan-
to-map matching by combining point clouds from a selected
subset of keyframes, including those forming the convex hull.

Conventional LiDAR odometry typically computes dis-
crete odometry each time a new LiDAR point cloud is
received. In contrast, certainmethods aim tomodel a continu-
ous trajectory, emulating the continuous motion of an actual
robot. CT-ICP [31] accomplishes this by interpolating the
positions of individual pointswithin theLiDARscanbetween
the starting and ending poses. Subsequently, a continuous-
time odometry estimate is obtained by registering each point
through scan-to-map matching.

3.2 Feature-basedmatching

Feature-based approaches in LiDAR-only odometry extract
feature points in the LiDAR point cloud and leverage them
to estimate the transformation. Utilizing only feature points
instead of the entire point cloud can improve computational
speed and overall performance by eliminating outliers such
as noise. Themain challengewith feature-basedmethods lies
in the selection of ‘good’ feature points that enhance point
cloud registration performance.

LOAM[162, 163] identifies points on sharp edges and pla-
nar surface patches by assessing local surface smoothness
and matching them to estimate the robot’s motion. Subse-
quent developments within the LOAM framework aim to
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Table 1 The overarching summary of LiDAR-only odometry

Method Year Contributions

Direct ICP [9] 1992 Iteratively calculate closest point with point-to-point distance

Chen and Medioni [25] 1992 Point-to-plane ICP

TrICP [26] 2002 Improves ICP with trimmed squared method

NDT [10] 2003 Leverages normal distribution for registration

Generalized-ICP [122] 2009 Integrates point-to-point ICP and point-to-plane ICP

NICP [123] 2015 Extends Generalized-ICP by incorporating surface normals

Hong and Lee [53] 2017 Introduce probabilistic NDT representation

IMLS-SLAM [32] 2018 IMLS representation for scan-to-map matching

LiTAMIN [156], LiTAMIN2 [157] 2021 Faster registration and modified cost function using KL divergence

DLO [20] 2022 Scan-to-map matching with selected keyframes using convex hull

CT-ICP [31] 2022 Interpolates the positions for continuous trajectory

KISS-ICP [137] 2023 Point-to-point ICP with adaptive thresholding

Feature LOAM [162, 163] 2014 Extract edge and planar feature points for registration

LeGO-LOAM [125] 2018 Leverages ground segmentation within LOAM framework

SuMa [7] 2018 Utilizes surface normals from surfel-based map

SuMa++ [24] 2019 Performs semantic ICP with semantic labels from RangeNet++ [95]

F-LOAM [139] 2021 Emphasizes horizontal features to minimize false detections

Zhou et al. [176], π -LSAM [177] 2021 Introduces plane adjustment in indoor situations

MULLS [104] 2021 Scan-to-map multi-metric linear least square ICP

NDT-LOAM [22] 2021 Combines weighted NDT and feature-based pose refinement

E-LOAM [45] 2022 Performs D2D-NDT with geometric and intensity features

R-LOAM [101], RO-LOAM [102] 2022 Extracts 3D triangular mesh features from reference object

Wang et al. [141] 2022 Coarse-to-fine odometry with NDT and PLICP

VoxelMap [160] 2022 Leverages probabilistic plane representation and adaptive voxel construction

Deep LO-Net [80] 2019 Scan-to-scan LiDAR odometry network

LodoNet [173] 2020 Select MKPs for odometry estimation

Cho et al. [27] 2020 Unsupervised learning with VertexNet and PoseNet

Direct, Feature, and Deep represent Direct, Feature-based, and Deep Learning-based matching each

improve performance by refining feature point selection.
LeGO-LOAM [125] utilizes point cloud segmentation to
classify points as either ground points or segmented points,
ensuring accurate feature extraction. It leverages planar fea-
tures from ground points and edge features from segmented
points to incrementally determine a 6 degree-of-freedom
(DOF) transformation. R-LOAM [101] and RO-LOAM
[102] optimize the robot’s trajectory by incorporating mesh
features derived from the 3D triangular mesh of a reference
object with a known global coordinate location.

Plane features, prevalent in everyday environments, have
garnered significant attention as they can be easily extracted
from the LiDAR point cloud. SuMa [7] employs surface nor-
mals for odometry by comparing vertex and normal maps
from the current scan with those rendered from a surfel-
based map. SuMa++ [24] integrates semantic information
from RangeNet++ [95] into the surfel-based map [7] and
applies Semantic ICP, adding semantic constraints to the
objective function of the ICP algorithm. F-LOAM [139]

emphasizes extracting distinctive horizontal features from
the point cloud of mechanical LiDAR, where data are sparse
vertically and denser horizontally. This approach minimizes
the risk of false feature detection in the horizontal plane. Zhou
et al. [176] and π -LSAM [177] jointly optimize keyframe
poses and plane parameters, referred to as plane adjustment
(PA), in indoor environments.MULLS [104] extracts diverse
feature points (ground, facade, pillar, beam) and employs
scan-to-map multi-metric linear least square ICP (MULLS-
ICP). VoxelMap [160] employs adaptive-size, coarse-to-fine
voxel construction for robust handling of varying environ-
mental structures and sparse, irregular LiDAR point clouds.
It addresses uncertainties from both LiDAR measurement
noise and pose estimation error through probabilistic plane
representation.

Instead of the variants of the ICP algorithm, the NDT
algorithm can be employed, even when using features. NDT-
LOAM [22] initially obtains approximate odometry using
the weighted NDT (wNDT) algorithm. This initial estimate
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is then refined by incorporating corner and surface features.
E-LOAM [45] extracts geometric and intensity features,
enhances these featureswith local structural information, and
estimates odometry with D2D-NDT matching. Wang et al.
[141] propose a coarse-to-fine registration metric with NDT
and PLICP (point-to-line ICP) [17]. The roughly estimated
posewithNDT serves as the initial guess for PLICP, resulting
in a more accurate pose estimation.

3.3 Deep learning-basedmatching

While direct and feature-basedmethods exhibit effective per-
formance in various environments, they often encounter dif-
ficulties with correspondence matching. It is crucial to main-
tain feature consistency and find the relationship between
each scan to address this challenge. Some researchers
investigate deep learning approaches, which hold promise
in effectively addressing these issues. LO-Net [80] intro-
duces a scan-to-scan LiDAR odometry network that predicts
normals, identifies dynamic regions, and incorporates a spa-
tiotemporal geometrical consistency constraint for improved
interactions between sequential scans. LodoNet [173] uti-
lizes a process of back-projecting matched keypoint pairs
(MKPs) from LiDAR range images into a 3D point cloud.
This involves employing anMKPs selectionmodule inspired
by PointNet [108], which aids in identifying optimalmatches
for estimating rotation and translation. Cho et al. [27] exploit
unsupervised learning in LiDAR odometry, utilizing Ver-
texNet to quantify point uncertainty and PoseNet to predict
relative pose between frames. The network incorporates geo-
metrical information through estimating normal vectors and
uses an uncertainty-weighted ICP loss. During supervised
training, they address trivial solutions via FOV loss.

4 LiDAR-inertial odometry

LiDAR-only odometry is computationally efficient without
needing additional sensors. However, it cannot fully address
the challenges detailed in Sect. 7. Therefore, recent LiDAR
odometry commonly integrates LiDARwith IMU. IMU pro-
vides angular velocity and linear accelerationmeasurements,
making it suitable for estimating coarse robot motion and
enhancing pose estimation accuracy when used with LiDAR.
LiDAR-inertial odometry can be branched into two cate-
gories based on how LiDAR and IMU data are fused: (1)
loosely coupled and (2) tightly coupled.

The loosely coupled method independently estimates the
state of each sensor, combines these states with weights, and
then determines the robot’s state. This approach offers high
flexibility, as it estimates the state of each sensor individually.
It facilitates easy adaptation to changes in the sensor system
without extensive modifications to the existing framework

as long as a suitable odometry module is created for the new
sensor modality. Furthermore, it permits assigning weights
to specific sensors, ensuring robustness in case one sensor
performs sub-optimally, as the odometry can still utilize data
from other sensors.

