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Abstract In supervised learning it has been shown that a collection of weak classifiers can
result in a strong classifier with error rates similar to those of more sophisticated methods.
In unsupervised learning, namely in anomaly detection such a paradigm has not yet been
demonstrated despite the fact that many methods have been devised as counterparts to super-
vised binary classifiers. This work partially fills the gap by showing that an ensemble of very
weak detectors can lead to a strong anomaly detector with a performance equal to or better
than state of the art methods. The simplicity of the proposed ensemble system (to be called
Loda) is particularly useful in domains where a large number of samples need to be processed
in real-time or in domains where the data stream is subject to concept drift and the detector
needs to be updated on-line. Besides being fast and accurate, Loda is also able to operate
and update itself on data with missing variables. Loda is thus practical in domains with sen-
sor outages. Moreover, Loda can identify features in which the scrutinized sample deviates
from the majority. This capability is useful when the goal is to find out what has caused the
anomaly. It should be noted that none of these favorable properties increase Loda’s low time
and space complexity. We compare Loda to several state of the art anomaly detectors in two
settings: batch training and on-line training on data streams. The results on 36 datasets from
UCI repository illustrate the strengths of the proposed system, but also provide more insight
into the more general questions regarding batch-vs-on-line anomaly detection.
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1 Introduction

Imagine identifying anomalous users in a social network (Šourek et al. 2013), where user’s
behavior constantly changes and their numbers are enormous, detecting weirdly behaving
computers (frequently an indication of an infection bymalware) in a network of large corpora-
tion with hundreds of thousands of computers, whose traffic constantly changes (Pevný et al.
2012), or identification of fraudulent card transactions (Akhilomen 2013) realized thorough
big credit providers. These domains share similar features, which is processing of enormous
number of samples with constantly changing characteristics. Most fast versions of existing
anomaly detectionmethods, especially those based on indexing techniques, require the data to
be available in one single batch and to fit in the memory, which is in aforementioned domains
clearly impossible. Moreover, data’s non-stationarity forces detector’s models to be contin-
uously updated, which is again very difficult with indexing techniques, as created indexes
would need to be recalculated, which is usually expensive. Other methods, such as Bay and
Schwabacher (2003) assumes some additional knowledge which might not be available. The
presented anomaly detector has been designed with respect to these constraints, and it has
been shown to achieve state of the art accuracy measured by area under ROC curve.

The definition of an anomaly, outlier, or novelty is not unified in the literature. Recent book
(Aggarwal 2013a) considers all these terms to be equivalent, and defines them as follows:“An
outlier is an observation which deviates so much from the other observations as to arouse
suspicions that it was generated by a different mechanism.” According to this definition,
outliers are generated by the same probability distribution as normal samples, but they are
very rare. In this text, we define anomalies to be samples generated by a different probability
distribution than normal ones, and their presence in the data to be rare, less than 1–10% of
the data. One-class problem is similar to the anomaly-detection problem with the difference
that training set contains samples exclusively from the normal class and testing set contains
may contain samples from other classes at any rate.

An ideal detector would model joint probability of data-generating processes. Although
this goes against the principle of never solving amore difficult process than is needed (density
estimation vs. classification), the knowledge of the probability of observed samples is useful1

information in making a decision about their anomalousness. Modeling joint probability is
generally difficult in spaces of many dimensions and in practice some simplifications have to
be made. The detector presented here, further called Loda, approximates the joint probability
by using a collection of one-dimensional histograms,where every one-dimensional histogram
is constructed on an input space projected onto a randomly generated vector. The rationale
behind the use of one-dimensional histograms is that they can be efficiently constructed in one
pass over data and the query operation needed during classification is simple. Consequently,
Loda’s complexity is linearwith respect to the number of training samplesn and the dimension
of the input space d .

Although one one-dimensional histogram is a veryweak anomaly detector, their collection
yields to a strong detector. This phenomenon (collection of weak classifiers result in a strong
classifier) is already awell established paradigm in supervised classification (Kuncheva 2004;
Freund and Schapire 1996), but has not been demonstrated in unsupervised anomaly detec-
tion, as most ensemble systems used in anomaly detection (Aggarwal 2013b; Lazarevic and
Kumar 2005; Tan et al. 2011; Liu et al. 2008) use individual detectors of much higher com-
plexity than that of a one-dimensional histogram. The comprehensive experimental section

1 The hypothetical knowledge of the probability function generating the data would allow to formulate the
problem as a hypothesis test.
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(see Sect. 4) demonstrates that the proposed ensemble of one-dimensional histograms has
accuracy measured by the area under ROC curve competitive with established solutions of
much higher complexities. Loda therefore achieves a very good accuracy to complexity ratio
and therefore it is well suited for processing large data.

Besides being fast, Loda is able to deal with missing variables and can rank features
according to their contribution to sample’s anomalousness. Both of these capabilities are
important for practitioners. For example, the knowledge of which features caused the anom-
aly can serve as guidance for further investigation and can decrease overall cost of anomaly
investigation. This knowledge can also be used to cluster similar anomalies together which is
again useful during investigation. Interestingly, none of these abilities substantially increase
Loda’s computational complexity. Note that both abilities can be achieved with any homoge-
nous ensemble-based anomaly detector, where individual detectors within are diversified
by sub-space sampling. Detectors with sub-space sampling were recently proposed (Keller
et al. 2012; Nguyen et al. 2010; Muller et al. 2011) but neither the robustness against missing
features or the explanation of the cause of a sample’s anomalousness had been mentioned.

Loda is controlled by two hyper-parameters: number of one dimensional histograms and
number of histogram bins. Because the hyper-parameter setting is particularly cumbersome
in most anomaly detection methods where few or no anomalous samples are available (most
anomaly detection), a method to determine these parameters solely on the basis of observed
samples is presented. This makes Loda hyper-parameter free.

Loda’s accuracy is firstly extensively compared to the prior art trained in the batchmode on
36 problems downloaded from the UCI database (Frank and Asuncion 2010) in the category
of classification problems with numerical attributes. The reason, why Loda is compared to
detectors processing only data presented in one batch is that we wanted to compare Loda to
state of the art detectors, even though they are not applicable for intended scenario. The exper-
imental results reveal that Loda’s measured by area under ROC curve is equal to and many
times better than that of other algorithms with higher computational complexity requiring
batch training (we expect algorithms trained in batch to perform better than on-line algo-
rithms). Consequently Loda provides a good alternative to the already established solutions
on problemswith a large number of features and samples that need to be processed efficiently.
Secondly, Loda is compared to the prior art on streaming problems and it is shown when
it is better to continuously update histogram and when to do so in batches. Finally, Loda’s
capability to efficiently process big datasets is demonstrated on the WEB UCI dataset (Ma
et al. 2009) with 2.4 million samples and 3.2 million features.

The contribution of this paper is threefold: (i) it demonstrates that an ensemble of very
weak anomaly detectors can lead to a strong anomaly detector; (ii) it presents a lightweight
anomaly detector suitable for data-streams robust to missing variables and identifying causes
of anomalies; (iii) it extensively compares existing and the proposed anomaly detector, which
sheds some light on conditions in which a particular anomaly detector excels.

