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Abstract This study describes the application of logistic regression to rock-fall suscep-

tibility mapping along 11 km of a mountainous road on the Salavat Abad saddle, in

southwest Kurdistan, Iran. To determine the factors influencing rock-falls, data layers of

slope degree, slope aspect, slope curvature, elevation, distance to road, distance to fault,

lithology, and land use were analyzed by logistic regression analysis. The results are shown

as rock-fall susceptibility maps. A spatial database, which included 68 sites (34 rock-fall

point cells with value of 1 and 34 no rock-fall point cells with value of 0) was developed and

analyzed using a Geographic Information System, GIS. The results are shown as four

classes of rock-fall susceptibility. In this study, distance to fault, lithology, slope curvature,

slope degree, and distance to road were found to be the most important factors affecting

rock-fall. It was concluded that about 76 % of the study area can be classified as having

moderate and high susceptibility classes. Rock-fall point cells were used to verify results of

the rock-fall susceptibility map using success curve rate and the area under the curve. The

verification results showed that the area under the curve for rock-fall susceptibility map is

77.57 %. The results from this study demonstrated that the use of a logistic regression model

within a GIS framework is useful and suitable for rock-fall susceptibility mapping. The

rock-fall susceptibility map can be used to reduce susceptibility associated with rock-fall.

Keywords Rock-fall � Susceptibility map � Logistic regression � Salavat Abad �
Kurdistan � Iran

1 Introduction

Rock-falls occur when masses of rock or other material detach from a steep slope or cliff

and descend by free fall, sliding, toppling, or bouncing. Rock-fall is one of the main slope
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movement processes in the natural evolution of rocky mountain slopes (e.g., Selby 1982).

On February 10, 1996, a huge rock-fall along highway 229 on Hokkaido Island in Japan

killed 20 people and captured much international attention to the rock-fall problem (e.g.,

Yamagishi 2000). It has been known that 10 % of world population lives in mountainous

terrains and 36 % of the lands are mountainous. With the high increase in world popu-

lation, human activities in mountainous areas have correspondingly increased (e.g., Chau

et al. 2003). The intensified human activities in mountainous terrains have led to land cover

change, deforestation, and more livestock grazing on steep slopes, which can trigger huge

mass movements (e.g., Kelarestaghi and Ahmadi 2009). On March 2008, rock-falls on the

Hezar Cham saddle in northern Iran, which was triggered by earthquakes and heavy

precipitations, killed 21 people and caused heavy damages to the road (http://www.ngdir.ir

). On February 14, 2006, a rock-fall on the Gheshm-Maigon road in southern Iran has led to

the destruction of 1,000 m of the road and damaged 5 houses. According to the reports by

the Transport Office of the Kurdistan province, in 2006, the total costs of the damages from

rock-falls to the Salavat Abad saddle (the case study) were about 28,000$ (Fig. 1).

Studies of rock-falls are often based on field surveys, and susceptibility is estimated

either by an empirical assessment of susceptibility to failure, or by the calculation of a

safety factor derived from models of rock mechanics (e.g., Hoek and Bray 1981). Once a

location is identified with rock-fall risk, the probability of the maximum travel distance and

maximum energy of impact of rock-fall events at the location is normally assessed using

computer simulations (e.g., Wu 1985; Kobayashi et al. 1990; Azzoni et al. 1995).

There are many different models for study on rock-fall events in three main categories:

(1) empirical models based on relationships between topographical factors and the length

of the run out of rock-falls (e.g., Keylock and Domaas 1999), (2) process-based models that

describe or simulate the modes of motion of falling rocks over slope surfaces (e.g., Kirkby

and Statham 1975; Statham 1976; Hungr and Evans 1988; Pfeiffer and Bowen 1989;

Kobayashi et al. 1990), and (3) GIS-based models that are running within a GIS envi-

ronment or they are raster-based models for which input data are provided by GIS analysis

(e.g., Evans and Hungr 1993; Hegg and Kienholz 1995; Chau et al. 2004). Little work was

done on rock-fall susceptibility mapping based on GIS (e.g., Carrara et al. 1995; Chung

et al. 1995; Guzzetti et al. 1999; Suzen and Doyuran 2004a, b; Chau et al. 2004). Sus-

ceptibility maps are found to be very useful in estimating, managing, and mitigating mass

movement susceptibility for a region (e.g., Corominas and Santacana 2003; Chung and

Fabbri 2003; Sassa et al. 2004).