On the other hand, the tightly coupled method utilizes
measurements from all sensors concurrently to estimate the
robot’s state. This results in potentially more accurate odom-
etry, as it incorporates a greater number of constraints during
the odometry estimation process compared to the loosely
coupledmethod.However, this approach comeswith a higher
computational load, as all observations must be processed
together. Additionally, it may bemore susceptible to a loss of
robustness if one sensor delivers poor-quality observations.
A summary of LiDAR-inertial odometry literature is pro-
vided in Table 2. In the following subsections, the specifics
of these approaches are introduced.

4.1 Loosely coupled approaches

From the existing LiDAR-onlymethods, advancements were
made with the development of LOAM [162, 163] and
LeGO-LOAM [125] by incorporating IMU sensor to cor-
rect distortions in LiDAR scans and provide initial motion
estimates. Building on these improvements, Zhou et al. [175]
estimate the coarse pose of the robot using INS and encoder
data, refining it with LiDAR odometry via the NDT algo-
rithm. Tang et al. [134] use the extended Kalman filter (EKF)
to fuse independent position results from LiDAR and IMU
sensors. Similarly, Zhen et al. [172] employ the error-state
Kalman filter (ESKF), merging the prior motion model from
IMU with LiDAR-derived partial posterior information for
improved robustness and accuracy. Additionally, Hening et
al. [50] utilize an adaptive EKF in their estimations, incor-
porating residuals from both INS with GPS and INS with
LiDAR, facilitating further result refinement. On another
front, Yang et al. [154] opt for pose graph optimization, com-
bining INS and LiDAR scan matching-based estimates for
accurate and reliable state estimation. While loosely coupled
approaches improve accuracy over LiDAR-onlymethods and
offer modular flexibility, they do not fully harness the syn-
ergy between sensors. This has led to increased research into
tightly coupledmethods,which seek tomaximize sensor inte-
gration for enhanced performance.

4.2 Tightly coupled approaches

Shifting the focus to tightly coupled methods, this approach
offers a distinct perspective on sensor fusion. Contrasting
with the loosely coupled techniques, tightly coupledmethods
process data from multiple sensors in a unified framework.
This integrated processing exploits the interdependencies
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Table 2 The overarching summary of LiDAR-inertial odometry

Method Year Feature Continuous Contributions

L LOAM [162, 163] 2014 Yes No Utilizes IMU for initial motion estimation and undistortion

Tang et al. [134] 2015 Yes No Combines each odometry estimation from LiDAR and IMU

Zhou et al. [175] 2017 Yes No Coarse pose estimation with INS/encoder and correction through NDT

Zhen et al. [172] 2017 Yes No Merges prior motion model from IMU with LiDAR data

Hening et al. [50] 2017 Yes No Utilizes adaptive EKF with INS and LiDAR

Lego-LOAM [125] 2018 Yes No Utilize IMU for initial motion estimation and undistortion

Yang et al. [154] 2018 Yes No Applies graph optimization with INS and LiDAR

T Zebedee [12] 2012 Yes No Optimizes surface correspondence error and IMU measurement deviations

LIPS [43] 2018 Yes Yes Utilizes IMU preintegration factor and LiDAR plane factor

IN2LAMA [76] 2019 Yes No Formulates batch optimization with LiDAR and IMU bias factor

Ye et al. [155] 2019 Yes No Joint-optimization of LiDAR and preintegrated IMU with rotational constraint

LIO-SAM [126] 2020 Yes No Pose graph optimization with LiDAR and IMU preintegration factor

IN2LAAMA [77] 2020 Yes No Adds UPM-based LiDAR de-skewing to IN2LAMA

LINS [110] 2020 Yes No iESKF for faster odometry estimation

Ding et al. [33] 2020 No No Utilizes Bayesian network considering high dynamic scenarios

KFS-LIO [81] 2021 Yes No Graph optimization scheme with effective feature selection

Li et al. [79] 2021 Yes No Hierarchical pose optimization with solid-state LiDAR

CLINS [94] 2021 Yes Yes Employs continuous-time framework through cubic B-spline

LoLa-SLAM [66] 2021 No No Achieves high-frequency odometry with LiDAR scan slicing

Fast-LIO [151] 2021 Yes No Introduces novel Kalman gain for Kalman filter

LION [133] 2021 Yes No Incorporates observability metric for odometry evaluation

LIO-Vehicle [150] 2021 Yes No Proposes motion constraints for ground vehicles

Chen et al. [23] 2021 Yes No Plane-driven submap matching with learning-based loop closure

Liu [88] 2022 Yes No Exploits particle swarm filter with learning-based loop closure

Liu and Ou [89] 2022 Yes No Proposes FG-LC-Net for learning-based loop closure

Zeng et al. [161] 2022 Yes No Extracts feature based on single line depth variation

Koide et al. [71] 2022 Yes No Leverages Generalized-ICP-based cost and IMU preintegration factor

PGO-LIOM [128] 2022 Yes Yes Gradient-free optimization with Monte-Carlo sampling

Wildcat [113] 2022 Yes Yes Sliding window-based continuous-time odometry framework

Fast-LIO2 [152] 2022 No No Improves Fast-LIO with direct fashion and ikd-Tree

Faster-LIO [4] 2022 No No Integrates iVox with FAST-LIO2

RF-LIO [109] 2022 No No Removes dynamic points with scan matching and IMU preintegration

Hu et al. [57] 2022 No No Leverages segmentation-based moving object detection

Li et al. [78] 2022 Yes No Introduces intensity edge feature within geometric planar feature

Point-LIO [47] 2023 No No Employs point-wise odometry estimation framework

Setterfield et al. [124] 2023 Yes No Directly includes LiDAR feature correspondence factor

RI-LIO [167] 2023 No No Introduces photometric residuals from reflectivity image

Shi et al. [129] 2023 No No Utilizes invariant EKF with invariant observer

FR-LIO [171] 2023 No No Adaptively divides LiDAR scan into multiple sub-frames

DLIO [21] 2023 No Yes Leverages hierarchical geometrical observer for state estimation

Chen et al. [19] 2023 Yes No SE2 constrained pose estimation

LIMOT [178] 2023 Yes No Multi-object tracking for factor graph-based dynamic objects filtering

Kim et al. [68] 2023 Yes No Proposes adaptive keyframing scheme for extreme environments

L, and T represent loosely coupled and tightly coupled each
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among different sensor modalities, aiming to enhance both
the accuracy and robustness of the state estimation process.

This approach begins with Zebedee [12], a pioneering
effort in 3D LiDAR-inertial odometry. Zebedee optimizes
surface correspondence error and IMU measurement devi-
ations for odometry estimation. Initially, integrating IMU
measurements directly into the factor graph posed computa-
tional challenges due to the high-frequency output of 6Dpose
parameters. The advent of the IMU preintegration method
[40] addressed this issue by condensing hundreds of IMU
measurements between keyframes into a single IMU prein-
tegration factor. This facilitates the inclusion of each sensor
measurement in the factor graph, accelerating the develop-
ment of graph-based LiDAR odometry methods.

Building upon these advancements, further innovations
emerged in the field. LIPS [43] constructs a factor graph
with continuous IMU preintegration factors and 3D plane
factors from LiDARmeasurements, solving the graph-based
optimization problem to obtain robot odometry. IN2LAMA
[76] utilizes upsampled preintegratedmeasurements (UPMs)
[75] from IMU for de-skewing LiDAR scans, formulating
a batch on-manifold optimization with LiDAR factor, IMU
bias factor, and inter-sensor time-shift factor. Its next version,
IN2LAAMA [77], introduces the IMU preintegration factor,
similar to their previous work, IN2LAMA, but stands out by
using UPMs to precisely de-skew all LiDAR measurements.
While this advanced de-skewing process enhances accuracy,
it may impact the real-time operation. In LIO-SAM [126],
motion estimated through IMU preintegration serves a dual
purpose: de-skewing LiDAR scans and introducing a factor
into the factor graph. In addition, Ye et al. [155] leverage
LiDAR scans and preintegrated IMUmeasurements for joint
optimization with rotational-constrained refinement.

