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Abstract
We investigated whether a passive brain–computer interface that was trained to dis-
tinguish low and high mental workload in the electroencephalogram (EEG) can be
used to identify (1) texts of different readability difficulties and (2) texts read at dif-
ferent presentation speeds. For twelve subjects we calibrated a subject-dependent, but
task-independent predictive model classifying mental workload. We then recorded
EEG data from each subject, while twelve texts in blocks of three were presented to
them word by word. Half of the texts were easy, and the other half were difficult texts
according to classic reading formulas. From each text category three texts were read
at a self-adjusted comfortable presentation speed and the other three at an increased
speed. For each subject we applied the predictive model to EEG data of each word
of the twelve texts. We found that the resulting predictive values for mental work-
load were higher for difficult texts than for easy texts. Predictive values from texts
presented at an increased speed were also higher than for those presented at a normal
self-adjusted speed. The results suggest that the task-independent predictivemodel can
be used on single-subject level to build a highly predictive user model of the reader
over time. Such a model could be employed in a system which continuously monitors
brain activity related to mental workload and adapts to specific reader’s abilities and
characteristics by adjusting the difficulty of text materials and the way it is presented to
the reader in real time. A neuroadaptive system like this could foster efficient reading
and text-based learning by keeping readers’ mental workload levels at an individually
optimal level.

Keywords Text readability · (passive) Brain–computer interface · Mental workload ·
Neuroadaptive technology · User model · Online learning · Rapid serial visual
presentation
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1 Introduction

The emerging field of neuroadaptive technologies aims to automatically adapt a
machine to changes in its operator’s cognitive or affective state through an ongoing
evaluation of neurophysiological activity (Krol and Zander 2017). One tool to assess
information about the current mental state of a person is a passive brain–computer
interface (pBCI, Zander and Kothe 2011). A pBCI is trained to distinguish between
different cognitive or affective aspects of user state. Therefore, it learns to classify
certain patterns of brain activity (i.e., classes), typically recorded through an elec-
troencephalogram (EEG) in a controlled calibration session. An approach combining
machine learning and signal filtering is used to automatically analyze a segment of
EEG and to provide a guess (i.e., through interpreting the classifier output as predictive
values) to which class the recorded activity belongs (Zander et al. 2010), resulting in
a so-called predictive model. This model can then be applied to new data providing
predictive values and hence information about the current state of the investigated cog-
nitive process. By combining this information over time with contextual information,
a predictive user model can be derived that provides meaningful details about certain
aspects of higher cognition (Zander et al. 2016). This user model can then be utilized
to adapt a system’s behavior in a certain situation to the current state or specific aims
of the user—the system becomes neuroadaptive. This neuroadaptation is intended to
improve the interaction between user and machine by making it safer, more pleasant
or more efficient (Hettinger et al. 2003; Zander 2011; Zander et al. 2016). A pBCI
differs significantly from classic BCIs (i.e., active or reactive BCIs) which are built on
brain activity that is generated by the operator intentionally in order to send specific
control signals to a computer system, thereby replacing other means of input (e.g.,
keyboard) (Zander et al. 2010).

One important cognitive state that might be used for neuroadaptive technologies is
mental workload, which is a concept that is well established in experimental psychol-
ogy and human factors/ergonomics (Kramer 1991; Wickens 2008), and that is also
characterized by specific neurophysiological signatures (e.g., Gevins and Smith 2000;
Gevins et al. 1997; Krause et al. 2000; Pesonen et al. 2007; Scharinger et al. 2015,
2017). Recent studies claim that pBCIs can be trained to distinguish between low and
high mental workload states of a user and predict mental workload in different task
domains such as, e.g., n-back tasks (Grimes et al. 2008; Herff et al. 2014), span tasks
(Chaouachi et al. 2011), Sternberg tasks (Baldwin and Penaranda 2012; Roy et al.
2016), arithmetic tasks (Walter et al. 2017) and visual–spatial task (e.g., mental rota-
tion; Berka et al. 2007). However, these attempts have often been of restricted success
due to several methodological limitations (cf. Gerjets et al. 2014). Specifically, efforts
taken for designing a task-independent predictive model that can identify levels of
mental workload in general, independent of the task evoking the mental activity, were
not sufficiently successful. However, this is important for detecting mental workload
in real-world applications, as tasks at hand can change over time. Recently, a more
promising task-independent predictive model for mental workload detection has been
proposed by Krol et al. (2016). This model is trained on data collected from a sub-
ject performing an arithmetic task triggering brain activity that is related to mental
workload in general. While it is trained to classify these examples of mental work-
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load, this model is intended to quantify mental workload in a generalized way, across
tasks. This goal was not achieved by adapting feature extraction or classification algo-
rithms in the predictive model, but by designing an experimental paradigm for the
calibration session. The resulting predictive model was successfully applied to tasks
in other domains, such as n-back tasks, backward span task, solving anagrams, men-
tal rotation or understanding verbal descriptions of a complex context (Krol et al.
2016; Zhang et al. 2018). It, thus, can reliably distinguish between phases of low
and high workload, not only in arithmetic tasks but also in other tasks and is there-
fore referred to as a task-independent predictive model. In this paper, we investigate
whether this task-independent predictive model might also be suitable for a passive
BCI-based assessment of mental workload imposed by text difficulty and presentation
speed during reading. Workload assessment during reading in real time is a crucial
prerequisite for the development of neuroadaptive support technologies that aim at
improving reading efficiency in the digital age.