There are various methods to susceptibility mapping including the following: semi-

qualitative methods similar to the analytical hierarchy process (AHP) (e.g., Barredol et al.

2000), bivariate statistical analysis (e.g., Kelarestaghi and Ahmadi 2009; Nandi and

Shakoor 2009), the probability–frequency ratio model (e.g., Lee and Pradhan 2006), and

multivariate regression methods such as logistic regression (e.g., Lee and Sambath 2006;

Pradhan 2010; Su and Cui 2010; Choi et al. 2012). The recent and rapid increase in

computing capacity has also allowed scientists to treat large sets of data, which is a crucial

factor in applying multivariate statistical analysis. Multivariate procedures have long been

employed for landslide susceptibility mapping (e.g., Reger 1979; Carrara et al. 1992;

Gorseveski et al. 2000; Baeza and Corominas 2001; Lee and Min 2001; Ayenew and

Barbieri 2005; Can et al. 2005; Chau and Chan 2005; Greco et al. 2007). Among the

various susceptibility mapping methods, logistic regression (LR) presents certain advan-

tages for studying the landslides of soil and/or weathered rocks (e.g., Gorseveski et al.

2000; Dai and Lee 2002; Chau et al. 2004; Ayalew and Yamagishi 2004; Lee and Sambath

2006; Akgun and Bulut 2007; Akgun et al. 2008; Lamelas et al. 2008). Since very few
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Fig. 1 Rock-falls cleanup on Salavat Abad road at Kurdistan, Iran
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studies on rock-fall susceptibility mapping based on GIS and statistical analysis have been

noticed (e.g., Chau et al. 2004); we decided to further study this topic. Thus, the aim of this

research is to apply and assess a logistic regression model to generate rock-fall suscepti-

bility map along a mountainous road in the western parts of Iran.

2 Materials and methods

2.1 Topographic and geologic setting of the study area

The Salavat Abad saddle is located between longitudes of 47�, 070, 4800 and 47�, 080, 5700 N

and latitudes of 35�, 150, 1600 and 35�, 190, 4000 E, in the southwest parts of the Kurdistan

province, Iran (Fig. 2). It covers an area of about 1871 hectares. The elevation is varying

from 1,699 to 2,500 m above sea level. The study area selected is a part of the Zagros

Mountainous region, whose geologic setting resulted from tectonic activities at the end of

tertiary period. The Salavat Abad saddle is the effect of internal tectonization by orogen on

the Zagros Mountains. Geology units in the study area include the following: North–South

trending andesitic and basaltic rocks, limestone and red conglomerates (Fig. 3). The main

lithology is the limestone occupying nearly 94 % of the study area. The Salavat Abad

saddle has an N–S trend and is thrust over volcanic deposits. The limestone in the study

area has been affected by mechanical weathering, snow melt, and frequent freezing so that

several rock-falls have taken place at the section of this road.

One step in generating a rock-fall distribution map was taken in the laboratory, and

another one was taken in the field. Recognition of rock-falls on aerial photographs is

difficult because they are located on steep slopes and artificial slopes and easily confused

with man-made objects. Thus, they are not easily identified similarly to the landslides that

have occurred at a scale larger than that of the falls. Therefore, the recognition of rock-falls

in the study was done directly in the field. The collection of the rock-falls locations was

recorded by the Transport Office of the Kurdistan province in 2006. Based on the dis-

continuity in the rock-falls, the geologists at the Transport Office of the Kurdistan province

have recorded the central of each rock-fall slopes as one of the 34 rock-falls in the study

area. When the 34 rock-falls were selected, 50 no-rock-falls locations were recorded by the

same method as the 34 rock-falls were selected. Finally, 34 out of 50 no-rock-falls were

Fig. 2 Location of rock-falls in the study area and Iran
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randomly selected. The data in the report were verified using field surveying and slopes

instability observations. The rock-falls that had occurred on the slopes had high-density

cracks and joints so that on some of the slopes in the case study area, the dimensions of

cracks and joints were comparatively large causing the rocks to fall downward the slope

and be collected in its toe (Fig. 1).