Further advancements in tightly coupled methods have
been made, focusing on feature selection and global opti-
mization. KFS-LIO [81] introduces a metric for selecting
the most effective subset of LiDAR features, streamlining
existing graph-based methods. Li et al. [79] exploit hierar-
chical pose graphoptimizationwith a novel feature extraction
method of scanning solid-state LiDAR, which has an irreg-
ular scanning pattern and a metric weighting function for
quantifying each LiDAR feature’s residual. Koide et al.
[71] leverage GPU-accelerated voxelized Generalized-ICP
matching cost factor and IMU preintegration factor. They
employ a keyframe-based fixed-lag smoothing technique to
estimate low-drift trajectories efficiently and create a factor
graph that minimizes global registration errors throughout
the map. Additionally, Setterfield et al. [124] directly include
feature correspondences from LiDAR measurement into a
factor graph.

Unlike prior discrete-time methods, CLINS [94] employs
a continuous-time framework utilizing cubic B-splines,
allowing trajectory estimation at any given time by opti-

mizing control points and knots. CLINS excels in handling
asynchronous data from LiDAR and IMU sensors and man-
aging high dynamic scenarios with small knot distances.
This makes it adept at handling point clouds with potential
distortions due to different acquisition times. PGO-LIOM
[128] introduces a gradient-free optimization algorithm and
a fully parallel Monte Carlo sampling approach specifically
designed to address challenges posed by nonlinear and non-
continuous problems that are difficult to handle with low-
power onboard computers. They also integrate acceptance-
rejection sampling [39] into feature matching cost, allowing
the system to account for correct and incorrect featurematch-
ing concurrently. Wildcat [113] integrates asynchronous
LiDAR and IMU measurements using continuous-time tra-
jectory representations in a sliding-window fashion. DLIO
[21] leverages the hierarchical geometrical observer instead
of a filter for performance-guaranteed state estimation. Also,
they propose a new coarse-to-fine approach for the continu-
ous trajectory with a constant jerk and angular acceleration
model to reduce computational overhead significantly.

As graph-based approaches progress, various factors are
integrated into factor graphs to improve odometry perfor-
mance. However, the increasing computational demands of
such methods have led to a growing interest in approaches
with lighter computational loads. Consequently, several
filter-based approaches, often based on the classical Kalman
filter, have emerged. LINS [110] utilizes an iterated error-
state Kalman filter (iESKF) for faster odometry estimation
compared to graph-based approaches. Despite attempts to
enhance computational efficiency, theLINS system still faces
challenges with a considerable computational load and slow
processing speed, particularly when calculating the Kalman
gain due to the substantial number of LiDAR measure-
ments. FAST-LIO [151] successfully addresses this issue
by introducing a novel Kalman gain formula. FAST-LIO2
[152] further improves accuracy by eliminating the fea-
ture extraction process and directly registering raw LiDAR
measurements to the map. They also enhance computation
speed with a data structure called an ikd-Tree. Faster-LIO
[4] replaces ikd-Tree with incremental voxels (iVox) for
faster search. Shi et al. [129] utilize the Invariant EKF
to mitigate the linearization errors inherent in EKF-based
odometry, which can significantly impact estimation per-
formance. The invariant EKF [6] demonstrates enhanced
convergence and consistency compared to the standard EKF,
resulting inmore reliable results.Additionally, they introduce
two novelmethodologies: Inv-LIO1 and Inv-LIO2. Inv-LIO1
initially estimates the state through scan-to-scan matching
and refines it using a mapping module. In contrast, Inv-LIO2
achieves superior accuracy with increased computation time
by performing map-refined odometry through scan-to-map
matching and integrating global map updates.
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Advancements in graph-based andfilter-based approaches
have substantially enhanced the reliability of LiDAR-inertial
odometry in typical environments. Moreover, methods are
now specifically designed to robustly estimate odometry in
complex scenarios such as dynamic and degenerative envi-
ronments. Ding et al. [33] exploit factor graph optimization
based on a Bayesian network, considering high dynamic sce-
narios such as urban areas. RF-LIO [109] begins with an
initial pose estimation using IMU preintegration. It utilizes
the error between IMU preintegration and scan matching
to create a range image and eliminate dynamic points. In
addition, RF-LIO employs graph optimization to enhance
pose estimation further. Similar with RF-LIO, Hu et al.
[57] leverage segmentation-based moving object detection
and verification into FAST-LIO2 [152] to handle inaccurate
data association in dynamic environments. LIMOT [178]
estimates poses of ego vehicle and dynamic target objects
with trajectory-based multi-object tracking. By separating
the dynamic and static object pose factors, the entire factor
graph can simultaneouslyfilter the dynamic objectswith pose
estimation.Kimet al. [68] propose an adaptive keyframegen-
eration scheme that considers the surrounding environment,
enabling higher odometry accuracy in extreme environments.

Furthermore, a variety of constraints and metrics have
been developed to refine odometry accuracy further. LION
[133] incorporates an observability metric to anticipate
potential declines in the quality of estimated odometry.
This observability score guides the system’s transition to
an alternative odometry algorithm facilitated by a supervi-
sory algorithm like HeRo [120]. LIO-Vehicle [150] takes
motion constraints of the ground vehicle to handle geomet-
rically degraded environment by extending 2-DOF vehicle
dynamics to preintegrated factor. Zeng et al. [161] propose a
feature extraction schemebased on single line depth variation
and is specifically designed for the non-uniform sampling
point cloud characteristics of scanning solid-state LiDAR.
Chen et al. [19] leverage SE(2) constrained pose estima-
tion for ground vehicle to solve non-SE(2) vehicle motion
perturbation. Li et al. [78] improve feature extraction by
incorporating intensity edge featureswithin geometric planar
features. They also employ multi-weighting functions based
on residuals and registration consistency to assess the quality
of each feature during the pose optimization process. Fur-
thermore, RI-LIO [167] combines two residual types in its
state estimation process: photometric errors from reflectivity
images and point-to-plane distances from geometric points.
These images are generated using the Corrected Projection
by Real Angle (CPBRA) method, addressing LiDAR laser
projection biases.

Another method to enhance accuracy involves high-
frequency odometry, where advancements are made through
the development of techniques that improve emotion estima-
tion by segmentingLiDARscans. LoLa-SLAM[66] achieves

low-latency localization with a high temporal update rate by
slicing LiDAR scans, ensuring sufficient measurements for
accuratematching. Thismethod is crucial for high-frequency
odometry as it allows formore frequent and timely updates of
the vehicle’s position. On the other hand, FR-LIO [171] deals
with an aggressive motion by adaptively dividing LiDAR
scan into multiple sub-frames, enhancing estimation robust-
ness. Such division is essential for maintaining accuracy in
high-frequency odometry, particularly in dynamic environ-
ments. Additionally, Zhao et al. introduce the iterated ESKFS
to mitigate potential degeneration issues caused by increased
sub-frames. Point-LIO [47] achieves high-frequency odom-
etry through a point-by-point framework. This approach
involves processing LiDAR scans at the individual point
level, a strategy that naturally eliminates motion distortion.
These high-frequency methods offer a path to more respon-
sive and accurate odometry in rapidly changing scenarios.

Similar to LiDAR-only odometry, deep learning methods
play a pivotal role in enhancing odometry estimation, show-
casing advancements in this domain.Chen et al. [23] integrate
factor graph for state estimation and plane-driven submap
matching with a learning-based point cloud network for loop
detection. Liu [88] exploits the adaptive particle swarm filter
with an efficient resampling strategy to tackle the environ-
ment diversity integrating with lightweight learning-based
loop detection. Liu and Ou [89] propose FG-LC-Net [90]
for learning-based loop closure and data structure S-Voxel to
improve the speed of the system.

5 Multiple LiDARs

The LiDAR-inertial odometry, discussed in Sect. 4, show-
cases impressive accuracy. Nevertheless, limited FOV in
certain LiDAR systems poses challenges to state estimation,
hindering further advancements. Additionally, interference
from other sensors can obscure regions within the LiDAR’s
FOV. Irregular scanning patterns, observed in some scanning
solid-state LiDARs, further pose challenges in achieving pre-
cise scan registrations due to sparsity.