This paper is organized as follows: The next section reviews relevant prior art, shows its
computational complexity, and discusses issues related to on-line learning and classification.
Loda is presented in Sect. 3. In Sect. 4, Loda is experimentally compared to the prior art,
its low computational requirements are demonstrated on artificial data, and its efficiency is
demonstrated on a large-scale dataset (Ma et al. 2009). The same section also demonstrates
Loda’s ability to handle data with missing values and explain a sample’s anomalousness.
Finally Sect. 5 concludes the paper.

For better reproducibility, all source code, results, datasets, and their creation is available
at http://agents.cz/~pevnak.
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2 Related work

The recent book (Aggarwal 2013a) and survey (Chandola et al. 2009) contain many methods
for anomaly and outlier detection. Below, those relevant to this work are reviewed.

2.1 Model-centered detectors

Basicmodel-centered anomaly detectors assume that data follow a knowndistribution.Detec-
tors (Shyu et al. 2003) based on principal component analysis (PCA) assume that the data fit
a multi-variate normal distribution. Despite this being rarely true in practice, they frequently
outperform more complicated detectors. The complexity of their training is O(nd3), where
d is the dimension of the input space and n is the number of samples used for training.

A One-Class Support Vector Machine (Schölkopf et al. 2001) (1-SVM) does not make
any assumptions about the distribution of data. It finds the smallest area where 1− ν fraction
of data are located (ν is parameter of the method specifying desired false-positive rate). This
is achieved by projecting the data to a high-dimensional (feature) space and then finding a
hyperplane best separating the data from the origin. It has been noted that when 1-SVM is
used with a linear kernel it introduces a bias to the origin (Tax and Duin 2004), which can be
removed by using a Gaussian kernel. The Support Vector Data Description algorithm (Tax
and Duin 2004) (SVDD) removes the bias in 1-SVM by replacing the separation hyperplane
by a sphere encapsulating most of the data. The complexity of both methods is super-linear
with respect to the number of samples, n, being O(n3d) in the worst-case.

Isolation Forest (Liu et al. 2008) (IForest) relies on a collection of Isolation Trees grown by
using unlabeled data. During growth of a tree, its internal nodes are added until the terminal
leafs contain one sample or themaximumdepth is reached. The anomaly score is proportional
to the level of leaf reached by the sample, as the idea is that anomalies will reach leafs at the
base of the tree (close to the root), while legitimate samples reach leafs closer to the root.
The complexity of training one tree is O(n log n) and of classification O(log n), where the
authors recommend subsampling of training samples to increase diversity in the ensemble,
robustness against anomalies within the data, and simultaneously decrease complexity of the
training and classification.

The recently proposed FRAC (Noto et al. 2012) aimed to bridge the gap between super-
vised and unsupervised learning. FRAC is an ensemble ofmodels, each estimating one feature
based on other features (for data of a dimension d , FRAC uses d different models). The ratio-
nale behind this is that anomalous samples exhibit different dependencies among features,
which can be detected from prediction errors modeled by histograms. FRAC’s complexity
depends on the algorithm used to implement individual models, which can be large, consid-
ering that a search for possible hyper-parameters needs to be undertaken. Because of this, an
ordinary linear least-square regression is used here leading to the complexity O(nd4). FRAC
is not well suited for on-line learning since an update of models changes the distributions of
errors that cannot be estimated from one sample.

The on-line training of model-centered detectors is generally difficult as the algorithms
used to create the model have non-trivial complexity with respect to the dimension, or models
cannot be updated incrementally (e.g. principal component analysis). The on-line adaptation
of 1-SVM is discussed in Kivinen et al. (2004), but the solution is an approximation of the
solution returned by the batch version. The exact on-line version of SVDD is described in Tax
and Laskov (2003), but the algorithm requires substantial bookkeeping thereby increasing
the complexity. The proposed Loda is also model-based detector and as will be shown in
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Sect. 4, its one dimensional histograms can be easily updated based on upcoming samples
which makes the whole algorithm friendly to on-line learning.

2.2 Data-centered detectors

Data-centered detectors do not have any built-in model. A sample’s anomalousness is deter-
mined according to its distance to all previously observed samples. Consequently, there is
no training phase as new samples are just added to the set of already observed samples.
However, this increases the complexity of the classification phase, which is a linear function
of the number of samples n.

A k-nearest neighbor (Knorr and Ng 1999) (KNN) is a popular method to identify outliers
inspired by the corresponding method from classification. It ranks samples according to their
distance to kth-nearest neighbor. It has been recently shown that a variant of KNN (Sricharan
and Hero (2011)) converges to the optimal density-level detector for a given false positive
rate. Nevertheless KNN has been criticized for not being able to detect outliers in data with
clusters of different densities (Breunig et al. 2000). The local outlier factor (Breunig et al.
2000) (LOF) solves this problem by defining the outlier score as a fraction of sample’s
distance to its kth-nearest neighbor and the average of the same distance of all its k nearest
neighbors. True inliers have a score around one while outliers have much greater score. We
refer to Zimek et al. (2012) for a comprehensive review of the prior art.

The complexity of the classification phase of nearest-neighbor based detectors is driven
by the nearest-neighbor search, which is an O(n) operation in the worst case. More efficient
approaches based on bookkeeping (Pokrajac et al. 2007), better search structures like KD-
trees (Bentley 1975), or approximate search (Andoni and Indyk 2006) have been adopted.
Nevertheless, the complexity of all methods depends in some way on the number of training
samples n, and better search structures are usually useful only in low dimensions.

2.3 On-line anomaly detectors

There are fewworks in on-line anomaly detection. The closest work to this is Half-Space trees
(Tan et al. 2011) (HS-trees), which is a method similar to Isolation Forest with the difference
that decision rules within tree-nodes are generated randomly. The output of each HS-tree
can be interpreted as a crude estimate of the probability density function, which is further
refined by taking a sufficient number of them. It is worth noting that HS-trees assume that the
data is scaled such that values of features are bounded in [0, 1]. This is in a sharp contrast to
Loda only requiring features to have approximately the same scale, which is a more relaxed
condition, especially if concept drift occurs. HS-trees handle concept-drift by dividing data-
streams into sample batches of size 256, where HS-trees trained on a previous batch are used
to scrutinize samples in a given batch. Simultaneously new HS-trees are learned on a current
batch and once all samples from the current batch are processed, new HS-trees replaces the
old one.

OLINDDA (Spinosa et al. 2009) uses standard k-means clustering to group previously
observed samples into clusters called concepts. Anomalies not belonging to any cluster are
grouped into candidate clusters, which based on cohesiveness criteria are either promoted as
a new cluster and novel concept is reported, or evicted. Thus OLINDDA focuses on detection
of a novel concepts in streams rather than on identification of anomalies.
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2.4 Ensembles and random projections

Ensembles have so far been underutilized in anomaly detection. A significant portion of the
prior art focuses on a unification of anomaly scores (Gao and Tan 2006; Schubert 2012),
because different detectors within one ensemble may provide anomaly scores of different
magnitudes (Nguyen et al. 2010). Diversifying detectors by random subsets of features was
presented (Lazarevic and Kumar 2005; Keller et al. 2012) to improve the accuracy, especially
on high dimensional problems.