The most significant fault in the study area is the Salavat Abad deep active fault. It

passes through the entire area from the south to the north. The distances of all rock-falls to

the fault section were calculated and classified for the convenience of interpretation.

Generally, rock masses near the Salavat Abad fault zone are less intact and severely

fractured. According to our investigation, the Salavat Abad deep fault is a dominant factor

controlling the development of rock-falls (Fig. 4).

2.2 Data and methods

First of all, eight effective factors on rock-falls were recognized based on the field work

including social research techniques, that is, local interviews and comprehensive literature

reviews. They are as follows: slope degree, slope aspect, slope curvature, elevation, dis-

tance to road, distance to fault, lithology, and land use. The dependent variable was the

presence of rock-falls at the thirty-four locations used as sites considered as susceptible to

rock-fall along the 11 km of a road in the Salavat Abad saddle. The Sanandaj and

Halizabad 1:25,000 topography maps were geo-referenced with the Erdas Imagine 8.5

Software. Contour lines were obtained from the 1:25,000 topographic maps with interval of

Fig. 3 Geology map of the study area
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10 m using the Arc View 3.2 software. The digital elevation model has been produced

from the digitized contour lines with 20 9 20 m pixel resolution, using a triangular

irregular network (TIN) model. Slope degree, slope aspect, slope curvature, and elevation

maps were derived from the digital elevation model (DEM). Distance to road and fault

were calculated using conventional GIS functions. Lithology map with the same resolution

was obtained from a 1:100,000 geology map (Table 1). The 34 rock-fall areas were

Fig. 4 Independent variables maps and histogram of rock-fall density for each variable including the
following: a slope angle, b slope aspect, c slope curvature, d elevation above sea level, e distance to road,
f distance to fault, g lithology
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Fig. 4 continued
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digitized to produce a rock-fall distribution map. In this study, each 20-m pixel represents a

rock-fall. As mentioned before, 34 pixels (rock-fall or slope) were selected to establish the

relationship between rock-fall presence and the presence of factor. All data layers were

rasterized to the DEM resolution using Arc View 3.2. The rock-fall locations that are used

in present study were mainly extracted from the Transport Office of the Kurdistan province

as well as from past reports and field verification. In this study, we have used a basic data

set prepared by the Iran Cartographic Center, the Iran Geological Organization and the Iran

Space Agency. The data are of relatively high quality. Table 1 shows some detailed

information about the data used.

2.3 Logistic multiple regression

Logistic multiple regression is a multivariate technique, which consider several physical

parameters that may affect the probability of rock-fall occurrence. The regression is

considered here ideal to integrate both the binary and the scalar values as the independent

variables, which allows for the use of variables that are not continuous or qualitatively

derived. In the present study, the dependent variable is a binary variable representing the

presence or absence of rock-falls. The technique of logistic multiple regression yields

coefficients for each variable based on data derived from samples taken by the study area.

These coefficients serve as weights in an algorithm, which can be used in the GIS database

to produce a map depicting the probability of rock-fall occurrence. Quantitatively, the

relationship between the occurrence and its dependency on several variables can be

expressed as:

PðeventÞ ¼ 1

ð1þ exp�zÞ ð1Þ

where p (event) is probability of an event occurring. In the present, p (event) is the

estimated probability of rock-fall occurrence. As Z varies from -? to ??, the probability

varies from 0 to 1. Z is the linear combination:

z ¼ B0 þ B1X1 þ B2X2 þ � � � þ BnXn ð2Þ

Table 1 Data layer of study area

Classification Sub-
classification

Extracted
factor

GIS data
type

Scale References

Basic map Rock-fall Rock-falls
inventory

Point
coverage

1:25,000 Field works

Topography Slope gradient Grid 20 m 9 20 m Iran Cartographic
OrganizationSlope aspect Grid 20 m 9 20 m