Reading is part of our everyday lives. Written language plays a crucial role when
humans intend to share information and acquire new knowledge. From a cognitive
science perspective, mental workload (in terms of working-memory load) is central
for reading as reading comprehension is based on a set of processes at different levels,
many of which require working-memory resources (Daneman and Carpenter 1980;
Kintsch 1998; Perfetti 1985). For instance, there are reading processes at the word
level (e.g., activation of word meaning), at the sentence level (e.g., integrating word
meanings with the syntactical structure to a coherent sentence) and at the text level
(e.g., integrating the read content plus information inferred from prior knowledge
into a local and global coherent situation model). Inferences at the text level can
be broadly defined as information that is not explicitly stated in the text but gener-
ated by the readers themselves from memory or the given information (Tibus et al.
2013). Inferences are crucial for understanding (“the cornerstone of comprehension”,
Kendeou et al. 2016). As they are essential for comprehension, these are generated
“online” during the reception process (e.g., Graesser et al. 2007). All of the above-
mentioned processes—but particularly inference generation at the text level—might
not only impose time demands for processing onto readers but also high levels of men-
tal workload (depending on readers’ level of reading fluency and prior knowledge).
Accordingly, the more difficult a text is and the less working-memory capacity and
reading time a reader has at his disposal the more likely it is that the comprehension
process might be disrupted. According to cognitive load theory, learning and compre-
hension will break down once the information that needs to be integrated in working
memory at one point in time exceeds the available working-memory capacity (Sweller
et al. 1998). In line with this assumption, reading research has shown that individual
differences in working-memory capacity can account for qualitative and quantitative
differences among readers in several aspects of language comprehension (Just and
Carpenter 1992). In sum, the comprehension of textual information is influenced by
several factors, including features of text materials itself, such as text difficulty (e.g.,
length and complexity of sentences or use of technical terms; cf. DuBay 2004; Fried-
man and Hoffman-Goetz 2006). Additionally, text comprehension strongly depends
on characteristics of individual readers, such as their domain-specific prior knowl-
edge (Moravcsik and Kintsch 1993), their individual working-memory capacity (Just
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and Carpenter 1992), their level of reading fluency (Kuhn et al. 2010) or the time
invested in reading a text (i.e., reading speed). Furthermore, these factors will interact
with each other. For instance, reading speed will influence text comprehension perfor-
mance in relation to the individual reader’s reading fluency (Bell 2001; Wallot et al.
2014). Moreover, text difficulty and domain-specific prior knowledge will interact in
affecting mental workload and reading comprehension. For example, the same text
will impose more workload onto low prior knowledge readers than onto high prior
knowledge readers (cf. McNamara et al. 1996; Sweller et al. 1998).

Therefore, developing adaptive support technologies aiming at improving reading
efficiency is not trivial. This is particularly true when trying to base adaptations on
measurements of individual readers’ domain-specific prior knowledge, readingfluency
and working-memory capacity. An alternative strategy—that we will focus on in this
paper—is to base adaptive systems on an online measurement of mental workload.
The reasoning for this is that mental workload during reading is directly influenced by
prior knowledge, reading fluency andworking-memory capacity. It is also an important
factor for successful comprehension processes.

Moreover, mental workload can be used online in order to adapt the presentation of
reading materials, e.g., by adjusting text difficulty. Methodologies of computational
linguistics allow to automatically assess and label the complexity (i.e., readability) of
reading materials based on linguistic features. Traditional methods use rather simple
text analysis techniques that provide easily computable complexity indices (e.g., the
Flesch-Reading-Ease (Flesch 1948) formula or the Flesch-Kincaid-Grade-Level for-
mula (Kincaid et al. 1975) using easy to count text features, like the average sentence
and word length). More advanced approaches to readability analysis employ a range
of even more sophisticated techniques, including statistical language models (Collins-
Thompson and Callan 2004; Kincaid et al. 1975; Petersen and Ostendorf 2009; Si
and Callan 2001), machine learning using lexical and syntactic features (Feng 2010;
Heilman et al. 2007; Schwarm and Ostendorf 2005), models integrating language-
specific morphological features (Dell’Orletta et al. 2011; François and Fairon 2012;
Hancke et al. 2012) and approaches emphasizing a cognitive perspective on coher-
ence/cohesion (esp. Coh-Metrix, Graesser et al. 2014). These examples indicate that
text complexity can be defined (and consequently automatically assed) with respect
to different linguistic readability metrics. These metrics range from a focus on sim-
ple linguistic entities (e.g., words) or complex, interrelated linguistic entities (e.g.,
sentences, paragraphs or entire documents). An automated adaptation (Zander et al.
2010) of reading materials based on mental workload could therefore be carried out
by selecting text materials of an appropriate complexity level for the specific reader.
This adaptation can not only be used in order to avoid reading materials that are too
difficult, but also to avoid ones that are too simple, which can also impair reading
comprehension (McNamara et al. 1996). An even more advanced approach would
be to use algorithms for automatically quantifying text difficulty in order to correctly
adjust the complexity of text materials that impose too much mental workload (Vajjala
2015; Vajjala and Meurers 2014).

Besides adapting text difficulty to mental workload, an even simpler method for the
adaptation of reading materials to readers’ current mental workload is to control for
reading time investment by varying the speed of text presentation speed. For instance,
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state-of-the-art speed-reading applications such as theSpritz™ speed-reading applica-
tion (http://www.spritzinc.com) use rapid serial visual presentation (RSVP) to present
text materials word for word with an adjustable presentation speed. Each word of the
text is presented successively at a fixed position on the screen (Hedin and Lindgren
2007). In the Spritz application a certain letter in each word, the optimal recognition
point (ORP, Benedetto et al. 2015; Hester et al. 2016), is highlighted in red and also
presented at a fixed position to which readers should allocate their visual focus dur-
ing reading to minimize eye movements, thereby reading more efficiently. Moreover,
while the nominal reading speed in Spritz is set a priori by the reader, the actual reading
speed differs from word to word and is influenced by factors such the length of the
words and the length of the sentences, as well as by the current state of the reader. As
a result, longer words are displayed longer and longer sentences have longer pauses
at the end of the sentence (Benedetto et al. 2015). However, up to now, readers have
to either manually adjust the nominal presentation speed of a text passage they are
reading (according to their current perception of the adequacy of reading speed) or
read all text passages at the same speed independent of difference in difficulty. Manual
adjustment is cumbersome, requiring readers to pay attention to the current reading
speed and performmanual acts to make adjustments. An adaptive system operating on
the measurement of mental workload could conceivably change the nominal reading
speed of text materials in a seamless way. This would facilitate an efficient reading
experience that keeps readers always within an optimal range of mental workload,
avoiding possible misapprehensions as well as boredom.

A pivotal prerequisite for the development of such an adaptive system is (of course)
an appropriate online mental workload measure. This measure must be sensitive to
variations in mental workload that are resulting from text difficulty or reading speed.
Therefore, as a first step toward the development of such a system, we investigate
whether a task-independent predictive model for mental workload, which is calibrated
individually for any subject, can be used to distinguish between readingmaterials cate-
gorized as difficult or easy according to classic readability metrics.We also investigate
whether different levels of reading speed induced by slow or fast text presentation can
be differentiated through this predictive model.