Projections of the input space onto the arbitrary sub-space have been utilized mainly in
distance-based outlier detection schemes to speedup the search of nearest neighbors. de Vries
et al. (2010) performs the kth-NN search in the LOF first in the random sub-space on a larger
neighborhood and then it is refined by the search in the original input space. Similarly, Pham
and Pagh (2012) estimates the distribution of angles between samples in the input space
from the distribution of angles in the sub-space (distribution of angles has been proposed
in Kriegel and Zimek (2008) as a good anomaly criterion). In experiments in Sect. 4.3 the
similar approach is used on prior art to compare it to Loda.

Most prior art employs ensembles and random projections with data-centered detectors,
which have high computational complexity and are not well suited for real-time processing.
Exceptions are Isolation Forest (Liu et al. 2008) and Half-Space Trees (Tan et al. 2011)
relying on an ensemble of trees, each having a relatively low accuracy. This is similar to Loda
which uses even simpler model (one-dimensional histogram) with even lower complexity,
but their combination is similarly powerful. Random projections in Loda are used to project
the input space into a single dimension, which simplifies the complexity of all operations
over it. Loda’s sparse random projections can be considered as a sub-space sampling method.
Unlike the prior art, the sub-spacemethod is not used only to increase efficacy, but also to gain
robustness againstmissing variables and the ability to find causes of anomalousness of a given
sample.

Interpreting the decision in anomaly detection is very important in practice since it can
reduce the cost of subsequent analysis and increases trust of the detector. The work of Knorr
and Ng (1999) has focused on finding a minimal sub-space in which a given sample is an
outlier. Algorithms presented therein are data-centered and suitable only for low-dimensions.
HiCSalgorithm (Keller et al. 2012) and the algorithmofDang et al. (2013) both aim to identify
a sub-space in which a scrutinized sample is an outlier. Both are data-centered algorithms
and consequently their computational complexity is prohibitive for processing data-streams.

Loda’s method to identify relevant features bears similarity to HiCS algorithm. But unlike
HiCS, Loda’s method is general and can be used on all ensembles diversified by random
sub-space sampling. Finally, contrary to all prior art, the identification of relevant features
does not increase Loda’s computational complexity in big O notation.

3 Description of Loda

Loda is comprised of a collection of k one-dimensional histograms {hi }k
i=1, each approx-

imating the probability density of input data projected onto a single projection vector
{wi ∈ R

d}k
i=1. Projection vectors {wi }k

i=1 diversify individual histograms, which is an essen-
tial requirement for ensemble systems to improve performance of a single classifier / detector.
Their initialization is described in detail below in Sect. 3.1.

Loda’s output, f (x), on a sample, x , is an average of the logarithm of probabilities esti-
mated on individual projection vectors. Adopting p̂i to denote the probability estimated by
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Algorithm 1: Loda’s training (update) routine.

input: data samples {xi ∈ R
d }n

i=1 ;

output: histograms {h1, . . . , hn}, projection vectors {wi }k
i=1. ;

initialize projection vectors with

[
d− 1

2

]
non zero elements {wi }k

i=1;

initialize histograms {hi }k
i=1 ;

for j ← 1 to n do
for i ← 1 to k do

zi = xTj wi ;

update histogram hi by zi ;
end

end
return {hi }k

i=1 and {wi }k
i=1.

i th histogram and wi to denote the corresponding projection vector, Loda’s output f (x) can
be written as

f (x) = −1

k

k∑
i=1

log p̂i (xTwi ), (1)

which can be reformulated as

f (x) = − log

(
k∏

i=1

p̂i (xTwi )

) 1
k

(a)∼ − log p(xTw1, xTw2, . . . , xTwk), (2)

where p(xTw1, xTw2, . . . , xTwk) denotes the joint probability of projections. Equation (2)
shows that Loda’s output is proportional to the negative log-likelihood of the sample, which
means that the less likely a sample is, the higher the anomaly value it receives. This holds
under a strong assumption (a) in (2) that probability distributions on projection vectorswi and
w j are independent ∀i, j ∈ k, i �= j . Even though this is almost never true in practice, Loda
still delivers very good results. We believe that the reasons are similar to those in naïve Bayes
classifiers theoretically studied by Zhang (2004), which give conditions under which the
effects of conditional dependencies cancel out. These conditions depend on the probability
distribution of both classes and they are difficult to be verified in practice as they require an
exact knowledge of conditional dependencies among features. Due to Loda’s similarity to the
Parzen window detector (Yeung and Chow 2002), the similar argumentation might explain
Loda’s surprisingly good performance.

In high-dimensional spaces Loda can be related to a PCA based detector (Shyu et al.
2003), because projection vectors wi and w j , i �= j will be approximately orthogonal (this
is due to their random construction described below). Assuming again the independence of
xTwi and xTw j , the projected data are orthogonal and uncorrelated, which are properties of
Principal Component Analysis (PCA). Loda’s histogram on random projections are therefore
similar to histograms on principal components.

Loda’s training and classification routines are summarized in Algorithms 1 and 2, respec-
tively. Loda is initialized by generating a set of sparse random projections {wi }k

i=1, wi ∼
N (0, 1d) with d

1
2 non-zero components and initializing the corresponding set of histograms
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Algorithm 2: Loda’s classification routine on sample x .

input: sample x , set of histograms {hi }k
i=1 and projection vectores {wi }k

i=1.;
output: anomaly value f (x);

for i ← 1 to k do
zi = xTwi ;
obtain p̂i = p̂i (zi ) from hi ;

end

return f (x) = − 1
k

∑k
i=1 log p̂i (zi ) ;

{hi }k
i=1. Each histogram is updated by a training sample by projecting the sample onto a

vector and then the corresponding histogram bin is updated. The classification procedure
follows similar steps, but instead of updating histograms, they return probabilities whose
logarithms are averaged and returned. Notice that the construction requires only one pass
over the data and can be used on data-streams by first classifying a new sample and then
updating all histograms.

The rest of this section describes creation of and rationale behind sparse projection vectors
wi , presents how sparse projections enable robustness against missing variables and allow
explanation of sample’s anomalousness, and closes by commenting issues related to building
on-line histograms.

3.1 Random projections

Each sparse projection vector {wi }k
i=1 is created during initialization of the corresponding

histogram by first randomly selecting d− 1
2 non-zero features (d is the dimension of the input

space) and then randomly generating non-zero items according to N (0, 1). The choice of
normal distribution of non-zero items comes from the Johnson–Lindenstrauss (1984) lemma
showing thatwith this choice, L2 distances between points in the projected space approximate

the same quantity in the input space. The d− 1
2 sparsity is due to Li (2007) showing that

L2 distances can be preserved with random projections with only d− 1
2 non-zero elements.

Another justification for the use of sparse random projections is to increase diversity among
histograms bymaking themwork on different sub-subspaces. This is a popular diversification
technique used for example in Random Forest (Ho 1998).

One can ask a question, are randomprojections actually needed?Would a detector based on
an ensemble of histograms of individual features (in this section called per-feature detector)
have similar accuracy? According to the experimental results on problems used throughout
this paper (described in Sect. 4 in detail), random projections consistently improve the per-
formance (see Fig. 10 in “Appendix”). On four out of five rate of anomalies Loda was better
than the per-feature detector. Wilcoxon signed-rank test assessing if both detectors delivers
the same performance was rejected with a p-value 0.028.Whichmeans that the Loda is better
and the difference is statistically significant. For more details see comments under Fig. 10.