Slope
curvature

Grid 20 m 9 20 m

Geology Lithology Polygon
coverage

1:100,000 Iran Geological
Organization

Fault Line
coverage

Land Sat ETM
image

Land use Grid 20 m 9 20 m Iran Space Agency
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General equation:

Y ¼ log itðpÞ ¼ ln
p

1� p

� �
¼ B0 þ B1X1 þ B2X2 þ � � � þ BnXn ð3Þ

where Y is probability of rock-fall occurrence, Bn (i ¼ 0; 1; . . .; n) is the coefficient esti-

mated from the sample data, n is the number of independent variables, and Xn

(i ¼ 0; 1; . . .; n) is the independent variables. In logistic multiple regression, a coding

scheme should be selected for the categorical variables that by creating a new set of

variables that correspond in some way to the original categories. The number of new

variables required to present a categorical variables is one less than that of the number of

categories. The coefficients of the logistic multiple regression models are estimated using

the maximum-likelihood method. In other words, the coefficients that make the observed

results most ‘‘likely’’ are selected. Since the relationship between the independent variables

and the probability is nonlinear in the logistic multiple regression model, an iterative

algorithm is necessary for parameter estimation. Logistic multiple regression modeling is

intended to describe the likelihood of rock-fall occurrence on a regional scale and is very

suitable for the assessment of slope instability, since the observed data consist of locations

(points) or cells with a value of 0 (absence of rock-fall) or 1 (presence of rock-fall). This

method allows a spatial distribution of probabilities or susceptibility values to calculate

within the GIS environment.

3 Results

3.1 Rock-fall susceptibility modeling

A multiple logistic regression model was constructed initially based on the physical

parameters (Table 2). In the present analysis, the likelihood-ratio test is used for deter-

mining whether variables should be added to the model. If the observed significance level

is greater than the probability for remaining in the model (0.1 in this study), the variable is

excluded from the process and the processing statistics are recalculated to see whether any

other variables are eligible for excluding. Both slope aspect and land use were found to be

not significant and were thus eliminated from the stepwise procedure. Not that all the

variables in the analysis are binary variables representing presence or absence of the

corresponding mapping units or intervals. For each variable, the last category is used as the

default reference category, and coefficient of that map unit or category is thus overridden.

Coefficients, significance, and Exp (b) are shown in Table 3. Logistic regression equations,

Eq. (4) for the Salavat Abad saddle were obtained:

pðRockfall-SalvatabadÞ ¼ 1

1þ exp�ð�2:189�2:705ðA3Þþ3:135ðE2Þ�2:832ðF2Þþ4:976ðG4Þ�1:672ðH3Þ

ð4Þ

For the rock-fall susceptibility map (Fig. 6), in the study area, the values obtained from

applying the logistic multiple regressions (Eq. 4) were transferred to the Arc View GIS 3.2

Software system and applied to the independent variables representing the present con-

dition for each pixel or cell within the study area. At last, the range of values of suscep-

tibility to rock-falls in the susceptibility map was classified into 4 categories: very low

(0–0.25), low (0.25–0.35), moderate (0.35–0.5), and high ([0.5). The ranges of the
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individual categories were derived based on histogram of the estimated susceptibility to

rock-fall shown in Fig. 5 (Dai and Lee 2002). At first, the rock-fall susceptibility map was

divided into 10 categories. This map was then overlaid with presence and absence of rock-

falls, and this histogram was obtained. Two categories from 0 to 0.5 (left side as low

susceptibility) and from 0.5 to 1 (right side as high susceptibility) are shown. The left side

was divided into three categories based on absence of rock-falls, and the right left was

divided into one category. Finally, the susceptibility map was classified into 4 categories:

very low (0–0.25), low (0.25–0.35), moderate (0.35–0.5), and high ([0.5). The rock-fall

susceptibility map was divided into 10 categories. Theoretically, if we have a model that

successfully distinguishes the two groups based on a classification cutoff value of 0.5, the

cases for which rock-falls have occurred should be to the right of 0.5, while the cases for

which rock-falls have not occurred should be to the left of 0.5.