2 Materials andmethods

2.1 Subjects

Thirteen subjects (onewas excluded from analyses—see Sect. 4) took part in our study,
with an average age of 32.6 years (SD � 7.4 years). Eight of them were female. The
native language of all subjects was German, and their vision was normal or corrected
to normal. All subjects were naive to the experiment, and none had former experience
with speed-reading applications. Prior to the experiment, subjects gave their written
informed consent to participate in the study and were paid 20 euros for compensation.
The experiment was conducted along a guideline ethically approved by the local ethics
committee.
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Fig. 1 Screenshots of the experimental paradigms. a Mental workload paradigm: high workload trial with
arithmetic subtraction assignment in the center of the screen, accompanied by visual distraction represented
by colorful spots randomly moving around the screen. b Text reading paradigm: sequentially each word is
presented in the RSVP reading interface (here ‘Gegenden’ meaning ‘areas’ in German). During reading the
red-highlighted letter is fixated. This letter is defined as the optimal point of recognition (ORP) for each
word. The duration of presentation for each word is determined by the subjectively chosen presentation
speed and factors such as word length or whether it is the end of a sentence

2.2 Apparatus

We recorded EEG from 64 active electrodes using an EEG system fromBrain Products
(Brain Amp DC, Brain Products GmbH, Gilching, Germany). Electrodes were posi-
tioned according to the extended international 10/20 system, with ground electrode
at AFz and reference at FCz, and data were rereferenced to common average refer-
ence (CAR). Electrode impedances were kept below 5 k�. EEG data were recorded
using the Brain Vision RDA (Brain Products GmbH, Gilching, Germany) and the
LabRecorder (Delorme et al. 2010). The native sampling rate was 5000 Hz, and the
recordingwas then subsampled to 500Hz.TheMATLABembedded toolboxEEGLAB
(Delorme and Makeig 2004) was used for EEG data analysis. All BCI classification
andmodel applicationwere performed using the open-source toolboxBCILAB (Kothe
and Makeig 2013).

The experimental paradigm for calibrating the predictive model (mental workload
paradigm) was implemented using SNAP (Iversen andMakeig 2014). The text reading
paradigm, presenting the texts to the subjects, was implemented in MATLAB, using
the Psychophysics Toolbox extensions (Brainard 1997; Kleiner et al. 2007) and the
Spritz API. Only the reading panel of the Spritz reading interface was shown, and
there was no menu to adjust reading speed or to play and pause text presentation. The
ORP was highlighted in red as in the original Spritz reading interface (see Fig. 1b).

2.3 Stimuli and procedure

Subjects completed both of the above-mentioned experimental paradigms (mental
workload paradigm and text reading paradigm). The mental workload paradigm (see
Fig. 1a) served as calibration session for the predictive model, presenting a series
of stimuli inducing low and high mental workload. This paradigm is introduced in
Krol et al. (2016) and is described in more detail below. In the text reading paradigm
(see Fig. 1b), subjects were asked to read twelve texts. Each text was presented at
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Fig. 2 Experimental procedure: Subjects first completed the mental workload paradigm. Afterward they
were familiarized with the speed-reading presentation technique and adjusted the text presentation speed
to a level of words per minute at which they felt comfortable reading. Then in the text reading paradigm
subjects read all twelve texts in blocks of three. Block order was randomized and the three texts in a block
were either easy or difficult texts presented at either the speed adjusted by the subject or with an increase
of 40% in speed. After each text subjects answered three literal text comprehension questions. Following
each block subjects completed the RTLX questionnaire

a certain speed (normal and fast) and had a certain difficulty (easy and difficult).
For each combination of text difficulty and presentation speed three different texts
were presented to the subjects, resulting in an experimental design with 3×4 texts.
Details of this experimental paradigm are described below, and the timeline of the full
experimental procedure is depicted in Fig. 2.

2.3.1 Mental workload paradigm

The mental workload paradigm used for calibrating the task-independent predictive
model was developed by Technical University Berlin (Team PhyPA). During this
paradigm subjects alternate between two tasks to induce phases of low and highmental
workload. In one task subjects focused on a cross-hair in the middle of an otherwise
black screen. In this condition subjects were instructed to relaxing their mind and
keeping their eyes open. This task is intended to induce a low level ofmental workload.
To induce levels of highworkload an arithmetic subtraction assignment appeared in the
center of the screen. At its appearance subjects were instructed to silently subtract the
number on the right side (range between 6 and 19, excluding 10 and 15) iteratively from
the number on the left (range between 200 and 1200) until the assignment disappeared
from the screen. In both tasks, 50%of the trials were accompanied by visual distraction
represented by colorful spots randomly moving around the screen. In previous studies,
these distractions have proven to serve the purpose of dissolving dependencies of any
class to ocular artifacts in the EEG resulting from visual differences in the tasks
(Krol et al. 2016; Zhang et al. 2018). The rationale here is that ocular artifacts are
controlled by the moving distractors to a high degree. In this way both classes (low
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and high workload) contain a similar, randomized amount of ocular artifacts such that
the differences induced by such artifacts are not class dependent. Subjects completed
40 trials of tasks with low and 40 trials with tasks of high-induced mental workload.
Each trial had a length of 10 s.

2.3.2 Text reading paradigm

Each subject read twelve texts from the GEO/GEOlino Corpus (Hancke et al. 2012)
for whichwe calculated scores of the two common readability formulas Flesch reading
ease and the Flesch-Kincaid grade level. The corpus is a collection of 1066 texts in
German from the magazine GEO, which has a focus on topics from nature, culture
and science and the magazine GEOlino, which covers similar topics but is targeted
at young people from age 8 to 14. Therefore, texts from GEO are generally more
difficult to read than those from the GEOlino magazine. Six texts were chosen from
each magazine, all covering similar topics about animals and their habitat. The overall
average number of words per text was 493 (SD � 34.6 words). GEO texts had an
average word count of 472 words (SD � 23.1 words) and GEOlino texts of 514 words
(SD� 31.7 words). GEO texts had an average Flesch reading ease of 45.1 (SD� 2.4),
which is equivalent to difficult texts on college level. The Flesch-Kincaid grade level
of GEO texts was 10.9 (SD � 0.29). For GEOlino texts the average Flesch reading
ease was 62 (SD � 1.38), corresponding to a readability suitable for 13–15-year-old
students. These texts had an average Flesch-Kincaid grade level of 7.9 (SD � 0.24).