3.2 Missing variables

Sparse projections enable Loda to handle missing variables by calculating the output only
from those histograms whose projection vector has a zero on the place of missing variables.
To formalize the approach, assume that x ∈ R

d is a sample with missing variables, and
J is the index-set of missing variables. Let I(x) be a set of indices of histograms whose
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projections have all entries in J zero, i.e. (∀i ∈ I(x)) (∀ j ∈ J )
(
wi j = 0

)
, where wi j is j th

element of the projection vector of i th histogram. Then, the anomaly score for the sample x
is calculated as

f (x) = − 1

|I(x)|
∑

i∈I(x)

log hi (x). (3)

Since the output of all histograms within Loda have the same meaning there is no need for
calibration as in Nguyen et al. (2010). The final output is reliable even if several histograms
are omitted. Notice that by using the same mechanism, Loda can be also trained on data with
missing variables, as only detectors from I(x) are updated upon observing sample x .

3.3 Explaining the cause of an anomaly

Two independent works (Rondina et al. 2014; Somol et al. 2011) propose a feature selection
method for a binary classification based on the comparison of scores (e.g. classification of
error) of classifiers on randomly generated sub-spaces. Recognizing that each histogram
with sparse projections in Loda provide an anomaly score on a randomly generated sub-
space, this method can be used to rank features according to theirs contribution to sample’s
anomalousness.

Let p̂i denote the probability estimated by i th histogram on a sample x , and I j/I j denote
index sets of histograms that use/do not use j th feature. Formally (∀i ∈ I(x))

(
wi j = 0

)
and

(∀i ∈ I(x)
) (

wi j �= 0
)
, where wi is the projection vector of i th histogram. The score

function proposed in the prior art calculates the difference of means of − log p̂i over I j and
Ī j , which means that if an anomaly score with a feature being present is much higher than
that of without, the feature is important for identification of outliers. We improve this score
function by recognizing that it’s main goal is to assert if the contribution of j th feature is
statistically significant, for which we use one-tailed two-sample t test with a test statistic

t j = μ j − μ̄ j√
s2j

|I j | + s̄2j
|Ī j |

, (4)

where μ j/μ̄ j is the mean and s2j /s̄2j variance of − log p̂i calculated with i ∈ I j/ i ∈ Ī j .

The higher the t j the more important the j th feature is. Since the complexity of the contrast
function (4) is linear with respect to the number of projections k and number of features d ,
the calculation of a feature’s contrast increases Loda’s complexity by a constant in big O
notation. Experiments demonstrating the feature selection are presented in Sect. 4.6.

3.4 Histogram

The one-dimensional histogram on random projections is an important design element in
Loda, as it determines its learning mode (batch vs. on-line). The prior art on histogram
construction and the optimal number of bins is very rich. In the following only the tiny subset
relevant to on-line construction on streams is recapitulated.

The most common approach for batch data are equi-width or equi-depth histograms with
bins having either the same length or containing the same number of samples. In data-
base research, V-Optimal histograms (Poosala et al. 1996) minimizing weighted variance of
estimated frequency are popular, but their construction has prohibitive complexity O(n2).
Moving to data-steams, approximations of V-Optimal histograms have been studied in Guha
et al. (2006), but the algorithms therein are quite complex. Simpler Partition Incremental
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Discretization (Gama and Pinto 2006) constructs a histogram in two steps: (i) create an
equi-width histogram with small bins in a single iteration through the data; (ii) use this fine
histogram to return either equi-width or equi-depth histogram with a given number of bins.
The advantage is that user-provided partition in step (i) is only indicative, as bins can be split
if they already contain too many samples. The disadvantage for Loda is that the second step
needs to be triggered before classifying a sample if the fine histogram was updated. DADO
algorithm (Donjerkovic et al. 2000) constructs incremental histograms close in quality to
V-optimal histograms. The key idea behind this technique is to internally represent every
bin by two sub-bins. Counts in sub-bins are used for bin-split and bin-merge operations and
for their triggering. DADO’s biggest advantage for Loda is a fixed number of buckets which
implies fixed memory requirements. An interesting alternative was proposed in Ben-Haim
and Tom-Tov (2010) originally for determining splitting points in decision trees. Unlike all
previous approaches it does not require any knowledge about the range of values in histogram
(see Appendix “On-line histogram” for its recapitulation), but according to our results Loda
with equi-width histogram is better.

With the exception of the last algorithm, all above approaches require knowledge of the
range of modeled values in advance. This can be usually estimated from a sample of data,
but in the case of severe non-stationarity, the histogram’s support can shift outside the initial
range. A simple solution for equi-width histograms is to specify bin width and store bin
counts in a hash-map structure with keys κ = ⌊ x

Δ

⌋
, where κ is an integer key, Δ is the

bin width, and x is the value to be inserted. This approach has O(1) time complexity and if
coupledwith count-min-sketch (Cormode andMuthukrishnan 2005) its space complexity can
be upper bounded. It also allows the modeling fixed length windows in a stream by keeping
samples (indexes of bins) to be later removed in memory. This can have potentially large
memory footprint, which can be decreased by using exponential buckets proposed in Datar
et al. (2002). Alternatively, two histograms as in HS-Trees (Tan et al. 2011) can be used,
where the older one is used for classification while the newer one is being constructed on
newly arrived samples. Once the construction of the new one is finished, it replaces the old
one and the construction of the new one is started. Both constructions are experimentally
compared in Sect. 4.2 with interesting conclusions.

The determination of an optimal number of histogram bins b is an important design
parameter. For an equi-width histogram, there exists a simple method to determine optimal
number of histograms (Birgé and Rozenholc 2006), which is used in Loda. The method
of Birgé and Rozenholc (2006) maximizes penalized maximum likelihood in the form

b∑
i=1

ni log
bni

N
−

[
b − 1 + (log b)2.5

]
,

where ni is the number of samples that falls in i th bin and N = ∑b
i=1 ni is the total number

of samples. Penalization factor b − 1 + (log b)2.5 penalizes histograms with too many bins.

3.5 Computational and storage complexity

Loda’s complexity is mainly determined by the type of the histogram. Assuming equi-width

histogram and sparse random projections the time complexity of learning is O(nkd− 1
2 ),

where n is the number of training samples, d is the dimensionality of the input space, and k is

the number of histograms. The time complexity of classification is O(kd− 1
2 ). As discussed
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Table 1 Time and space complexity of the anomaly detection algorithms compared in this paper

Time complexity Space complexity

Batch training Classification

Batch

FRAC n · d4 O(d2) d2b

KNN O(1) O(nd) O(nd)

LOF O(1) O(knd) O(nd)

PCA O(nd4) O(kd) O(kd)

1-SVM O(n2d) ∼ O(n3d) O(nd) O(nd)

IForest O(kl log l) O(k log l) O(kl)

On-line

HS-Trees – O(k(h + l)) O(kh2)

Loda two hist. O(nkd− 1
2 ) O(k(d− 1

2 + b)) O(k(d− 1
2 + b))

Loda cont. O(nkd− 1
2 ) O(kd− 1

2 ) O(k(d− 1
2 + b + l))