3.2 Susceptibility map and its reliability

The actual calculation was done using the ‘‘Map Calculator’’ and ‘‘Map Query’’ functions

in Arc/view 3.2. The b coefficients had been obtained from the statistical analysis. Then, b
values were assigned to each category of variable (Table 3). After assignment of b value to

each category, we can combine all layers (Fig. 4) by using Eqs. (1) and (2) to yield the

susceptibility map (Fig. 6). The fitted logistic regression model can be used to calculate the

probability of rock-fall occurrence of both the rock-fall and the non-rock-fall. Whenever

the probability of a rock-fall is larger than 0.5, the rock-fall is considered likely; and

whenever the probability of a rock-fall is less than 0.5, that rock-fall is considered unlikely.

Thus, when the probability in (1) for the any of original rock-fall is larger than 0.5, the

prediction is considered acceptable. Similarly, if p \ 0.5 for the case of non-rock-fall, the

Table 2 List of independent variables used in logistic regression

Slope
degree

Symbol Slope
aspect

Symbol Elevation Symbol Land use Symbol

0–10 A1 Flat B1 1,699–1,800 C1 Garden D1

10–15 A2 North B2 1,800–1,900 C2 Garden and rang D2

15–20 A3 East north B3 1,900–2,000 C3 D3

20–25 A4 East B4 2,000–2,100 C4 Rocky area D4

25–30 A5 East south B5 2,100–2,200 C5 Salavat Abad village D5

30–35 A6 South B6 2,200–2,300 C6

35–40 A7 West south B7 2,300–2,400 C7 Semi-density range

[40 A8 West B8 2,400–2,500 C8

West north B9

Lithology Symbol Distance
to road

Symbol Distance
to fault

Symbol Slope
curvature

Symbol

Basalt and andesite E1 0–100 F1 0–150 G1 Concave H1

E2 100–200 F2 150–300 G2 Straight (flat) H2

Limestone E3 200–300 F3 300–450 G3 H3

Conglomerate and shale 300–400 F4 450–600 G4 Convex

400–500 F5 [600 G5

[500 F6
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prediction is viewed as successful. In validation, the accurate rate is 85.3 % for rock-fall

group and 75.1 % for non-rock-fall group using error matrix method. The total accurate

rate is 79.1 %, which is considered acceptable (Table 4).

In the other method, we have conducted another series of logistic regression analysis by

excluding each of the categories of slope degree, slope aspect, slope curvature, elevation,

distance to road, distance to fault, lithology, and land use. This is a standard technique in

logistic regression analysis to examine the statistical significance of each of the selected

independent variables (e.g., Hosmer and Lemeshow 2000; Menard 2002). It was found that

-2LL is the smallest if all variables are included. The -2LL can be considered as a

goodness of fit for the model. Since the likelihood is between 0 and 1, log likelihood ranges

from negative infinity to zero, and in turn, the -2LL would be from 0 to infinity.

Therefore, the original analysis of incorporating all variables should be used. Table 5 has

shown that -2LL for all eight variables is 57.445, and for slope aspect, elevation and land

use, this value is the same. In other words, these three variables are not significant at 99 %

level of probability with rock-falls and excluded from the final model. However, there is no

universal standard for this parameter to be used for validity check. Another approach is to

Fig. 5 Histogram of the predicted rock-fall susceptibility for the samples used in this study

Table 3 The coefficients, significance, and Exp (b) for logistic regression in this study

Independent parameter Class Coefficient Significant Exp (b)

Slope angle 15–20� -2.705 0.033 0.067

Geology Limestone 3.135 0.000 22.978

Distance to road 100–200 m -2.832 0.027 0.059

Distance to fault 450–600 m 4.976 0.011 144.825

Slope curvature Convex -1.672 0.025 0.188

Constant -2.189 0.005 0.112
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use the coefficient of correlation. Similar to the R2 in linear regression, there are also

correlation coefficients for logistic regression analysis and they are called Cox and Snell R2

(e.g., Cox and Snell 1989) and Nagelkerke R2 (e.g., Nagelkerk 1991). For the present

model, they are 0.418 and 0.558, respectively (Table 5). The theoretical values of these

coefficients are again from 0 to 1. Unlike the linear regression, these coefficients can be

relatively small (this does not necessarily invalidate the model in the case of logistic

regression) and there is again no universal standard of what value of Cox and Snell R2 and

Nagelkerke R2 should be obtained in the regression to be acceptable, that R2 [ 0.9 is

normally considered as a good indicator of a reasonable fit.