To tackle challenges associated with single LiDAR sys-
tems, researchers are increasingly exploring the use of mul-
tiple LiDARs in odometry. Multiple LiDARs offer broader
scanning coverage, reducing interference from additional
sensors. Integrating diverse scanning patterns from multiple
LiDARs enhances accuracy in scan registrations, surpassing
reliance on a single LiDAR with a non-repetitive scanning
pattern.

Pioneering research in the domain of multiple LiDARs-
based odometry begins with M-LOAM [62]. Assuming the
synchronization of all LiDARs, M-LOAM involves feature
extraction from each LiDAR, data aggregation, and estima-
tion of the robot’s state. However, synchronizing multiple
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LiDARs using PPS (Pulse Per Second) introduces com-
plexity and necessitates additional hardware requirements.
On the other hand, synchronization through PTP (Precision
Time Protocol) primarily aims to unify time standards but
may demand extra effort to attain synchronized data. Lin
et al. [86] employ a decentralized extended Kalman filter
(EKF) that concurrently runsmultiple EKF instances, one for
each LiDAR. While this method can handle asynchronous
LiDARs, it doesn’t fully leverage the combined measure-
ments from all LiDARs simultaneously, which reduces the
benefits of using multiple LiDARs.

In the case of independently utilizing measurements from
each LiDAR for state estimation, the occlusion experienced
by a single LiDAR can have a cascading impact on subse-
quent state estimation. LOCUS [103], which assumes that
all the LiDARs are synchronized, points out that significant
time discrepancies can result in failures in state estimation.
In their subsequent research [115], they address this chal-
lenge by discarding delayed scans to enhance robustness,
although this approach comes at the expense of losing some
information. Similarly, M-LIO [30] acknowledges the asyn-
chrony among LiDARs through signal association. However,
it lacks a method to compensate for the temporal discrepan-
cies arising from the asynchrony.

To overcome these issues, researchers have integrated
IMU sensors for correcting temporal discrepancies in asyn-
chronous LiDAR measurements [64, 98, 100, 142], similar
to their role in LiDAR-inertial odometry. Nguyen et al. [98]
and Wang et al. [142] employ IMU propagation to compen-
sate for temporal discrepancies among multiple LiDARs.
They extract edge and planar features from each point
cloud and transform these features into a common reference
frame aligned with the most recent acquisition time from all
LiDARs.While these approaches successfully estimate robot
trajectories, they also introduce additional challenges. IMU
propagation,which is inherently discrete due to its frequency,
requires additional linear interpolation, potentially leading to
additional errors. Moreover, as time discrepancies become
more pronounced, the duration required to accumulate the
point clouds increases, which further intensifies the depen-
dence on IMU for state propagation. However, the accuracy
of the IMU propagation deteriorates over extended periods
due to noise, which can adversely impact the odometry.

In addressing the challenge of discrete IMU propagation,
MA-LIO [64] adopts B-spline interpolation [131] as an alter-
native for linear interpolation, effectively compensating for
temporal discrepancies. Furthermore, Jung et al. [64] lever-
age point-wise uncertainty to assign penalties based on the
acquisition time, addressing the challenge of degraded IMU
propagation accuracy. On the other hand, SLICT [100] inter-
prets the point clouds of each LiDAR as a continuous stream.
Combining only the point clouds captured within a desig-

nated interval, SLICT maintains a consistent accumulation
duration, even when significant time discrepancies exist.

Utilizing multiple LiDARs for odometry addresses the
limitations associated with single LiDAR configuration,
leading to improved performance. However, challenges such
as optimizing LiDAR placements [56], increased computa-
tional demands, and inherent issues in single LiDAR system
persist. Section 7.5 provides an examination of these chal-
lenges. Additionally, to enhance robustness, especially in
challenging scenarios, researchers have explored the integra-
tion of LiDAR with other sensor modalities. The integration
and its impact on system performance are discussed in more
detail in Sect. 6.

6 Fusion with other sensors

LiDAR demonstrates robustness to changes in lighting con-
ditions, unlike visual sensors; nevertheless, it confronts
challenges in demanding environments. Specifically, LiDAR
odometry encounters difficulties in obtaining accurate mea-
surements under adverse conditions such as rain, snow,
and dust. Moreover, LiDAR measurements are vulnerable
in areas with limited geometric features or repetitive topo-
graphical attributes, such as long tunnels or highways. This
susceptibility contributes to scan matching challenges, nega-
tively affecting state estimation’s precision.Addressing these
constraints involves exploring the integration of multiple-
sensor modalities, marking a notable frontier in current
research.

RGB cameras offer distinct advantages over LiDAR sen-
sors, excelling in capturing intricate details through color
and texture. This capability becomes crucial in environ-
ments where prominent geometric features are scarce. In
such scenarios, combining camera images with LiDARmea-
surements can significantly enhance the reliability of state
estimation. Lin et al. [87] propose R2live, a tightly coupled
LiDAR-visual-inertial odometry system that merges a high-
rate filter-based approachwith a low-rate graph optimization.
The high-rate filter leverages LiDAR, camera, and IMUmea-
surements, while the factor graph optimizes local maps and
visual landmarks. LVI-SAM [127] consists of two jointly
operating subsystems: the LiDAR-inertial system (LIS) and
visual-inertial system (VIS). The estimated pose from each
subsystem serves as the initial pose for the other. LIS oper-
ates independently only when the number of features in VIS
decreases due to aggressive motion or illumination changes,
leading to a failure of LIS [164]. Similar to R2live, R3live
[85] also separates the LiDAR-inertial odometry (LIO) and
visual-inertial odometry (VIO). LIO reconstructs geometric
structures, while VIO reconstructs texture information. The
proposedVIOsystemutilizesRGB-colored point cloudmaps
to estimate the state, minimizing photometric errors without
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Fig. 3 LiDAR Odometry
Pipeline. The common
framework for LiDAR odometry
can be broadly divided into
three stages: preprocessing,
initial estimation, and state
estimation. When incorporating
other sensors, their integration is
classified as either loosely
coupled or tightly coupled,
based on the specific stage at
which the additional sensor data
are utilized. In the state
estimation stage, the refined
state is leveraged both in the
odometry and mapping
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the need to detect visual features, thus saving process-
ing time. Fast-LIVO [174] enhances efficiency by directly
registering point clouds without extracting features. This
optimization is achieved by reusing the point clouds from
both the LIO and VIO subsystems, resulting in faster opera-
tion and improved overall system efficiency. Additionally,
LIC-fusion [181, 182] fuses sparse LiDAR features with
visual features through a multi-state constraint Kalman filter
(MSCKF) along with online multi-sensor calibration. In the
context of continuous-time SLAM, there has been a growing
interest in continuous-time LiDAR-visual-inertial odometry.
An example of such an approach is Coco-LIC [74]. This sys-
tem adopts a non-uniform B-spline-based continuous-time
trajectory representation, seamlessly integrating LiDAR and
camera data in a tightly coupled manner.

RGB cameras depend on ambient lighting conditions to
capture images, and their performance tends to degrade
in low-light or adverse weather conditions. In response to
these challenges, thermal cameras operating in the infrared
wavelength range have proven effective in visually degraded

environments with varying illumination. Rho et al. [116] uti-
lize stereo thermal cameras in conjunction with LiDAR for
indoor disaster scenarios. Moreover, radar and event cam-
eras have demonstrated robust performance in challenging
environmental conditions. Thermal cameras, radar, and event
cameras, when used in conjunction with LiDAR, offer dis-
tinct advantages, presenting practical alternatives to address
the limitations of RGB cameras. Harnessing these diverse
sensor modalities can significantly improve odometry accu-
racy, as highlighted in [13].

These sensor modalities extend beyond mobile robots
or handheld systems and find application in legged robots.
Legged robots excel in navigating bumpy terrains and over-
coming obstacles like rocks or debris, leveraging their unique
ability to step over them. This capabilitymakes legged robots
well-suited for tasks such as search and rescue missions,
exploration, and disaster response. VILENS [148] utilizes
measurements from LiDAR, IMU, cameras, and leg contact
information derived from a joint kinematicsmodel. This inte-
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grated sensor fusion empowers the system to attain accurate
odometry, even in demanding environments.