The classification times for on-line detectors (HS-Trees, Loda with continuous histograms and Loda with two
alternating histograms) include time to update the detector. The time to train Loda on batch data is included
for comparison purposes. n is the number of samples in the training set, d is the number of features, k in LOF
is the number of nearest-neighbor points, k in PCA is the number of components retained after the projection,
k in IForest, HS-Trees, and Loda is the number of trees or histograms, h in HS-Trees is a maximal height
of the tree, l in IForest is the number of samples used to construct one tree, l in HS-Trees and Loda with
continuous histogram is the length of observation window, and finally b in FRAC and Loda is the number of
histogram bins. The FRAC implementation assumes ordinary least-square regression as features predictors.
“Loda cont.” denotes Loda with naïve implementation of continuously updated histogram. “Loda two hist.”
denotes Loda with two alternating histograms

in the previous sub-section the space complexity can be made O(k(d− 1
2 + b)) with b being

number of histogram bins.
For a floating window histogram over a length of l the space complexity can be made

O(k(d− 1
2 + b log l)) by using the algorithm of Datar et al. (2002) if space is constrained,

otherwise O(k(d− 1
2 + b + l)) for a naïve approach storing all l values for discounting them

on expiration.
Alternatively, on-line histogram can be implemented by using two alternating histograms

as in Tan et al. (2011), where the older histogram is used for the classification while the new
one is constructed. Once the construction of the new one is finished (it has accommodated l
samples), it replaces the older one for the classification and the new construction of the new

histogram one is started. The advantage is possibly smaller space complexity O(k(d− 1
2 +b))

and according to the experimental results in Sect. 4.2 better robustness to clustered anomalies.
Table 1 shows the time and space complexity of Loda with continuous and two equi-width
alternating histograms and the prior art used in the experimental section.

4 Experiments

Below Loda is compared to relevant state of the art in three different scenarios. The first
scenario simulates anomaly detection on stationary problems, where all detectors are first
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trained on a training set and then evaluated on a separate testing set. This scenario is included
because it enables the comparison of Loda to other anomaly detectors, which are designed
for batch training and their accuracy should be superior due to more sophisticated training
algorithms. The second scenariomimics streamed data, where anomaly detectors first classify
a sample and then use it to update their model. The third scenario uses a dataset with millions
of samples and features to demonstrate that Loda is able to efficiently handle big data. The
section is concluded by an experimental comparison of detectors time complexity in classify
and update scenarios and by the demonstration of robustness against missing variables and
the identification of causes of anomalies.

4.1 Stationary data

Loda has been compared to the following anomaly detectors chosen to represent differ-
ent approaches to anomaly detection: PCA based anomaly detector (Shyu et al. 2003),
1-SVM (Schölkopf et al. 2001), FRAC (Noto et al. 2012), δ-version of kth-nearest neighbor
detector (Harmeling et al. 2006) (KNN) which is equivalent to Sricharan and Hero (2011)
with γ = 1 and s = d (in notation of the referenced work) if the area under ROC curve
(AUC) is used for evaluation, LOF (Breunig et al. 2000), and IForest (Liu et al. 2008).

Benchmarking data were constructed by the methodology proposed in Emmott et al.
(2013) converting real-world datasets (Frank and Asuncion 2010) to anomaly detection
problems. The methodology produces set of normal and anomalous samples, where sam-
ples from different classes have different probability distribution, which is aligned with our
definition of anomalous samples. Created problems are divided according to (i) difficulty
of finding an anomaly (easy, medium, hard, very hard), (ii) scatter / clusteredness of the
anomalies (high scatter, medium scatter, low scatter, low clusteredness, medium clustered-
ness, high clusteredness), (iii) and finally with respect to the rate of anomalies within the
data {0, 0.005, 0.01, 0.05, 0.1}. The training and testing set were created such that they have
the same properties (difficulty, scatter/clusteredness, and rate of anomalies)2 with clustered
anomalies located around the same point. Note that the total number of unique combinations
of problem’s properties is up to 120 for each dataset. The construction of individual problems
is recapitulated in Appendix “Construction of datasets”.

The quality of the detection is measured by the usual area under ROC curve (AUC).
Since from every dataset (out of 36) up to 120 problems with different combinations of
problem’s properties can be derived, it is impossible to present all 7 × 4200 AUC values.
Tables with AUCs averaged over difficulty of detecting anomaly are in the supplemental
and cover 15 pages. They are therefore presented in an aggregated form by using critical
difference diagrams (Demšar 2006) which show average rank of detectors together with an
interval in which Bonferroni–Dunn correction of Wilcoxon signed ranks test cannot reject
the hypothesis that the detectors within the interval have the same performance as the best
one. The average rank comparing AUC is calculated over all datasets on which all detectors
provided the output, following Demšar (2006) lower rank is better. AUCs used for ranking
on each dataset are an average over all combinations of problem parameters with fixed
parameter(s) of interest. For example, to compare detectors on different rates of anomalies
within the data, for each rate of anomalies the averageAUC is calculated over all combinations
of difficulty and scatter. Average AUCs of different detectors on the same dataset are ranked,
and the average of ranks over datasets is the final average rank of a detector on one rate of
anomalies within the data.

2 The dataset with no anomalies contained no anomalies in the training data and 10% of anomalies in the
evaluation data, which captures the case the case when the anomaly detector is trained on clean data.
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Table 2 Summary of detectors
hyper-parameters used in
experiments on stationary data in
Sect. 4.1.2

Detector Hyper-parameters

FRAC –

PCA Used all components with eigenvalues greater than 0.01

KNN k = max{10, 0.03 × n}
LOF k = max{10, 0.03 × n}
1-SVM ν = 0.05, γ = inverse of median of L2 distances of

samples

IForest 100 trees each constructed with 256 samples

Loda All hyper-parameters optimized automatically

To decrease the noise in the data caused by statistical variations, experiments for every
combination of problem properties were repeated 100 times. This means that every detector
was evaluated on up to 100× 120× 35 = 4.32× 105 problems. Benchmark datasets created
as described in Appendix “Construction of datasets” were varied between repetitions by
randomly selecting 50% of normal samples (but maximum of 10,000) to be in the training
set and putting the remaining data to the set. Similarly, anomalous samples were first selected
randomly from all anomalous samples to reach the desired fraction of outliers within the data,
and then randomly divided between training and testing set. The data in the training and testing
set have the same properties in terms of difficulty, clusteredness, and fraction of anomalies
within.

4.1.1 Settings of hyper-parameters

Setting hyper-parameters in anomaly detection is generally a difficult unsolved problem
unless there is a validation ground truth available for the parameter tuning.Wrong parameters
can cause an otherwise well designed anomaly detector to fail miserably. Nevertheless, in
this context we do not aim to solve the problem as our intention here is primarily to compare
multiple detectors against each other. For this purpose we follow hyper-parameter setting
guidelines given by the authors of the respective methods. Note that our proposed method
does not require manual hyper-parameter setting. Employed parameter settings are detailed
below and in Table 2.