All textual contents, except experimental instructions, were presented with the
Spritz speed-reading application interface. In the beginning of the paradigm subjects
read a short text to familiarize themselves with text reading using the Spritz inter-
face. Thereafter, subjects read short passages of a German novel and incrementally
adjusted the text presentation speed to a level they felt comfortable reading at. The
initial presentation speed was 200 wpm. After each passage subjects decided by but-
ton press whether the current presentation speed appeared too slow, too fast or just
right. According to the subject’s decision in the first presentation, speed was altered
by 100 wpm in the direction favored by the subject (or stayed the same). For the
next passages, the increment was decreased by half in each step and again adjusted
in the direction the subject wanted the presentation speed to alter. Presentation speed
adjustment continued until the subject had decided that the current speed was com-
fortable for two successive text passages. The last speed value in wpm was set as the
individually preferred presentation speed.

Subsequently each subject read all twelve texts. The six texts of each text difficulty
category (easy vs. difficult)were randomly assigned to twogroups of three texts.Oneof
the two groups was presented in the individually adjusted presentation speed (normal
category). The other group was presented at this speed raised by 40% to increase the
level of mental workload (fast category). Beforehand, we assessed in a pretest (n � 6,
age 27.2 years (SD� 3.8 years), all native languageGerman, fivemale) that an increase
in presentation speed by 40% resulted in higher subjective workload ratings according
to the Raw Task Load Index questionnaire (RTLX, Hart 2006). This is a modified
version of the NASA-TLX (Hart and Staveland 1988), a standardized questionnaire
to assess perceived mental workload on a Likert scale along six dimensions, lacking
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subjective weightings of the scales as used in the NASA-TLX. Between reading each
block of three texts subjects could rest before starting the next block. The presentation
order of the four text blockswas randomized. After each text block, subjects completed
the RTLX questionnaire to assess their subjectively perceived workload. After each
text, subjects answered three literal text comprehension questions. These questions
were generated by taking facts stated within single sentences in the texts and turning
them into questions (e.g., statement “With a diameter of 37 cm its eyes are the biggest
in the animal kingdom.”—generated question: “Which part of the giant squid is the
largest of its kind in the animal kingdom?”—displayed answers: (1) teeth, (2) nose,
(3) brain. (4) eye). For each question, four possible answers were displayed only
one of which was the correct choice. Subjects selected their answer by key press. In
total each subject answered 36 literal text comprehension questions (3 questions×12
texts).

3 Data analysis

3.1 EEG data

3.1.1 Calibration of the task-independent predictive model

To calibrate a subject-dependent passive BCI classifier for the task-independent pre-
dictive model, features from the spectral domain of the individual EEGwere extracted
using filter bank common spatial patterns (fbCSP, Ang et al. 2008). Neuroscientific
findings provide evidence that frequency bands from 4 to 7 (theta band) in fronto-
central areas and 8–13 Hz (alpha band) in parietal areas of the human scalp show
differenceswith increasingmentalworkload, in general (seeGerjets et al. 2014;Krause
et al. 2000; Pesonen et al. 2007; Scharinger et al. 2015, 2017). Typically, increased
mental workload is associated with an increase in frontal theta and a decrease in
parietal alpha activity (Gevins and Smith 2000; Gevins et al. 1997).

Along these findings, each of both frequency bands was selected as a filter bank
for fbCSP. In each trial, for each electrode, the EEG data were preprocessed by filter-
ing the band power in each of the two frequency bands, serving as input for fbCSP.
This approach resulted in a set of spatial filters to optimally extract features to dis-
criminate between low and high workload. Each set contained 2×3 spatial filters per
frequency band, where each subset of 3 filters was optimized for extracting maxi-
mal bandpower in one class while keeping the bandpower stable in the other class,
reflecting the above-mentioned concept of spectral indicators for mental workload.
EEG data projected through each of the 12 resulting filters served as features for
classification.

Data from each trial of 10 s were cut into consecutive epochs of one second length,
defining the training trials for classifier calibration. Each training trial served as an
instance for either high or low workload, according to the class of whole trial. For
each epoch, 3 features were extracted with fbCSP for each class and each frequency
band, as mentioned above, resulting in a set of (3×2×2 �)12-dimensional feature
vectors for each training trial. On the resulting set of 12-dimensional features for
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each class, regularized linear discriminant analysis (LDA) was trained as a classi-
fier that discriminates between high and low workload. The volume of the classes
ranged between 1347 and 1635 samples, as each class was populated with sam-
ples from three texts and the number of words per text ranged between 449 and
545 (see second part of Sect. 2.3), according to the number of words in each text.
As we expect this model to be task independent, the accuracy of the classification
on the calibration data provides an estimate for the accuracy of the calibration on
the text reading data. Therefore, a means of estimating classification accuracy was
derived by performing a (5,5) cross-validation on the calibration data. The data were
randomly divided into 5 partitions (indicated by the second number in (5,5)) from
which each was considered to be test data, while the remaining four partitions served
as calibration data for the classifier. The classifier was then trained on the calibra-
tion data and tested on the remaining partition, resulting in a classification error
for this run of the cross-validation. The average of all runs of the cross-validation
indicated the estimate of the classification error. This whole process was repeated
5 times (the first number in (5,5)) with different random selections of the partitions
to minimize the error resulting from bias in the randomization. The average of each
full cross-validation served as a final estimate of the classification error expected
for the application of the classifier on the text reading data. With this, the sig-
nal processing and machine learning for the task-independent predictive model are
defined.

While these filters are optimal for class discrimination, they cannot be interpreted
spatially from a neuroscientific perspective. By transforming them into so-called spa-
tial patterns, information about scalp projections of cortical activity that is relevant for
classification can be derived and interpreted neuroscientifically (Haufe et al. 2014).
For each feature a neuroscientifically interpretable pattern can be generated, identify-
ing the electrode activity that was relevant to discriminate the classes in the according
frequency band. In that way, information used by the classifier to discriminate between
classes can be identified and used to validate the classification approach. Spatial pat-
terns generated in this process were averaged over the three patterns in each subset and
then over all subjects resulting in four grand average patterns displaying the topogra-
phy for the two classes of low and high workload in the alpha and the theta frequency
band.

3.1.2 Classifier application to text reading data

For all subjects with an estimated classification accuracy of 60% or higher the calibra-
tion process was deemed as being acceptable as it was statistically better than random
(Müller-Putz et al. 2008).We used BCILAB’s built in function ‘onl_simulate’ to apply
the individually calibrated task-independent predictive model discriminating mental
workload to raw data of all twelve texts per subject. The model was applied to epochs
of 1 s length, serving as test trials, starting upon the onset of each displayed word of a
text. The volume of the classes ranged between 1347 and 1635 samples, as each class
was populated with samples from three texts and the number of words per text ranged
between 449 and 545 (see second part of Sect. 2.3), according to the number of words
in each text. The output of that classification was then annotated to the according
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word, indicating the workload that was predicted by the model at this time. Epochs
of the test trials overlapped, as there was more than one word displayed within one
second during the reading task. However, deriving predictive values from overlapping
epochs is unproblematic in our case. We are not performing binary classification but
generating a continuous development of predictive value over time—and are not aim-
ing at classifying single words, but rather text sections consisting of multiple words
with respective workload predictive values. The resulting predictive values for each
word ranged between 0 (low predicted workload) and 1 (high predicted workload).
This procedure resulted in a prediction of the mental workload for each word in each
text.