Integrating multiple sensors for odometry presents prac-
tical solutions for addressing diverse environmental condi-
tions. However, this approach comes with computational
demands and introduces specific issues associated with each
sensor. While sensor fusion can compensate for the limita-
tions of individual sensors, the fusion process itself requires
considerable effort. These limitations will be scrutinized fur-
ther in Sect. 7.5. Indiscriminate sensor fusion may not lead
to an optimal odometry solution. Hence, thorough planning
and a precise grasp of each sensor’s specific requirements are
crucial prerequisites before deploying sensor fusion.

The classifications of LiDAR odometry introduced so
far can be organized into a unified pipeline, as shown in
Fig. 3. The figure illustrates how additional sensors can be
incorporated into a LiDAR odometry system, guiding the
determination of sensor usage and data integration strategies.

7 Remaining challenges

Undeniably, LiDAR odometry technologies have witnessed
significant advancements in providing high-quality positions
for mobile robots and autonomous vehicles, with their per-
formance demonstrated in various real-world environments
[36, 165]. However, despite these significant advancements,
unresolved issues remain valuable for further research. This
section discusses these issues and proposes future directions
for LiDAR odometry.

7.1 LiDAR inherent problems

LiDAR,while offering accuratemeasurements and resilience
to lighting conditions in contrast to RGB cameras, is not
exempt from inherent limitations. In this subsection, we
highlight several constraints of the LiDAR sensor that pose
challenges in solving the odometry problem.

Large Data: The LiDAR system generates a voluminous
3D point cloud, containing rich environmental and object
data. It offers a significant advantage in capturing 3D infor-
mation about the surrounding environment; however, there
are challenges with its size. The size of this point cloud scales
with the LiDAR’s FOV and resolution. For instance, the
OS1-128 LiDAR can produce scans containing a substantial
number of points, reaching several 100K points per frame,
operating at a maximum frequency of 20Hz. Additionally,
each point in the point cloud includes information such as
range, intensity, reflectivity, ambient conditions, and point
acquisition time, contributing to the data volume. Real-time
processing of such extensive data requires substantial com-
putational power, posing a particular challenge in robotics,

where achieving real-time performance is crucial for effec-
tive operation.

When integrating multiple LiDARs or adding extra sen-
sors, the computational load is intensified, potentially impact-
ing real-time performance. Techniques such as downsam-
pling or feature extraction can help alleviate the compu-
tational burden, but it is evident that computational costs
increase with the number and resolution of the LiDARs. In
two studies [98, 100] utilizing the NTUVIRAL dataset [99],
which includes two 16-channel LiDARs, the optimization
processes took over 100ms—equivalent to the duration of a
LiDAR sweep. While this processing time may be accept-
able for systems using keyframes, it becomes impractical in
scenarios requiring estimations for every scan.

Motion Distortion:When a robot moves at a high speed
relative to the sensor’s data acquisition frequency, a sub-
stantial spatial gap can occur between the locations where
the data was obtained at the beginning and end of a single
LiDAR scan. This spatial gap has the potential to introduce
significant distortion [3] to the LiDAR scan. Therefore, to
effectively utilize LiDAR scans, it is necessary to apply a
compensation process to mitigate the distortions caused by
motion, commonly referred to as de-skewing.

De-skewing commonly employs high-frequency sensors
such as IMU [126, 166] for aligning points to a single frame.
Linear interpolation [100, 152] can address its discrete nature
and the mismatch between sensor measurements and their
actual positions. In the absence of extra sensors, a constant
velocity model [54, 110, 162] may suffice but lacks accu-
racy in aggressive motion or uncertain velocity estimations.
Continuous-time interpolation [74, 94, 179], an alternative
approach, estimates a continuous trajectory through B-spline
interpolation, ensuring accurate transformations for each
LiDAR point. However, this method significantly increases
computational demands, particularly with more points, as
each requires individual state calculation. Thus, balancing
accuracy and efficiency is crucial, with the choice depending
on the application’s specific needs and constraints.

Limited Sensing: LiDAR, while capable of measuring
long distances, presents inherent limitations. One prominent
drawback is its relatively narrow FOV, particularly problem-
atic for perception tasks. Additionally, LiDAR data tends to
be sparser than images from standard cameras, even though
the horizontal FOV is generally wider. Recently, advance-
ments in vertical cavity surface emitting laser (VCSEL)
technology have enabled the compact arrangement of numer-
ous lasers in a dense array. Despite this advancement,
resulting in sensors with increased channels and denser
data, the resolution remains lower compared to conventional
cameras. In addition, when employing mechanical LiDAR,
installations are often in open areas, such as the top of robots
or autonomous vehicles, to achieve 360-degree visibility.
However, this poses challenges in protecting the sensor from
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external shocks. Attempts to install the sensor in more shel-
tered locations result in a trade-off with the loss of FOV
visibility.

7.2 Heterogeneous LiDARs

In Sect. 2.2, we discuss the classification of LiDAR sen-
sors into two categories: mechanical and scanning solid-state
LiDARs. These categories exhibit distinct characteristics,
including variations in viewing angles, scanning patterns,
and more. As a result, these disparities essentially lead to the
requirement for different odometry algorithms. Moreover,
even within the same category of LiDAR, variations in FOV,
resolutions, and other factors exist across different manu-
facturers and product lines. This implies that an algorithm
effective with one type may necessitate adjustments to addi-
tional parameters when applied to another. Recognizing the
inconvenience of modifying methods based on the specific
sensor, there is a growing demand for an algorithm capable
of robust operation across all types of LiDAR.

KISS-ICP [137] stands out as a representative approach to
addressing these issues. They propose a simplified yet effec-
tive LiDAR-only odometry approach that relies on point-to-
point ICP, performing comparably with other LiDAR-only
methods across various platforms and environmental condi-
tions. Notably, their proposed system is versatile for a broad
spectrum of operating conditions using different LiDAR
sensors. While KISS-ICP proves to be a simple and ver-
satile solution for various LiDAR sensors, a generalized
methodology for LiDAR-inertial odometry and fusing with
other sensors is lacking. Consequently, there remains poten-
tial for performance improvement in the overall generalized
approaches.

7.3 Degenerative environment

Traditional LiDAR odometry primarily depends on geomet-
ric measurements, neglecting texture and color information
usage. This reliance becomes challenging in feature-scarce
and repetitive environments, such as tunnels and long corri-
dors. While LiDAR effectively performs scanning in these
settings, the absence of unique features often leads to ambi-
guity in scan matching, resulting in potential inaccuracies in
the pose estimation of robots.

To tackle this challenge, Zhang et al. [164] introduce a
mathematical definition of degeneracy factor derived and
evaluated using eigenvalues and eigenvectors, enabling more
accurate state estimation when a degeneracy is detected.
AdaLIO [83] introduces an adaptive parameter setting strat-
egy, advocating for the use of environment-specific param-
eters to address the degeneracy issue. Their straightforward
approach involves pre-defining parameters for general and
degenerate scenarios and adjusting them based on the situa-

tion. Wang et al. [138] mitigate the uncertainty associated
with the corresponding residual and address the degener-
ation problem by removing eigenvalue elements from the
distribution covariance component. Shi et al. [130] pro-
pose an adaptive correlative scan matching (CSM) algorithm
that dynamically adjusts motion weights based on degenera-
tion descriptors, enabling autonomous adaptation to different
environments. This approach aligns the initial pose weight
with environmental characteristics, resulting in improved
odometry results.

Sensor fusion methods also have shown the potential to
address the uncertainty in LiDAR scan matching within
degenerative cases. DAMS-LIO [46] estimates LiDAR-
inertial odometry utilizing the iterated extendedKalmanfilter
(iEKF). When the system detects degeneration, it employs a
sensor fusion strategy, following a loosely coupled approach
that integrates odometry results from each sensor.