Settings of the number of nearest neighbors in our implementations of LOF and KNN
algorithms followed (Emmott et al. 2013; Breunig et al. 2000) and was set to max{10, 0.03×
n}, where n is the number of samples in the training data. 1-SVMwith a Gaussian kernel used
ν = 0.05 andwidth of the kernel γ equal to an inverse ofmedian L2 distance between training
data. SVM implementation has been taken from the libSVM library (Chang and Lin 2011).
Our implementation of the FRACdetector used ordinary linear least-square estimators, which
in this setting does not have any hyper-parameters. Our implementation of PCA detector
based on principal component transformation used top k components capturing more than
95% variance. IForest [implementation taken from Jonathan et al. (2014)] used parameters
recommended in Liu et al. (2008): 100 trees each constructed with 256 randomly selected
samples.

The number of histograms in Loda, k, was determined similarly to the number of probes
in feature selection in Somol et al. (2013). Denoting fk(x) Loda’s output with k histograms,
the reduction of variance after adding another histogram can be estimated as
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σ̂k = 1

n

n∑
i=1

| fk+1(xi ) − fk(xi )| .

Although σ̂k → 0 as k → ∞, its magnitude is problem-dependent making it difficult to set
a threshold on this quantity. Therefore σ̂k is normalized by σ̂1, and the k is determined as

argmin
k

σ̂k

σ̂1
≥ τ,

where τ is the threshold. In all experiments presented in this paper, τ was set to 0.01.
Unless said otherwise, Loda used equi-width histogram with the number of histogram bins,
b, determined for each histogram separately by maximizing penalized maximum likelihood
method of Birgé and Rozenholc (2006) described briefly in Sect. 3.4. With b being set, width
of histogram bins in equi-width histograms was set to 1

b (xmax − xmin).
Setting of hyper-parameters is summarized in Table 2.

4.1.2 Experimental results

Figure 1a–e shows the average rank of detectors plotted against rate of anomalieswithin the
training set for different clusteredness of anomalies (AUCs were averaged only with respect
to the difficulty of anomalies). Since highly scattered anomalies could not be produced from
the used datasets, the corresponding plot is omitted. The number of datasets creating problems
with medium scattered anomalies is also low, and we should not draw any conclusions as
they would not be statistically sound.

For problems with low number of low-scattered and low-clustered anomalies the data-
centered detectors (KNN and LOF) are good. With increasing number of anomalies in data
and with their increasing clusteredness, however, the performance of data-centered detectors
appears to deteriorate (note LOF in particular). Additional investigation revealed that this
effect can be mitigated by hyper-parameter tweaking, specifically by increasing the number
of neighbours k. In practice this is a significant drawback as there is no way to optimize k
unless labeled validation data is available.

Themodel-centereddetectors (Loda, IForest aswell as 1-SVM)appear to be comparatively
more robust with respect to the increase in number of anomalies or their clusteredness, even
if used with fixed parameters (see Sect. 4.1.1. ).

In terms of statistical hypothesis testing the experiments do not show marked differences
between the detectors in question. Note that in isolated cases FRAC and 1-SVM perform
statistically worse than the respective best detector.

Figure 1f shows the detectors time to train and classify samples with respect to the size
of the problem measured by the dimension multiplied by the number of samples.3 On small
problems KNN, LOF, and 1-SVM are very fast, as their complexity is mainly determined by
the number of samples, but Loda is not left behind too much. As the size of problems gets
bigger Loda quickly starts to dominate all detectors followed by PCA. Surprisingly IForest
with low theoretical complexity had the highest running times. Since its running time is
almost independent of the problem size, it is probably due to large multiplication constant
absorbed in big O notation.

Comparing detectors by the performance/time complexity ratio, we recommend KNN
for small problems with scattered anomalies, while for bigger problems and problems with

3 Because all algorithms have not used any search for hyper-parameters, Loda used fixed number of histogram
being equal to

√
n, where n is the number samples.
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Fig. 1 a–e The average rank of detectors with respect to the rate of anomalies within the training data for
various levels of clusteredness. The average rank is calculated by averaging rank of detectors over datasets,
where the rank of detectors on a single dataset compares AUCs. The small number in parentheses shows the
number of datasets from which benchmarking problems with a given combination of clusteredness and rate
of anomalies were created. Critical difference is shown as a light grey—it is the area in which a in which
Bonferroni–Dunn correction of Wilcoxon signed ranks test cannot reject the hypothesis that the detectors
within has the same performance as the best detector. f The time to train the detector and classify all testing
samples
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Fig. 2 Isolines at false positive rates {0.01, 0.05, 0.1, 0.2, 0.4} of Loda and k-nearest neighbor detector on a
banana dataset, a Loda, b k-nearest neighbor

clustered anomalies we recommend the proposed Loda, as its performance is similar to
IForest but it is much faster.

The investigation of problems on which Loda is markedly worse than KNN revealed that
Loda performs poorly in cases where the support of the probability distribution of nominal
class is not convex and it encapsulates the support of the probability distribution of the
anomalous class. A typical example is a “banana” dataset in Fig. 2 showing isolines at
false positive rates {0.01, 0.05, 0.1, 0.2, 0.4} of Loda and KNN. Isolines show that Loda has
difficulty modeling the bay inside the arc. Although the adopted construction of problems
from UCI datasets (see Appendix “Construction of datasets” for details) aimed to create
these difficult datasets, Loda’s performance was overall competitive to other, more difficult
detectors.

Breunig et al. (2000) has criticized KNN, which has performed the best on clean training
data, for its inability to detect local outliers occurring in datasets with areas of very different
densities. Figure 3 shows again isolines at false positive rates {0.01, 0.05, 0.1, 0.2, 0.4} of
Loda and LOF (designed to detect local outliers) on a data generated by two Gaussians with
very different standard deviations (a typical example of such data). Loda’s isolines around
the small compact cluster (lower left) are very close to each other, whereas isolines of the
loose cluster (upper right) are further away which demonstrates that Loda is able do detect
local outliers similarly to LOF. LOF’s wiggly isolines also demonstrates the over-fitting to
the training data.

Figure 4 visualizes the average rank of Loda with equi-width, equi-depth, and on-line
(Ben-Haim and Tom-Tov 2010) histograms on different rates of anomalies within the data.
Although on almost all rates Friedman’s statistical test accepted the hypothesis that all three
versions of Loda performs the same, Loda with equi-width histograms is obviously better.
This is important because equi-width histograms can be efficiently constructed from a stream
of data if the bin-width is determined, for example by using sample data.