Subject-specific text-group averages of predictive values were compared to the
intrinsic difficulty of each text by means of a two-way, repeated-measures ANOVA.
The two within factors were text difficulty (easy vs. difficult) and presentation speed
(normal vs. fast).

To obtain further insights into possible effects in the repeated-measures ANOVA
detailed above, predictive values for each text category generated from each individual
task-independent predictive model were subjected to permutation tests with 5000
permutations. This number of permutations was chosen to ensure a precision of the
p value better than 0.001 in a confidence interval of 99%, according to Ojala and
Garriga (2010). Predictive values from all subjects according to text difficulty (easy
vs. difficult) and presentation speed (normal vs. fast) were tested against those from

all other categories, resulting in 6

(
�

(
4
2

)
� 3 × 2 × 1

)
permutation tests. Five of

these tests were one-tailed because we assumed that easy texts would result in lower
predictive values than difficult texts. Also, predictive values from texts of comparable
difficulty were expected to be lower when presented at normal speed than predictive
values of texts presented at an increased speed. Easy texts presented at normal speed
were expected to have lower predictive values than those of difficult, fast presented
texts. As no assumption regarding mental workload could be made, the permutation
test comparing predictive values of easy/fast speed texts and difficult/normal speed
texts was two-tailed.

Finally, we analyzed the predictive values on single-subject level by perform-
ing further one-tailed permutation tests. We hypothesized that predictive values
for easy texts would be lower than those of difficult texts when read at the
same presentation speed. Further we expected texts of the same text difficulty
to have lower workload predictive values for texts read at normal speed than
at a faster pace. Finally, we expected easy texts read at normal speed to have
lower predictive values than difficult texts read at fast speed. The five result-
ing permutation tests per subject were computed with again 5000 permutations
using all predictive values from the three texts belonging to the same text cate-
gory.

To obtain further insight into classification performance on a single-subject level
we performed an analysis of how to determine the amount of read words that need to
be classified to make a reliable discrimination between text categories. For each word
position we averaged the predictive values derived from texts of the same category
(three for each text difficulty or speed) at this position to correct for the intra-text
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variance of word and text complexity at that position in that category. This allows us
to calculate the cumulative predictive value for each word position in each category by
averaging these corrected predictive values up to the selected word position: For each
word wk

n in text Tk , that is from a certain text category c, the cumulative predictive
value cp at position n is derived by

cpcn �
n∑

l�1

3∑
k�1

cla
(
wk
l

)
3n

where cla
(
wk
l

)
denotes the predictive value derived for the word wk

l by linear dis-
criminant analysis. Let E be the segment of EEG data recorded for word wk

l and
P be the preprocessing of that data as described in Sect. 3. Then the application of
filter bank CSP on the preprocessed data results in a 12-dimensional feature vector
fbCSP(P(E)), as described in Sect. 3. Applying LDA to this feature vector then results
in the single-digit predictive value cla

(
wk
l

) � LDA(fbCSP(P(E))).
We plotted the development of the cumulative predictive values (cpcn)n∈{1,...,422} for

each word position in each text category. As the shortest text contained 422 words we
only considered the cumulative values of each text category up to the 422nd word. We
plotted all four combinations of factor comparisons (difficulty (easy vs. difficult) vs.
presentation speed (normal vs. fast)) for each subject. Each trained task-independent
predictive model is a probabilistic operator with a certain error rate. Hence, each
(cpcn) should only be considered as an estimate of the actual workload at that word
position. We calculated the individual variance of the error of the predictive values
for each subject by applying the mental workload classifier again to the calibration
paradigm data. The standard deviations of the predictive values for each class were
averaged and served as a criteria for the error range for the cumulative predictive
values (cpcn)n∈{1,...,422}: For each subject the classifier deviation is defined as D :�
std(C1)+std(C2)

2 , where std(Ck) denotes the standard deviation of the predictive values for
class k. Since it is taking all predictive values considered into account, cpc422 can be seen
as the most informed estimate of the workload associated with that text category. The
stability word position W is defined as the highest word position where the cumulative
predictive value exceeds the (rather conservative) criteria of one quarter of the classifier
deviation from cpc422: For each subject and text category c, Wc :� cpcM , with M �
maxn

(∣∣cpcn − cpc422
∣∣ > D

4

)
. The cumulative predictive values for each word position

following Wc can then be considered to be an estimate for the workload associated
to the corresponding text that is as good as that from cpc422. In other words, the text
position of the stability word serves as an estimate of how many words of a text a
single person must read such that the task-independent predictive model can provide
a best estimate for mental workload induced by that particular text category. For
each subject, we plotted the highest text position from the four determined stability
word positions (for the four different text categories) as the general stability word
position. We assume that after this text position, we can use the cumulative value
at this text position as a reliable indicator of induced mental workload for all text
categories.
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3.2 RTLX

Subjective workload ratings assessed in the RTLX questionnaire were converted to
workload scores according to NASA-TLX procedures (Hart 2006). These scores were
then subjected to a two-way repeated-measures ANOVA. The two within factors are
text difficulty (easy vs. difficult) and presentation speed (normal vs. fast).

3.3 Literal text comprehension

For each subject we collected the number of incorrect answers (total of 9 questions
per block, three questions per text) per text category. We then computed a two-way
repeated-measures ANOVA, with the two within factors text difficulty (easy vs. dif-
ficult) and presentation speed (normal vs. fast) for the counts of correctly answered
questions.

4 Results

4.1 EEG data

4.1.1 Mental workload paradigm

Table 1 gives an overview of classification error rates estimated from cross-validation
in the mental workload paradigm of all initial thirteen subjects. The average estimated
classification error rate was 25.9% (SD � 4.9). We performed a check to see whether
individual results provide evidence that the task-independent predictive model had
classification accuracies that are significantly better than random classification, taking
the confidence interval into account (seeMüller-Putz et al. 2008 for a detailed descrip-
tion of this approach). The results show that, for all but one subject, classifications are
expected to be clearly better than random classification. Therefore, this subject was
excluded from further analysis.