LiDAR has the potential to overcome degenerative envi-
ronments without the need for sensor fusion if additional
information can be accessed from the measurements beyond
the geometric details. Researchers have explored leverag-
ing intensity [78, 106, 140] or reflectivity [35, 167] data
from LiDAR measurements to enhance state estimation in
degenerate environments. Integrating supplementary texture
information with the original geometric data offers a more
robust and reliable solution, particularly in challenging sce-
narios where geometric features alone may not suffice for
accurate localization and mapping. Furthermore, by employ-
ing FMCW LiDAR to measure Doppler velocity similar to
radar, DICP [51] improves the vanilla ICP algorithm with
a Doppler velocity objective term, enhancing scan match-
ing performance, especially in feature-scarce environments.
Notably, their work forecasts odometry with high accuracy,
even in the demanding scenario of a 900-meter-long tun-
nel sequence. Improving upon DICP, Wu et al. [149]. and
Yoon et al. [158] integrate the Doppler velocity factor in a
continuous-time odometry framework. These works suggest
that the degeneracy problem can be effectively addressed
through the use of FMCW LiDAR.

7.4 Degraded environment

A degraded environment is one that presents challenges to
the sensing ability of LiDAR, unlike a degenerative envi-
ronment. LiDAR operates by emitting a laser pulse and
detecting its return after interactingwith objects, and this pro-
cess can be disrupted by unwanted particles obstructing the
pulse’s path. Extreme weather conditions such as direct sun-
light, rain, snow, or fog can significantly degrade LiDAR’s
detection performance [11, 132]. Considerable research has
been dedicated to denoising weather-induced interferences
to address this challenge due to extreme weather. Park et al.
[105] propose a Low-Intensity Outlier Removal (LIOR) fil-
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ter to eliminate snow particles from the LiDAR point cloud.
Utilizing a CNN-based approach, WeatherNet [49], a variant
of LiLaNet [107], is trained with augmented data incorpo-
rating a fog model and a rain model. This training process
aims to effectively remove noise caused by adverse weather
conditions from the actual LiDAR data. Despite extensive
research on weather noise removal algorithms, there is a
lack of investigation into the performance of LiDAR odom-
etry using these algorithms. Exploring this area is essential
to ensure that LiDAR odometry consistently delivers high-
level performance under harsh weather conditions, ensuring
the stability of autonomous driving.

Beyond weather conditions, typical objects, such as glass,
that partially reflect or transmit laser pulses [41, 144, 170] can
adversely affect LiDAR performance. This problem is par-
ticularly prevalent in urban or indoor settings with numerous
glass windows, where reflections from one side can interfere
with the LiDAR points on the opposite side of the glass. This
issue can impact odometry performance due to the ambigu-
ity in scan matching. However, there is currently a lack of
research on algorithms to address this problem completely.

7.5 Multi-modal sensors

When integrating additional sensors with LiDAR, it is
crucial to acknowledge that these supplementary sensors
introduce their own set of challenges. Moreover, the combi-
nation of multiple sensors can introduce new limitations and
complexities. This subsection delves into these additional
considerations.

Calibration: When working with multiple sensors, it is
essential to conduct both intrinsic calibration for each sen-
sor and extrinsic calibration between the sensors. However,
it is crucial to note that this calibration process can be highly
challenging and complex despite the availability of calibra-
tion tools and methodologies [34, 91, 114]. Precise intrinsic
calibration for each sensor and accurate extrinsic calibra-
tion between multiple sensors present difficulties involving
addressing diverse error sources, considering environmental
factors, and managing complex mathematical transforma-
tions. The intricacies of calibration can make the process
time-consuming and demanding for both researchers. Even
with precise calibration tools, calibrating sensors in systems
where the system itself cannot impose constraints on each
sensor can be problematic. For instance, car-like vehicles
often have insufficient constraints for the z-axis, roll, and
pitch angles. As a result, the accuracy of these elements may
not surpass that achieved through manual measurements.

Placement:Simply addingmore sensorswithout strategic
planning may not affect odometry performance. In the case
of multiple LiDARs, strategic positioning to complement
scanning areas has the potential for accuracy improvement.
However, excessive overlap can lead to redundancy, intro-

ducing unnecessary data and increasing computational costs,
potentially offsetting accuracy gains [64]. Therefore, care-
ful consideration of optimal deployment strategies is crucial.
AlthoughHu et al. [56] discuss effectivemulti-LiDARplace-
ment strategies; their focus is on object detection rather than
odometry research. Hence, dedicated studies in this domain
are needed. This challenge also extends to multi-modal
sensor fusion. Similar to the placement considerations for
multiple LiDARs, the configuration of each sensor is crucial
in system design. Different sensors serve unique roles with
diverse recognition capabilities. Tomaximize the strengths of
different sensors, careful consideration is essential in deter-
mining whether each sensor’s FOV should overlap.

Synchronization: Integrating different sensor modalities
necessitates addressing asynchronous scenarios, as each sen-
sor delivers data in distinct frequencies. While some studies
adeptly fuse heterogeneous LiDAR data in discrete-time [98]
or continuous-time [64] using IMU, there is a relatively
limited body of work on the integration of various sensor
modalities. Exploring comprehensive approaches to harness
the capabilities of different sensor modalities holds signifi-
cant potential.

8 Datasets and evaluation

Ensuring the generalization of LiDAR odometry remains a
fundamental goal in its advancement, as elaborated in Sect. 7.
As autonomous systems navigate diverse and dynamic envi-
ronments, algorithms must exhibit consistent performance,
irrespective of variations in data quality. Consequently, the
significance of comprehensive datasets spanning various
environments and sensor modalities cannot be overstated in
the development of such algorithms. Diverse data enhance
robustness, reducing the risk of overfitting and expanding
the versatility of techniques. Simultaneously, establishing
standardized evaluation methodologies is crucial to ensure
consistent and comparable results across diverse research
endeavors. With the growing role of LiDAR odometry in
robotics, there is an increased emphasis on creating diverse
datasets and refining assessment protocols. These strategic
initiatives are essential for effectively addressing various
operational challenges.

8.1 Public datasets

Various LiDAR datasets have contributed significantly to
odometry research, eachwith unique features and limitations.
In this section, we will present public LiDAR datasets along
with their respective characteristics. Public LiDAR datasets
are summarized in Table 3.

The KITTI dataset [42], which captures the urban envi-
ronments using the HDL-64E spinning LiDAR, stands as
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Table 3 The LiDAR-based odometry-related datasets

Dataset System Scenario Sensor input (LiDAR) Ground truth Distance

# Spinning # Solid state

KITTI [42] Car S 1 – GPS/IMU ★★

NCLT [16] Segway S 1 – RTK-GPS/ICP ★ ★ ★

Complex Urban [61] Car S 2 – VRS-GPS/FOG/Encoder/ICP ★ ★ ★

MulRan [69] Car S 1 – VRS-GPS/FOG/ICP ★ ★ ★

Oxford Radar Robotcar [5] Car S 2 – GPS/INS/SLAM ★ ★ ★

Ford AV [2] Car S + US 4 – GPS/IMU/SLAM ★ ★ ★

LIBRE [15] Car S 12 – GPS ★ ★ ★

EU Long term [153] Car S 2 – RTK-GPS/IMU ★★

NTU Viral [99] Drone S + IN 2 – Tracker ★

UrbanNav [55] Car S 3 – RTK-GPS/INS ★★

Hilti-Oxford [165] Handheld S + IN 1 – TLS/GCP ★

Tiers [112] Car S + US + IN 3 3 Tracker/SLAM ★

Wild Places [70] Handheld US 1 – SLAM ★★

Pohang Canal [29] Ship S 3 – RTK-GPS/IMU ★★

ConSLAM [135] Handheld S + IN 1 – TLS ★

Boreas [14] Car S 1 – RTK-GPS/INS ★ ★ ★

HeLiPR [65] Car S 2 2 RTK-GPS/INS ★ ★ ★

S, US, and IN represent the structured, unstructured, and indoor environments. Furthermore, the number of ★ varies depending on whether it is
under 10km, between 10 and 100km, and over 100km

a renowned resource in the LiDAR community. Its overlap-
ping sequenceswithin and between sessions facilitate precise
odometry evaluation, contributing significantly to LiDAR
odometry advancements. The NCLT dataset [16], collected
over a year using a Segway-based system, and the MulRan
dataset [69], spanning around a month, offer spatial diver-
sity from campuses to cityscapes. The Boreas dataset [14],
collected over a year on cityscape routes, captures seasonal
changes and harsh weather conditions such as rain and heavy
snow. While they are invaluable resources for developing
odometry algorithms tailored to a specific LiDAR type, these
datasets are limited in terms of LiDAR hardware diversity,
predominantly relying on a single type of LiDAR. This poses
a challenge for algorithms aiming to achieve broader hard-
ware compatibility.