4.2 Streamed and non-stationary data

This section compares Loda with floating-window histogram and two alternating histograms
(see Sect. 3.4) to Half-Space Trees (HS-Trees) (Tan et al. 2011) [implementation taken
from Tan (2014)]. On-line version of 1-SVM was omitted from the comparison due to the
difficulties with hyper-parameter setting and inferior performance when algorithms were
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Fig. 4 Average rank of Loda with different types of histograms with respect to the rate of anomalies within
the training data. The rank of three compared detectors is calculated for each problem separately, and then the
average over all problems with a given rate of anomalies in the training data is shown in the graph

compared in the batch learning. The comparison is made on seven datasets: Shuttle, Cover-
type, HTTP and SMTP data from kdd-cup 99. HTTP and SMTP data are used in two variants:
(i) with all 41 features (called HTTP-full and SMTP-full) and (ii) with 3 features (called
HTTP-3 and SMTP-3) used in Tan et al. (2011).4

In every repetition of an experiment the testing datawere created by replacingmaximumof
1% of randomly selected normal samples by randomly selected anomalous samples. Order

4 The original publication (Tan et al. 2011) does not specify which three features from kdd-cup dataset were
used, but datasets used in the publication are available at Tan (2014).
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Table 3 AUCs of Loda and HS-Trees (Tan et al. 2011) on streaming problems with various levels of clus-
teredness

Dataset Continuous Two histograms HS-Trees

AUC Time AUC Time AUC Time

Clusteredness = 1 Covertype 0.987 4.36 0.985 3.04 0.980 19.00

http-3 0.995 7.42 0.989 5.91 0.993 37.82

http 0.998 7.84 0.983 5.68 0.995 35.30

shuttle 0.992 0.54 0.992 0.39 0.999 4.90

smtp 0.994 1.25 0.989 1.01 0.998 8.25

smtp-3 0.890 1.52 0.883 1.27 0.915 8.38

smtp+http 0.992 6.51 0.987 5.88 0.998 42.56

Clusteredness = 4 Covertype 0.972 4.42 0.989 3.00 0.980 19.05

http-3 0.992 7.51 0.994 5.24 0.983 40.17

http 0.991 8.40 0.993 6.00 0.990 34.87

shuttle 0.980 0.49 0.994 0.41 0.999 5.02

smtp 0.970 1.34 0.994 1.06 0.996 8.58

smtp-3 0.871 1.35 0.886 1.11 0.914 8.31

smtp+http 0.989 9.65 0.993 7.99 0.998 42.70

Clusteredness = 16 Covertype 0.937 4.42 0.989 3.01 0.980 19.33

http-3 0.987 6.71 0.996 4.95 0.980 40.84

http 0.982 8.43 0.993 6.27 0.987 34.52

shuttle 0.943 0.51 0.994 0.42 0.999 5.12

smtp 0.947 1.34 0.993 1.06 0.995 8.63

smtp-3 0.863 1.38 0.882 1.17 0.915 8.35

smtp+http 0.983 7.99 0.995 4.80 0.998 42.20

Bold-faced values are the best values for a given dataset and clusterdness

of normal samples has not been permuted in order to preserve data continuity. Thus, the
variation between repetitions comes from (i) the position to where anomalous samples were
inserted and (ii) from the selection of anomalous samples to be mixed in. To study the effect
of clustered anomalies, anomalies were first selected to form clusters in space (as in the
previous section) and then they replaced sequences of normal data of the same size. By this
process data-streams contained anomalies clustered in time and space of sizes {1, 4, 16} (this
quantity is hereafter called clusteredness). Experiments on each dataset for every value of
clusteredness of anomalies were repeated 100 times.

HS-Trees used recommended configuration of 50 trees of depth 15 with minimum of 20
samples in leaf node. Loda’s configuration, namely number of histograms and bins were
optimized on first 256 samples in every repetition, thus there were no parameters to be set
manually. Both algorithms used a window of length 256 samples, which is the hard-coded
length in implementation of HS-Trees provided by authors.

Table 3 shows AUCs and average time to process samples of Loda and that of HS-Trees.
We can see that both algorithms deliver nearly the same performance, while Loda is on
average 7–8 times faster (the time complexity is treated in more detail in the next subsection).
Figure 5 shows AUCs on segments of 120,000 continuous samples on datasets Covertype,
HTTP, HTTP-3, and SMTP+ HTTP with clusters of 16 anomalies (omitted datasets did not
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Fig. 5 AUCs of Loda with continuous histogram, Loda with two alternating histograms, and HS-Trees on
segments of continuous 12,000 samples from the stream. AUCs in every segment is an average from 100
repetitions

contained enough samples). Since all AUCs of all three detectors remains stable, it can be
concluded that all detectors equally well combat the concept drift in datasets.

Further investigation of results reveals that Loda with two alternating histograms (con-
struction similar to that in HS-Trees) is more robust to clustered anomalies than Loda with
continuous histogram. Our explanation of this phenomenon is that clustered anomalies are
classified most of the time by histograms built on clean data without anomalies, while pol-
luted histograms classify most of the time clean data, which is not influenced by anomalies in
training data. These results demonstrate that the right choice of histogram for non-stationary
data should depend on the type of anomalies (time and space clustered vs. scattered).

4.3 Big data

The demonstration of Loda’s ease of handling big data is done on a URL dataset (Ma et al.
2009) containing 2.4 million samples with 3.2 million features. Normal samples contain
features extracted from random URLs, while anomalous samples have features extracted
from links in spam e-mails during 120 days at rate 20,000 samples per day (see Ma et al.
2009 for dataset details). Due to the high number of “anomalous” samples and cleanliness
of normal samples, the dataset belongs to a category of one-class problems where the goal
is to separate class of legitimate URLs from others.

Since the data are presented in batches of 20,000 samples per day, all methods evaluated in
Sect. 4.1 can be theoretically applied by training them on normal samples from the previous
day, i.e. detectors classifying samples from lth day are trained on normal samples from
the (l − 1)th day. The problem is that the computational complexity effectively prevents a
direct application of FRAC, 1-SVMs, PCA, LOF, and KNN, as methods would not finish
in reasonable time. The only methods that can be used without modification is Loda and
IForest. Their settings were same as in Sect. 4.1 with the difference that (i) Loda used 500
projections and histograms bins were optimized on data from day zero and then stay fixed;
(ii) number of trees within IForest was increased to 1000. Rows labeled 3.2× 106 in Table 4
show AUCs, average rank over 120 days, and the average time to classify new samples and
retrain the detectors. We can see that Loda was not only significantly better (AUC of IForest
is close to the detector answering randomly), but also more than 15 times faster.

To reduce the computational complexity such that other algorithms can be used, the origi-
nal data of dimension 3.2millionwere projected onto 500 dimensional spacewith a randomly
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Table 4 Average rank (caption
rank), average AUC (caption
AUC), and average time to
classify and update detectors on
20 000 samples (caption time) on
the full problem (d = 3.2 × 106)
and on the reduced problem
(d = 500)

The average rank is an average of
detector’s rank over 120 days

d Detector Rank AUC Time

500 KNN 1.596 0.818 140.5s

PCA 2.758 0.803 1.4s

Loda 3.067 0.795 1.16s

FRAC 3.958 0.789 283.8s

IForest 4.733 0.776 6.4s

LOF 4.987 0.771 307.5s

1-SVM 6.900 0.528 711.4s

3.2 × 106 Loda 1.025 0.795 21.6s

IForest 1.975 0.488 369s

Fig. 6 AUCs of detectors on
URL dataset with respect to time.
AUCs of PCA, KNN, IForest,
and 1-SVMs is on dataset
projected to 500 dimension.
AUCs of Loda are on the full
dataset of dimension 3.2 million
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generatedmatrix W ∈ R
3.2×106,500, Wi j ∼ N (0, 1). According to the Johnson-Lindenstrauss

lemma, L2 distances between points should be approximately preserved, therefore most
detectors should work. Hyper-parameters of all detectors were set as in Sect. 4.1.1. AUCs of
all detectors on every day are shown in Fig. 6, and their summaries again in Table 4. On this
new dataset the best algorithm was the KNN algorithm followed by PCA and Loda. These
results are consistent with those in Sect. 4.1.2, where KNN detector was generally good if
trained on clean data. The good performance of PCA can be explained by projected data
being close to multivariate normal distribution, although the Lilliefors’ test has rejected the
hypothesis that marginals follow the normal distribution with 85% rate. Notice that Loda’s
execution time was more than 100 times faster than KNN, as its time to classify and update
on samples from one day was 1.16s on average, while that of KNN was 140s.