For validation of rock-fall susceptibility calculation models, two basic assumptions are

needed. Firstly, rock-falls are related to spatial information such as topography, geology,

road, and fault, and secondly, future rock-falls will be precipitated by a specific impact

factor such as earthquake. In this study, the two assumptions are satisfied because the rock-

falls were related to the spatial information, and the rock-falls were precipitated by one

road and fault in the study area. Also, the susceptibility map was verified using existing

rock-fall location. For this, the logistic regression analysis result in modeling rock-fall

susceptibility in the study area was evaluated by calculating the success curve rate (SCR)

and the percentage of known rock-falls in the various susceptibility categories. For the

Fig. 6 Rock-fall susceptibility map of the Salavat Abad saddle

Table 4 Classification table and predicted percentage correct test

Observed Predicted Correction percentage (%)

Absence of rock-fall (0) Presence of rock-fall (1)

Absence of rock-fall (0) 24 10 70.6

Presence of rock-fall (1) 5 29 85.3

77.9
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verification by the SCR method, the area under the SCR curve (AUC) model was used

(e.g., Lee and Sambath 2006; Lee and Pradhan 2006; Oh et al. 2009; Pradhan and Lee

2009, 2010; Nandi and Shakoor 2009; Pradhan 2010; Oh and Lee 2011). To obtain the

SCR, the calculated rock-fall susceptibility index values of all pixels in the study area were

ranked in a descending order. Then, the ranked pixel values were divided into 100 classes

with accumulated 1 % equal area intervals. The rate curves explain how well the method

and factors classify rock-falls. The area under the curve (AUC) can be used to assess the

prediction of the model. Total area = 1 denotes perfect prediction accuracy. The rate

verification results appear as graph in Fig. 7. For the case of this study, the area under the

curve was 0.7757 and the prediction accuracy was 77.57 % (Table 5; Fig. 7). For example,

in the case of our application to the study area, the 90–100 % class with the highest 10 %

of probability of a rock-fall contains 15 % of the rock-falls in that area. The 80–100 %

class with the highest 20 % of probability of a rock-fall contains 53 % of the rock-falls in

the area. The 70–100 % class with the highest 30 % of probability of a rock-fall contains

71 % of the rock-falls in that area (Fig. 7).

In addition to success rate and AUC to investigate the reliability of the hazard analysis,

another way is to consider the ratio of the rock-fall location points versus the rock-fall

susceptibility. Lee and Min (2001) suggested and used this method for landslide

Fig. 7 Cumulative frequency diagram showing rock-fall susceptibility index rank occurring in cumulative
percent of rock-fall occurrence (AUC = 77.57 %)

Table 5 Some statistics and map accuracy evaluation

Independent variable -2log likelihood (-2LL) Cox and Snell R2 Nagelkerke R2 (AUC %)

All variables 57.445 0.418 0.558 77.57

Without slope degree 59.904 0.397 0.529 71.80

Without slope curvature 62.985 0.396 0.492 73.97

Without elevation 57.445 0.418 0.558 73.11

Without distance to road 72.230 0.277 0.369 66.17

Without distance to fault 72.390 0.275 0.367 70.24

Without lithology 62.167 0.376 0.502 72.93
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susceptibility (e.g., Chau and Chan 2005). At this way, rock-fall probability should first be

divided into intervals such that within each of them the amount of coverage area is about

the same (Table 6). As shown in Table 6, the susceptibility and probability of larger than

0.5 roughly corresponds to b/a [ 1. For example; in the first, second, and third class of the

susceptibility and probability less than 0.5, the amount of b/a \ 1, and for the other classes,

the susceptibility and probability more than 0.5, the amount of b/a [ 1, which indicates

that the present logistic regression provides a reliable hazard or susceptibility map for the

case study.