The Complex Urban dataset [61], Oxford Radar Robot-
car dataset [5], and EU Long-term dataset [153] distinguish
themselves from previous datasets as they utilize multiple
LiDARs. The Complex Urban dataset captures data across
various urban environments, while the Oxford Radar Robot-
car dataset focuses on data collection from a single location
for consistency. The EU Long-term dataset, spanning data
acquisition over two locations for approximately a year,
showcases diverse weather conditions. Despite using mul-
tiple LiDARs in these datasets, challenges in generalization
arise due to their consistent use of homogeneous LiDAR
configurations and a focus on structured environments. This

raises concerns about the performance of LiDAR odometry
in diverse settings.

The Ford AV dataset [2] addresses the previously men-
tioned limitation by ensuring location diversity. It captures
seasonal variations and various driving scenarios, encom-
passing freeways, residential areas, tunnels, and vegetation-
rich zones, utilizing four HDL-32E LiDARs. Nevertheless,
the uniform configuration of the LiDARs still poses a chal-
lenge. In contrast, LIBRE [15] provides a driving dataset
along with a separate distance error report for 12 LiDARs,
detailing performance under diverse weather conditions. It
is essential to note that each sequence in LIBRE features
only a single LiDAR. Moreover, the dataset does not provide
insights into LiDAR odometry on platforms with aggressive
motions since it only involves stationary LiDAR-equipped
vehicles in artificially controlled weather conditions.

The previously mentioned LiDAR datasets collected with
mapping-car systems have limitations in roll and pitch angle
variations. To address this, the NTU Viral dataset [99] intro-
duces a new challenge by deploying LiDAR on an unmanned
aerial vehicle (UAV). Similarly, the Hilti-Oxford dataset
[165], ConSLAM dataset [135], and Wild Places dataset
[70] present this challenge using a handheld system in con-
struction site and forest. The Hilti-Oxford dataset further
diversifies the landscape by including data from indoor envi-
ronments, while Wild Places ventures into forest terrains,
adding complexity to the dataset landscape. Additionally, the
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PohangCanal dataset [29] captures canal environments using
a ship-based system.

Recent LiDAR datasets have introduced new dimen-
sions to research by incorporating multiple heterogeneous
LiDARs. For instance, the UrbanNav dataset [55] features
three mechanical LiDARs navigating urban landscapes, pre-
senting challenges due to asynchronous multiple LiDARs.
The Tiers dataset [112] employs a combination of three
mechanical and three scanning solid-stateLiDARs, capturing
distinct measurements from identical locations and offering
a unique perspective. On a larger scale, the HeLiPR dataset
[65] includes a variety of structured environments and intro-
duces FMCW LiDAR, providing the opportunity to utilize
velocity information for LiDAR odometry.

Various LiDAR odometry datasets with unique strengths
and limitations have been released and continue to emerge.
This highlights the importance of recognizing that no sin-
gle dataset can offer universal comprehensiveness. Thus,
the thoughtful selection of datasets aligned with their spe-
cific characteristics remains essential for the development of
robust and adaptable LiDAR odometry solutions.

8.2 Evaluation

Evaluation serves as a cornerstone in advancing LiDAR
odometry. Comprehensive and consistent evaluation meth-
ods are essential, as they enable the measurement of
progress, identification of weaknesses, and guidance for
future research. Assessing LiDAR odometry algorithms is
crucial for establishing their dependability and accuracy
and fostering comparability across various approaches. Ulti-
mately, this promotes continuous improvement in LiDAR
odometry.

8.2.1 Ground truth generation

The cornerstone of the evaluation process is the ground truth,
serving as the reference to assess the precision and reliability
of odometry estimation. Various methods can be employed
to reliably evaluate LiDAR odometry to obtain ground truth,
each with unique strengths and potential limitations.

One approach utilizes GPS, providing precise global
position measurements. When combined with Real-Time
Kinematic (RTK) compensation, GPS can attain centimeter-
level precision. Integration of GPS with an IMU enables the
derivation of a complete 6-DOF pose, encompassing both
position and orientation.Additionally, the integration of Iner-
tial Navigation System (INS) further improves continuous
pose estimation, particularly in environments with weak or
lost GPS signals.

Another method involves leveraging SLAM technology.
The trajectory generated by SLAM, utilizing sensors such
as LiDAR, camera, and encoder, can serve as an additional

reference for ground truth, especially in environments where
GPS signals are unavailable. Combining the strengths of both
GPS and SLAM can create a robust system that offers high
accuracy and resilience to environmental challenges.

A third approach entails employing tracking systems.
These specialized systems, typically optical, utilize multiple
cameras [112] or sensors [99] to meticulously track markers
or objects within a designated area. They prove especially
valuable in environments with low SLAM accuracy or where
GPS signals are unavailable. Due to their firmly established
precision in both temporal and spatial dimensions, tracking
systems become a reliable reference for ground truth in con-
trolled setups.

The Ground Control Points (GCP) method constitutes
the fourth approach. This method utilizes specific ground
points with known and precise geographical locations, often
established using total stations. These GCPs are frequently
employed to guarantee accurate positioning and alignment.
By comparing sensor data with these reference points, any
discrepancies can be identified and corrected, ensuring high
measurement accuracy.

Finally, Terrestrial Laser Scanning (TLS) is utilized to
establish ground truth. As a variant of LiDAR, TLS swiftly
scans and captures 3D data of the environment. Due to its
extensive reach and high-resolution data, TLS-based ground
truth serves as a benchmark for aligning individual scans.
The alignment of these scans to the TLS-derived ground truth
enables the determination of the robot’s 6-DOF state, which
then serves as the definitive reference for LiDAR odometry.

8.2.2 Evaluation methods

In the evaluation of LiDAR odometry, several quantitative
metrics are pivotal for assessing the accuracy and effective-
ness of algorithms. When compared to reliable ground truth,
these metrics offer insights into the precision, stability, and
areas for potential improvement of a particular odometry
system. This section will explore some essential evaluation
methods (Fig. 4).

Initially,we consider theAbsoluteTrajectoryError (ATE).
ATE provides a comprehensive perspective on the overall
odometry consistency. It computes the average deviation
between corresponding poses in the estimated trajectory rel-
ative to the ground truth, thereby capturing discrepancies
throughout the trajectory. Mathematically, it is expressed as:

ATE =
√
√
√
√

1

N

N
∑

i=1

||pi,est − pi,gt||2 (1)

where pi,est represents the estimated pose, pi,gt the ground
truth pose, and N the total number of poses.
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Fig. 4 Various Evaluation Methods of LiDAR Odometry. This figure
illustrates diverse assessment methods for LiDAR odometry. a Trajec-
tory Error shows local and global discrepancies along the estimated
path. b Start-to-End Error highlights long-term drifts from start to fin-

ish. c GCP-based Error assesses alignment with GCPs for real-world
accuracy. d Entropy-based Error reflects scan registration quality and
overall system reliability

Next, our focus shifts to the Relative Trajectory Error
(RTE). Unlike the broad scope of ATE, RTE concentrates on
shorter segments of the trajectory. It evaluates the local con-
sistency and accuracy of the odometry, which is particularly
crucial for applications that require precision over shorter
distances. The formulation of RTE can be represented as:

RTE =
√
√
√
√

1

M

M
∑

j=1

||q j,est − q j,gt||2 (2)

where q j,est and q j,gt, respectively, denote estimated and
ground truth relative poses over a defined segment, with M
being the number of such segments. The ATE and RTE are
typically calculated using the RPG [168] and EVO evaluator
[44].