Figure 3 depicts that the spatial patterns resulting from the classifier model show a
clear focus on fronto-central electrodes for the theta band and on parietal electrodes for
the alpha band, providing evidence that the filters derived by fbCSP are in accordance
with the underlying neurophysiology.

4.1.2 Text reading paradigm

Subject-specific text-group averages of predictive values are displayed in Fig. 4.
The two-way repeated-measures ANOVA (see Fig. 6a) performed on mental work-

load predictive values yielded significance for the main factor text difficulty, F (1,11)
� 5.04, p � 0.046. Predictive values of difficult texts (M � 0.618, SD � 0.272) were
higher than predictive values for easy texts (M � 0.553, SD� 0.259). The main factor
text presentation speed was significant was well, F (1,11) � 11.64, p � 0.006. Predic-
tive values of texts presented at normal speed were lower (M � 0.559, SD � 0.267)
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Table 1 Estimated classification
results of the mental workload
paradigm for all initial thirteen
subjects

Subject ER (SD)

1 22.3 (2.0)

2 31.0 (12.0)

3 13.9 (3.1)

4 25.0 (3.4)

5 27.1 (3.2)

6 28.6 (6.5)

7 10.9 (5.5)

8 27.8 (3.2)

9 31.8 (2.4)

10 27.0 (8.4)

11 35.8 (5.7)

12 13.3 (4.2)

13 41.8 (4.1)

Average 25.9 (4.9)

Obtained error rates (ER) from
(5,5) cross-validation in percent
and their standard deviations
(SD), resulting from variance in
the classification error estimated
from each run of the
cross-validation, are reported

Fig. 3 Spatial patterns available to the mental workload task-independent predictive model averaged over
all twelve subjects where classification was discriminative. For the high mental workload condition (class
1) the patterns show a clear increase in frontal theta and a decrease in (lateral) parietal alpha. These results
are in accordance with findings from scientific literature regarding the effects of increased mental workload

than those of texts presented at the increased speed (M � 0.616, SD � 0.264). There
was no significant interaction, F (1,11) � 0.036, p � 0.854.

The results of five from the six permutation tests across subjects were highly signif-
icant (all ps <0.0001). Only in the case where predictive values of easy texts presented
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Fig. 4 Subject-wise predictive values of mental workload derived from application of the task-independent
predictive model trained on data from the mental workload paradigm to text reading data. For each text
reading condition all predictive values of all three texts belonging to the respective condition were averaged.
The dotted line displays the grand average of all subjects (n � 12). The results of the ANOVA and the
related permutation tests across subjects are validating the general hypotheses (as depicted in the dotted
line), while accordingly significant differences between conditions within subjects (solid lines) were also
found in subject-specific permutation tests

at fast speed tested against predictive values from difficult texts presented at normal
speed, results were not significant (p� 0.340). However, absolute values of observed
differences in predictive values between text conditions (M� 0.058, SD� 0.036) were
much smaller in all tests than variances of predictive values within text conditions (M
� 0.265, SD� 0.011). Effect sizes were accordingly small (M � 0.181, SD� 0.069),
ranging between 0.129 (easy fast vs. difficult fast) and 0.301 (easy normal vs. difficult
fast) in tests with significant results.

On single-subject level, one-tailed permutation tests (see Table 2) showed signifi-
cant results for 9 of 12 subjects when predictive values of easy texts and difficult texts,
both read in normal speed, were tested against each other. Nine tests also yielded
significance when easy texts read at normal speed and difficult texts read fast were
compared. When we compared predictive values from difficult texts read at normal
and fast speed, 9 of 12 permutation tests were significant. For easy texts read in nor-
mal and fast speed 8 of 12 tests yielded significance. The lowest count of significant
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Fig. 5 Cumulative predictive values derived from the predictive models of the mental workload classifiers.
Predictive values of all three texts per category were averaged and cumulated for each successive word in
the texts. The development of cumulative predictive values for all four text reading conditions is shown for
the first 422 words in the texts. On the x-axis the text position of the word is displayed. On the y-axis the
averaged cumulative predictive values are noted. The individual stability word position (highest of all for
text categories) is indicated by a vertical black line

permutation tests was reached when we tested predictive values of easy and difficult
texts read at both fast speed against each other—here only 7 of 12 tests had significant
results. The average number of significant permutation test results was 3.67 (SD �
1.07) per subject out of 5 tests. Overall effect sizes of significant permutation test
results are close to medium with an average effect size of − 0.444 (SD � 0.379). The
individually determined stability word position (see Fig. 5) was at text position 130.83
(SD � 72.72) on average.
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Fig. 6 a Predictive value averages (n � 12) of the task-independent predictive model applied to EEG data
of each word of the twelve texts subjects read, b averages (n � 12) of RTLX ratings for the different text
difficulties and text presentation speeds and c averaged (n � 12) numbers of incorrectly answered literal
text comprehension questions. Error bars represent standard deviations. Significant results of the ANOVAs
are indicated

4.2 RTLX

The two-way repeated-measures ANOVA (see Fig. 6b) performed on subjective work-
load ratings revealed significance for the main factor text difficulty, F (1,11) � 6.98,
p � 0.023. Overall difficult texts (M � 24.98, SD � 10.76) received higher mental
workload ratings than easy texts (M � 22.78, SD� 10.51). Results for the main factor
presentation speed were significant as well, F (1,11) � 6.48, p � 0.027. Texts pre-
sented at the normal (M � 21.95, SD � 10.18) self-adjusted reading speed received
lower RTLX ratings than texts presented with an increase of 40% (M � 25.81, SD �
11.09). The interaction was not significant, F (1,11) � 1.87, p � 0.199.

4.3 Literal text comprehension

Individually adjusted text presentation rates from all subjects ranged between 150 and
500 wpm. The average adjusted reading speed was 269 wpm (SD � 109 wpm). The
ANOVA performed on incorrect answers given to literal text comprehension questions
(see Fig. 6c) revealed neither significant main effects, nor an interaction effect, all ps
>0.249. On average subjects answered 2.6 (SD � 1.7) questions out of nine per text
block incorrectly. An average of 2 (SD � 1.8) incorrect answers was given for easy
texts and 3.1 (SD � 1.3) for difficult texts presented at normal speed. For texts blocks
with an increased presentation speed, questions on easy texts were answered 2.7 (SD
� 1.5) times incorrectly on average and difficult texts 2.8 (SD � 1.9) times.
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5 Discussion

The aim of this investigation was to examine whether a task-independent predictive
model for mental workload detection shows a sensitivity high enough to identify the
individual difficulty induced by reading a specific text. The results of the presented
experiment show that an individually calibrated model shows significant differences
between reading easy and difficult texts at different presentation speeds.