The accuracy of the rock-fall susceptibility map provided by the model is further

checked by calculating Seed Cell Area Index (SCAI), which was suggested by Suzen and

Doyuran (e.g., Suzen and Doyuran 2004a, b) as follows:

SCAI ¼ Area extent of susceptibility class ð%Þ
rockfall in each susceptibility class ð%Þ

The SCAI lies in the correct classification of seed cells within a very conservative areal

extent, and it is expected that the high and very high susceptibility classes should have very

small SCAI values, and that low and very low susceptibility classes should have much

higher SCAI values (e.g., Aykut and Necdet 2011). The resulting values are the SCAI

densities of rock-fall among the class that are shown in Table 7.

4 Discussion and conclusion

The aim of this study was to assess efficiency of logistic regression model for rock-fall

susceptibility mapping along a mountainous road in the Kurdistan province, Iran. Rock-

falls are natural phenomena that often have detrimental consequences. In susceptibility

management, rock-fall susceptibility map can help to effectively prevent and manage

susceptibility. Many qualitative and quantitative techniques are useful for analyzing the

relationship between rock-falls and their affective parameters. In this research, we

attempted to provide rock-fall susceptibility maps using the relationship between rock-fall

Table 6 Comparison of rock-fall occurrence and rock-fall susceptibility map using logistic regression
method for the case study

Range of
susceptibility
map

Average of
susceptibility
map

Number
of pixels

Percentage of
pixels (a, %)

Number of
rock-falls

Percentage of
rock-falls (b, %)

b/a

0–0.228 0.266 15,782 33.74 4 11.764 0.348

0.228–0.380 0.341 15,021 32.11 3 8.823 0.274

0.380–0.458 0.419 4,247 9.08 3 8.823 0.971

0.458–0.535 0.496 10,563 22.58 21 61.764 2.73

0.535–0.613 0.574 671 1.43 2 5.882 4.11

0.613–0.690 – – – – – –

0.690–0.768 – – – – – –

0.768–0.845 – – – – – –

0.845–0.923 – – – – – –

0.923–1 0.961 497 1.06 1 2.944 2.77

Sum 46,781 100 34 100
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locations and determining parameters. The logistic regression model was applied to study

the impact of different parameters on rock-fall and susceptibility map of the area. The first

results of the logistic regression were the model statistics and coefficients, which were

useful to assess the accuracy of the regression function and the role of parameters on the

presence or absence of landslides. The forward condition stepwise method was applied for

statistical analyses. Slope aspect, land use, and elevation were considered to be not sig-

nificant for predicting rock-fall and were excluded from the final model. For the study area,

in particular, the most important effective factor is 450–600 m distance to fault with

coefficient of 4.976 and 0.011. p Value for significance and Exp (b) equal to 144.825,

which means that if distance to fault increases by one unit, the value for rock-fall

occurrence will increase 144.825 in time. Other factors are geology (limestone), slope

curvature (convex), slope angle (15–20�), and distance to road (100–200 m), respectively.

Distance to fault and geology by having positive coefficient and high value for Exp (b) has

more influence than other factors. The results of logistic regression model were validated

using some kinds of validation strategies and were accepted. The results are in line with

those of Chau et al. (2004) and Chau and Chan (2005) in their study. Considering coef-

ficients estimated for the logistic regression (Table 3), the ‘‘closeness to roads’’ parameter

was found to have the strongest relationship with rock-fall occurrence. Ayalew et al.