The Start-to-End Error proves particularly insightful in
assessing the long-term consistency and reliability of the
odometry result. This metric evaluates the misalignment
between the initial and final points of trajectories, offering a
macroscopic perspective on odometry performance.Notably,
as precisely locating the exact start and end points can be
challenging, the error is determined by computing the relative
translation between these points using registration methods
such as ICP and Generalized-ICP. It is formulated as:

Error = ∣
∣�pest − �pgt

∣
∣ (3)

where�pest and�pgt are the position differences calculated
from odometry and registration method. It is particularly
effective when facing challenges in obtaining a reliable
ground truth for the trajectory. Such challenges may arise
in indoor environments where obtaining GPS measurements
is problematic or in unstructured terrains where the accuracy
of SLAM is compromised.

Another approach utilizes GCPs, predetermined precise
ground locations typically established with total stations. To
conduct an evaluation using GCPs, the estimated trajectory

undergoes alignment with these control points using SE(3)
Umeyama alignment [136]. Following alignment, the abso-
lute distance error for each GCP is calculated to gauge its
deviation from the predicted trajectory. This method hinges
on the precision of GCPs to assess the accuracy of the odom-
etry system.

Lastly, certain methods assess the registration quality
between consecutive scans. Given that the trajectory derived
from LiDAR odometry depends on successful registration,
evaluating this aspect can indirectly provide insights into
odometry accuracy. The concept of entropy [1] serves as a
valuable tool for such evaluations. When two point clouds
are accurately registered, the merged point cloud retains
entropy similar to that of the original individual point clouds.
In contrast, poor registration leads to higher entropy in the
combined point cloud. This demonstrates that appropriately
registered point cloudsmaintain consistent entropy, or uncer-
tainty, in their combined form, making it a valuable metric
for evaluating registration quality.

Each evaluation method for LiDAR odometry offers dis-
tinct insights. Researchers must choose the most suitable
validation approach based on their specific experimental
context. Continuous advancements and the introduction of
innovative comparison methodologies have the potential to
enhance the comprehensive evaluation of robustness and
accuracy over time.

8.3 Benchmark results

Based on the aforementioned datasets and evaluation meth-
ods, we conduct benchmarks to compare the performance of
LiDAR-only odometry and LiDAR-inertial odometry. Our
benchmark test analyzes the performance of six LiDAR-
only odometry and six LiDAR-inertial odometry literature.
For LiDAR-only odometry, the selected methods are LOAM
[162], LeGO-LOAM [125], KISS-ICP [137], CT-ICP [31],
and DLO [20]. In the case of LiDAR-inertial odometry, our
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Table 4 Benchmark results (up: LO, down: LIO)

Algorithms Evaluation Metric: ATE (m)
ConSLAM NTU VIRAL HeLiPR

LOAM – 0.959 23.043

LeGO-LOAM 0.263 8.478 10.111

KISS-ICP 13.517 0.829 29.273

DLO 0.154 0.142 5.022

VoxelMap – 1.100 5.010

LIO-SAM 0.167 0.115 42.414

FAST-LIO2 0.113 0.116 1.655

Faster-LIO 0.102 0.120 22.402

DLIO 0.106 0.224 2.042

Point-LIO 0.115 0.105 17.142

focus is on LIO-SAM [126], FAST-LIO2 [152], VoxelMap
[160], DLIO [21], and Point-LIO [47].

The evaluation of LiDAR-only and LiDAR-inertial odom-
etry works, as shown in Table 4, has been performed on
sequence02 from the ConSLAM dataset [135], eee03
from the NTU VIRAL dataset [99], and Roundabout02
from the HeLiPR dataset [65]. We select these three datasets
for evaluation due to their distinct characteristics. The Con-
SLAM dataset captures brief sequences from a construction
site using a handheld system, the NTU VIRAL dataset
acquires short sequences from a campus via a drone, and
the HeLiPR dataset utilizes a car for large-scale data acquisi-
tion at the city level. It is essential to emphasize the variations
in both systems and environments used for data acquisition
across these datasets.

We assess method performance by measuring the ATE
in meters. The NTU VIRAL dataset employs its dedicated
evaluation tool for measurements, while for other datasets,
we use EVO [44], a widely recognized tool in the field.

As evidenced in Table 4, LiDAR-inertial odometry gener-
ally demonstrates enhanced robustness compared to LiDAR-
only odometry. However, it is important to note that not all
LiDAR-inertial systems outperform LiDAR-only systems,
particularly within the HeLiPR dataset. The sequence from
the HeLiPR dataset, being exceptionally long, is suscepti-
ble to cumulative errors as indicated in Fig. 5a. In such
cases, integrating an IMU with LiDAR may not signifi-
cantly outperform LiDAR-only odometry due to potential
error accumulation after large drift. This highlights the neces-
sity of integrating error-resolving mechanisms such as GPS
or loop closure in prolonged robot operations to improve
odometry performance.

On the other hand, fusion with an IMU can enhance
accuracy for shorter paths. The notable advantage of LiDAR-
inertial odometry lies in its effective handling of aggressive
motions, especially sudden rotations. This becomes partic-

Fig. 5 Estimated Trajectories. a and b illustrate results from the
HeLiPR andConSLAMdatasets, respectively. In (b), the red box zooms
in on instances where the LiDAR odometry deviates from the ground
truth compared to LiDAR-inertial odometry

ularly evident in scenarios with dynamic motion, such as
those involving handheld systems or drones in datasets like
ConSLAM or NTU VIRAL. In ConSLAM, although some
LiDAR-only and LiDAR-inertial methods may exhibit sim-
ilar paths, a closer examination reveals that LiDAR-only
odometry lacks precision in detailed path estimation. It devi-
ates more significantly from the ground truth compared to
LiDAR-inertial odometry, as depicted in Fig. 5b.
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In summary, while LiDAR-inertial odometry generally
surpasses LiDAR-only systems in robustness, it does not cor-
rectly estimate in all scenarios, especially in long sequences
prone to cumulative errors. In contrast, for shorter, dynamic
paths, the fusion with an IMU offers clear advantages in
accuracy and handling aggressive motions. This underscores
the importance of context-specific system selection and the
integration of corrective mechanisms for optimal odometry
performance.

9 Conclusion

This paper emphasizes the crucial role of LiDAR odometry
in robotics, underlining its profound influence on perception
and navigation. Our survey covers almost all recent LiDAR
odometry advancements, delineating their strengths and
weaknesses. The versatility of LiDAR odometry is evident,
especially in environments with unreliable GPS, making it
essential for robotic navigation and mapping. Furthermore,
this paper addresses remaining challenges in LiDAR odome-
try, discusses potential improvements and future directions in
the field, and introduces a variety of datasets and evaluation
metrics.

While a wealth of LiDAR odometry literature is available,
unfortunately, there is no one-size-fits-all solution. LiDAR
odometry involves a trade-off between resources and per-
formance, requiring users to carefully consider these factors
based on their specific application requirements and available
resources. For low computational, especiallywith low-power
single-board computers, a LiDAR-only approach may be
optimal in well-defined environments. Integrating an IMU
in a loosely coupled fashion can enhance results without
significantly increasing computational demands. A tightly
coupled multiple-sensor approach is advisable for applica-
tions demanding high accuracy across various environments.
Combining LiDARwith an IMU is a balanced choice in gen-
eral situations. Utilizing multiple LiDAR systems may be
beneficial to address the narrow FOV issue. Incorporating
a camera can be advantageous in texture-limited scenar-
ios. Those with greater computational resources can explore
advanced capabilities offered by deep learning-based LiDAR
odometry.

We anticipate the ongoing expansion of LiDAR odome-
try and believe that resolving the challenges through deep
learning and multi-modal sensor fusion will pave the way
for a general solution. Furthermore, we expect that the con-
tinuous development of both LiDAR sensors and odometry
algorithms will lead to the emergence of even more accurate
and robust odometry solutions in the future.
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