Regarding text readability, results from EEG data suggest that we can significantly
distinguish easy fromdifficult texts, evenon single-subject level, even thoughvariances
of mental workload predictive values within and between subjects are high. High
variances between subjects most probably are a result of different intra-subjective
ratios between arithmetic and text reading abilities.

To our knowledge no other study has yet investigated whether text difficulty and
reading speed can be directly deduced frommentalworkload assessed byEEG. Studies
(e.g., Schultheis and Jameson 2004) have investigated changes in EEGactivity induced
by reading. They provided a descriptive analysis of that brain activity, but did neither
identify sensitive and specific cognitive processes—like mental workload—related to
that activity, nor did they define and investigate a measure from which text difficulty
or reading speed could be deduced.

The neuroadaptive measure defined here showed overall that predictive values were
higher for words from difficult texts than for words from easy texts. Moreover, on
single-subject level for nine out of twelve subjects, mental workload predictive val-
ues were significantly higher for difficult texts than for easy texts when reading at a
self-adjusted speed level. If difficult texts were read with an increased speed, predic-
tive values for mental workload were even higher and more distinct from the lower
predictive values of easy texts read at normal speed. The latter was the case for nine
out of twelve subjects as well. When we compared predictive values of easy and diffi-
cult texts both read at an increased speed, only seven out of twelve permutation tests
yielded significant results.

Regarding differences in mental workload induced by different text presentation
speedswe found a highly significant effect for increased presentation speeds onmental
workload predictive values. On single-subject level, in nine out of twelve cases mental
workload predictive values were higher for difficult texts when they were read at an
increased speed compared to reading at a self-adjusted speed level. For easy texts, in
eight out of twelve subjects’ predictive values were considerably higher when reading
at increased texts presentation speed opposed to reading at a self-adjusted speed.

As the chosen texts were written for specific target groups (educated adults and
young teenagers), it can be assumed that the difficulty of each category is aimed at
a certain educational level. Furthermore, measures for text complexity confirmed a
difference between easy and difficult texts (see Sects. 2, 2.3, 2.3.2) and an increase of
reading speed should add a stable amount of mental workload for the reader. Taken
together, it can be assumed that each full text induces a certain level ofmentalworkload
when read, and that these levels can be identified by the used predictive models. The
classifier outputs are in line with this assumption as shown in Fig. 5 and Table 2. The
curves in Fig. 5 stabilize after about 130 words, showing that the classifier outputs
converge to a clear estimate of the induced mental workload, already after about 30 s
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of reading. In addition, a clear, expected difference in measured workload can be seen
across subjects between the different text categories, as validated by the ANOVA and
depicted in Fig. 4. In conclusion, the results of this study are fully in line with the
expected effect of the stimuli on the mental workload of the readers, providing a high
validity to the used task-independent approach based on passive BCI.

Results of the ratings given in the RTLX questionnaire assert that readers perceive
a rise in reading speed of 40% as an increase in subjectively experienced mental
workload. Also, reading difficult texts was associated with higher scores for mental
workload as compared to easier texts. We therefore conclude that the subjective expe-
rience of mental workload was in accordance with the properties of the predictive
values we obtained from the predictive model for each subject with regard to changes
in text readability and reading speed.

Since no statistical differences in literal comprehension were shown between dif-
ferent text difficulties and presentation speeds, it can be concluded that an increased
presentation speed did not lead to lower levels of literal comprehension in our study.
On average, two-thirds of the comprehension questions within each text block were
answered correctly by subjects. Thus, the results from literal comprehension questions
indicate that subjects read all variations of texts attentively and with the same level
of basic understanding. However, as we did not include more complex comprehen-
sion questions that require for elaborated inferences, we cannot rule out that higher
comprehension processes might have suffered from increased reading speeds.

The self-selected presentation speed for the normal presentation showed a large
variance between subjects. The aim of selecting the individual speed was to generate
a speed that is comfortable for each individual reader, neither overloading nor boring
them. The results of the text comprehension analysis showed a high comprehension
rate with low variance, indicating that subjects could follow the texts easily. This leads
to the conclusion that the presentation speedswere indeed comfortable for the subjects,
even though the presentation speeds differed strongly between readers.

The overall duration of our experiment was a little less than an hour on average.
We took several counter measures to avoid fatigue overall, as well as possible effects
of it. Firstly, participants were allowed several breaks throughout the experiment to
recover from tasks they were performing. Even if fatigue or high workload was not
avoided by those breaks, they should not have an effect on the results we saw from the
experiment, as the order the four text categories presented to subjects was randomized
and the overall duration of the experiment was about the same for all subjects, so the
induced fatigue should not vary among subjects.

Altogether, the results showed that the task-independent predictive models are
capable of identifying different levels of text readability and presentation speed on
single-subject level. We proposed an estimate of how many words need to be read to
make a reliable estimation of the average mental workload associated with a text. This
criterion suggests that an average count of about 130 words would be sufficient.

In conclusion, the presented results allow to add text readability and presentation
speed to the task domains the task-independent mental workload classifier introduced
in Krol et al. (2016) and further investigated by Zhang et al. (2018) can be successfully
applied to.
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The presented approach deviates from often-used practices of binary classification
based on BCI and aims at the identification of the levels of workload on a continu-
ous scale. Results presented here support the idea that, in future applications of this
approach, the subjective reading difficulty of a certain section in a text can be identified
based on estimations of the induced mental workload. It, hence, is not necessary to
define certain categories of difficulty for texts, as done in the presented experiment.
Instead, the subjective, momentary reading difficulty of a text can be traced over time
on a continuous scale.

However, it remains unclear how well the predictive model would perform for texts
whose readability is more similar than that of the texts used in this study. The precision
of the mental workload classifier should be further investigated in future research by
presenting subjects with a larger spectrum of readability levels.

Furthermore, smaller steps of presentation speed alternation should be examined
in order to investigate how mental workload predictive values are changed at presen-
tation speeds lower than an individually adjusted level. It would also be of interest
to determine whether or not predictive values behave linearly with changes in text
readability and presentation speed.