(2005) have introduced ‘‘proximity to roads’’ parameter as the most important factor on

landslide occurrence in Kakuda-Yahico, central Japan. They declared that most of the

landslides located in the range 0–100 m from roads. Also, Lee and Sambath (2006), Greco

et al. (2007) and Kelarestaghi and Ahmadi (2009) have emphasized adverse effect of road

construction on landslide occurrence in their studies. Table 2 indicates that geological units

belonging to the Cretaceous era and consisting mostly of limestone are more susceptible to

rock-fall. Can et al. (2005) and Nefeslioglu et al. (2008) emphasized causative role of

geological units on mass movements in their researches. Land use was excluded from the

logistic regression model runs because land use units do not show much change in the

study area and most of the rock-falls have occurred in rocky areas. In the Salavat Abad

saddle, the Salavat Abad fault by a thrust mechanism led to the generation of joints and

cracks of different sizes so that by continued physical weathering and thawing, they have

caused rock-falls due to gravity toward the toe of the slope. The road in the region has been

encompassed by this fault spiral form, and most of the rock-falls have occurred around it.

Therefore, the presence of the fault is one of the most important effective factors for rock-

falls occurrence in the study area. The removal of the slope aspect from the logistic

regression model run is caused by the presence of the Salavat Abad fault. The role of the

Salavat Abad fault was very predominating so that slope aspect did not show any statistical

relationship with rock-falls: some of the rock-falls occurred on the west slope instead of on

the east slope. The rock-fall susceptibility map was classified into four categories as

follows: very low, low, moderate, and high. The rock-fall susceptibility map was assessed

Table 7 Rock-fall distribution
in predicted rock-fall susceptible
zone

Rock-fall
susceptible
zone

%Area of
predicted
zone

%Area of
observed rock-fall
per class

SCAI
(rock-fall
density)

Very low 42.12 14.72 2.8614

Low 13.21 8.82 1.4977

Moderate 38.15 64.67 0.5899

High 6.52 11.79 0.5530
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using the area under the curve (AUC) in ROC value (Fig. 7). This diagram shows the

77.57 % as the value of the area under the curve (AUC), which indicates that in the study

area; the rock-fall susceptibility map is highly accurate.

To quantitatively compare the result, the areas under the curves (AUC) were individ-

ually recalculated for all factors. The results showed that with all effective factors in the

logistic regression model, the AUC value rises to 77.57 %, and the values obtained for the

other variables are as follows: 71.80 %, slope aspect, 73.97 %, slope curvature, 73.11 %,

elevation above the sea level, 66.17 %, geology, 70.24 %, distance to road, and 72.93 %,

distance to fault. So, all variables in the rock-fall susceptibility map appear effective, and

the prediction of the susceptibility map was measured in this way. These results are in

agreement with the results of Lee and Sambath (2006), Lee and Pradhan (2006, 2007), Oh

et al. (2009), Jadda et al. (2009), Nandi and Shakoor (2009), Oh et al. (2009), Pradhan

(2010), Pradhan and Lee (2010), Chauchan et al. (2010) and Oh and Pradhan (2011) to

apply the success rate curve and AUC to investigate the reliability of the landslides

susceptibility map. We have also found that 14.72, 8.82, 64.67, and 11.79 % of the area is

located at very low, low, moderate, and high susceptible zones, respectively.

Table 6 indicates that rock-fall susceptibility and probability has good accordance with

rock-falls because in the classes with the susceptibility and probability less than 0.5, the

amount of b/a \ 1, and in the classes with the susceptibility and probability more than 0.5,

the amount of b/a [ 1. This result is in line with the result of Chau and Chan in evaluating

landslide susceptibility map using logistic regression.

The SCAI values given in Table 7 show that the map generated is adequate because the

high and moderate susceptibility classes have very low SCAI values, whereas the SCAI

values of the very low and low susceptibility classes are very high (Table 7).

In general, in the study area, in addition to natural parameters including ‘‘slope gra-

dient,’’ ‘‘slope curvature,’’ ‘‘geology,’’ and ‘‘closeness to fault,’’ human activities have

played a major role on rock-falls. The susceptibility map produced is here considered as

acceptable as a basis for studies on mass movement risk management in the study area. If

the susceptibility map was overlaid with a vulnerability map (an inventory of building,

infrastructure, and other elements at risk and of their expected losses), an objective risk

assessment could be achieved. The information derived from this map can help citizens,

planners, and engineers to reduce losses caused by existing and future rock-falls by means

of prevention and mitigation.
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