In a real-world reading scenario, the main goal of the user is to read a specific
text. From a user experience point of view, it would be bothersome to have to invest
additional time and effort to enable amore individualized user support for themain task
of reading. For the implementation of a neuroadaptive reading interface currently such
additional effort must be invested by the user, as he undergoes an initial calibration
phase to collect training data for the task-independent mental workload classifier. In
the future, this time-consuming step in creating a neuroadaptive reading environment
could become unnecessary through the establishment of a mental workload classifier
that is not only task-, but subject-independent as well. In such a universal classification
(Zander 2011, p. 96ff, p. 142ff.) a classifier can be defined that can be transferred
between sessions and even between subjects, leading to reduced calibration time for
an individual subject or even making it obsolete. Approaches toward such universal
classification focusing specifically on mental workload are currently investigated (see
e.g., Durkee et al. 2016; Zander 2011). Another approach for reduction of calibration
time is transfer learning between calibration sessions (Jayaram et al. 2016) which
has already been applied to motor imagery classification contexts (Krauledat 2008,
p. 90ff). In future investigations such approaches for a reduction of calibration time
should be investigated for the here presented neuroadaptive reading environment.

In addition, it would be of interest how well the results from this study can be gen-
eralized to other forms of reading and text presentation techniques (as e.g., traditional
continuous text reading). We assume that in further studies other reading scenarios
could be investigated by additional collection of eye-tracking data. This would enable
us to map which word of a text currently is read by a subject to the corresponding
EEG data we record.

Though exceeding the scope of this study, it should be further investigated in what
waymental workload is effected by RSVP reading itself. It has already been found that
workload can be increased when long text passages are read with RSVP presentation
(Öquist and Goldstein 2003) and mental workload in general is higher for RSVP
reading compared to traditional (continuous) reading (Gannon et al. 2016). An analysis
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and comparison of RSVP reading and traditional reading regarding mental workload
is not a part of our work presented here as it is outside of the realm of the research
questions we pose, which is restricted to RSVP reading only. In a follow-up study,
where the generalizability of our results to traditional reading will be tested, this
comparison of reading techniques would be investigated in more depth.

Moreover, in this feasibility study the subject’s reading fluency was not assessed.
Hence, possible effects of reading fluency on the classifier performance and workload
prediction were not analyzed. In a follow-up study with more subjects the effects of
reading fluency should be investigated.

While effect sizes on individual data are at a good level, those between subjects are
rather small. This can be seen as a result of the high variance of the predictive values
between subjects, as shown in Fig. 4. Currently, the reason for this high variance is
unclear. We assume, though, that it is a result of differences in mathematical abilities
and reading skills, which should be investigated in future studies.

As reproducibility of results is relevant, specifically for newapproaches as presented
here, all preprocessed data and analyses codewill be linked at thewebsite of the Society
for Neuroadaptive Technology (www.neuroadaptive.org).

6 Conclusion

Neuroadaptive systems have the potential, if well designed, to decrease mental work-
load for users during interaction with a system (Byrne and Parasuraman 1996). Such a
system can continuously learn, while the user interacts with the machine and thereby
build and refine a user model that allows for individualization of software and contents
over time.

Such a model would reflect highly subjective aspects of information that are not
typically included in methods relying on large amounts of objective data. Statistical
inference (see Vapnik 1999) based on large amounts of data can be used to calculate
general readability metrics, but leave no room for adaptations based on individual,
momentary situational changes (such as changes in a person’s mindset). It is precisely
this kind of transient information, however, that is paramount for correct situational
interpretation in general (Hudlicka and Mcneese 2002). We propose that the approach
presented here could be used to complement models built through statistical inference
on large amounts of data by providing information about the subjective, momen-
tary interpretation of the human. Technology could then not only learn to understand
general patterns that exist in our world, but also gain a better understanding of the
momentary mindset of individual human beings in this world. The study presented
here provides an additional, supportive argument—with the example of mental work-
load—for this vision.

We demonstrate that predictions made by the task-independent predictive model
trained to identify levels of workload can be utilized in order to assess differences in
text readability on a single-subject level. Additionally, changes in mental workload
induced by different levels of text presentation speeds are also reflected in the output of
the model. These levels can be distinguished through the classifier’s predictive values
of about the first 130 words read, which took about 30 s in our experiments. With
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that, the system can gain an understanding of the current effect a text has toward the
reader’s cognition and adapt itself accordingly.

Even though questions regarding the precision of the mental workload classifier
in practical contexts remain to be answered, the results of our study suggest possible
benefits this measure could bring in the form of a neuroadaptive system for (speed)
reading applications.

A user model with a classifier trained over time to identify text readability levels
for an individual user could automatically adapt parameters of the reading applica-
tion in real time, e.g., the presentation speed. Conducting such adaptations within a
closed-loop system between reading application and reader can elicit changes in the
user’s mental state. These changes can then be fed back to the system again to perform
further adaptation or to learn from the induced changes in mental user state for future
adaptation. The implementation of a neuroadaptive reading application could enable
more effective, individualized reading at a balanced level of workload. Readers should
neither be over- nor underloaded while reading for an optimal state of mind to process
and store the information read. This was firstly discussed in instructional design theo-
ries (e.g., Vygotsky 1980 or Salomon 1984). The main problem for the application of
these theories is to measure the current, actual mental workload, which was difficult
so far. The idea of using neuroadaptive interfaces to solve this problem is discussed for
the first time in a general sense in Gerjets et al. (2014). The work presented here builds
up on these concepts and describes an approach that allows for the assessment of men-
tal workload while reading a text. The next steps will be the use of this information in
an adaptive reading interface, closing the loop and keeping the reader in an improved
cognitive state, which can be done in different ways. Apart from presentation speed
changes, possible adaptation of readability levels might include real-time exchange of
words or restructuration of the text material. If the system has, e.g., detected that the
current material is difficult for the user to read, infrequent words could be automati-
cally exchanged by easier synonyms. Furthermore, sentences could be restructured in
order to reduce sentence length. Further possibilities for real-time text simplification
have been discussed in Crossley et al. (2011).

This study shows a new example of how passive brain–computer interfaces can
be used to develop innovative neuroadaptive technologies. It also suggests ways how
such technology could be implemented, inspiring studies that are not aiming at eval-
uating BCIs, but furthermore investigating how this approach can be integrated into
technologies to support people in their daily life. Neuroadaptive systems capable of
inducing user-specific adaptation to the system’s behavior might not only improve
reading experience but could be particularly useful in any workload-sensitive context,
such as personalized learning environments or online tutoring systems, leading to new
ways for technology to present information to us.
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