4.4 Time complexity

Loda was primarily designed to have low computational complexity in order to efficiently
process large data and data-streams. This feature is demonstrated below, where times to
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Fig. 7 Average time of classification and update of PCA, KNN, LOF, and Loda detectors against number of
observed samples. Left and right figures show times for the problem of dimension 100 and 10,000 respectively

classify one sample with simultaneous update of the detector is compared for PCA, KNN,
LOF, HS-Trees, and Loda with continuous histogram.5 All settings of individual algorithms
were kept the same as in previous experiments. Loda’s time includes optimization of hyper-
parameters on the first 256 samples of the stream as described in Sect. 4.1.1 (Loda used on
average 140 projections with histograms having 16 bins and sliding window of length 256).

The comparison was made on 100,000 artificially generated samples of dimensions 100
and 10,000. As the interest here is on throughput, the details of data generation are skipped
as not being relevant for the experiment. The results are summarized in Fig. 7 showing the
average time to classify and update one sample against the number of observed samples.
The experiment was stopped if the processing of 1000 samples took more than half an hour
causing some graphs to be incomplete. The graph for the PCA detector is missing entirely
in the left Fig. 7, because processing of 1000 samples took more than 15h (109s per one
sample). Both graphs demonstrate that Loda’s efficiency is superior to all other detectors,
as it is two order of magnitudes faster than the fastest algorithms from the prior art. This
experiment highlights Loda’s suitability for efficiently handling data-streams.

4.5 Robustness to missing variables

Asmentioned inSect. 3,Lodawith sparse projections can classify and learn fromsampleswith
missing variables. This feature was evaluated under the “missing at random” scenario, where
missing variables are independent of the class membership. In every repetition of an experi-
ment, before the datawas divided into training and testing sets, {0, 0.01, 0.02, 0.04, . . . , 0.20}
fraction of all variables in data matrices weremademissing (set toNaN). Consequently, miss-
ing variables were equally present in sets on which Loda were trained and evaluated. The
robustness was evaluated on datasets created in the same way as in Sect. 4.1 with clean train-
ing sets and 10% of anomalies in the test sets. Loda’s hyper-parameters were determined
automatically as described in Sect. 4.1.1.

The effect of missing features on detector’s AUC is summarized in Fig. 8 showing the
highest missing rate at which Loda had the AUC higher than 99% of that on the data without

5 SVM and FRAC were omitted, as their on-line adaptation is not straight-forward. Although the imple-
mentation of HS-Trees is in Java, the binary (jar) reports time to process samples, which was used in this
comparison.
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Fig. 8 Light grey bars show the maximum rate of missing variables at which Loda had AUC greater than
0.99×AUC on data without missing variables. Dark grey bars show the maximum rate of missing variables at
which Loda provided answers for all samples. If dark grey are covered by light grey bars, then both maximum
rates were equal. The dashed line shows AUC of Loda on data without missing variables

missing variables (light grey bars). For a large set of problems the tolerance is high and more
than 10% of missing variables are tolerated with negligible impact on the AUC. There are
also exceptions, e.g. magic telescope, page-blocks, wine, etc, where the robustness is very
small, but we have failed to find a single cause for this fragility. Interestingly, the robustness
is independent on the dimension of the problem and the success with which outliers are
detected. The exception is datasets on which the detection of outliers is poor (AUC is around
0.5), which is caused by the fact that missing some variables cannot generally improve or
decrease already bad AUC. The same figure also shows the rate of missing variables at which
Loda stops to provide output (dark grey bars).We can see that this rate is usually much higher
than the rate at which Loda retains its AUC.

4.6 Identification of features responsible for an outlier

Explaining the causes of an anomaly detection is relatively new field and there is not yet an
established methodology to evaluate and compare the quality of algorithms, hence, the fol-
lowing is adopted here. It starts by calculating the average of Loda’s feature scores according
to (4) over all anomalous samples in the testing set. Once the scores of individual features are
known, they are sorted in decreasing order, which means that features in which anomalous
samples deviates the most should be the first. Then, Loda with dense projections utilizing
only first d ′ features is used and its AUC is recorded (d ′ has varied from 2 to min(100, d)). If
the feature relevance score (4) is meaningful, then Loda that uses first couple features (low
d ′) should have the same or better AUC than Loda that uses all features. This is because all
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Fig. 9 AUC of Loda with dense projections on features selected according to relevance provided by Loda
(captioned “AUC on explained fea.”) and AUC of Loda with sparse projections on all features (caption “all”).
The curve traversing bars shows the relative number of features selected according to Loda’s relevance

testing problems were originally classification problems which means that anomalous sam-
ples were generated by the same probability and hence similar features should be responsible
for their anomalousness. Experiments were performed on clean training datasets and all other
experimental settings were kept same as in Sect. 4.1.

Figure 9 shows the average AUC of Loda with dense projections using the most important
dmin features, where dmin is the least such that AUC by using only first dmin features is higher
than 0.99 times the best AUC.On average only 25% of features are needed to identify outliers
with AUC comparable or better than that of Loda with all features. This result confirms that
Loda is able to identify features causing the anomaly.

It is interesting that for some problems (e.g. cardiotocography, glass, spect-heart, yeast,
etc.) the improvement in the AUC is significant. This can be explained by the curse of
dimensionality as anomaly detectors are, by their nature, more sensitive to noise generated
by non-informative features.

5 Conclusion

This paper has focused on creating a detector of anomalous samples being able to quickly
process enormous amounts of data produced in many contemporary domains. Although the
presented detector (Loda) was aimed to process streams of data with a constantly changing
behavior, it has been compared to the state of the art in settings where all data are avail-
able at once and they can fit into the memory. The rationale behind was to compare Loda
under various conditions differing by the rate of anomalies within the data, their clustered-
ness/scatterness to state of the art detectors, even though they are not applicable for intended
scenario. This comparison, which scale is to our knowledge the biggest so far published has
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shown that Loda’s accuracy measured by area under ROC curve does not lag behind more
sophisticated detectors. Moreover, it has revealed conditions under which particular type of
detectors with the recommended setting of its parameters excels. Based on it we can con-
clude that data-centered detectors such as kth-nearest neighbor or Local Outlier Factor with
recommended setting for k are good for problems with a few number of scattered anomalies.
Contrary, for problems with clustered anomalies and/or with higher rate of anomalies within
the data (more than 1%), the model-centered detectors such as the proposed Loda, 1-SVM,
and Isolation Forest are more suitable. Loda was also the only evaluated method capable to
process data with 3.2 millions features in a reasonable time without any modification. Last
but not least, it was shown that Loda is well suited for intended domains, where data are in the
form of non-stationary streams with samples observed just once, classified, and the detector
is updated. The comparison to state of the art Half-Space Trees method on seven problems of
this type showed that both detectors have nearly the same detection performance, but Loda
is on average 7–8 times faster.

Loda has practically demonstrated that an ensemble of anomaly detectors as weak as one-
dimensional histograms yields to a strong anomaly detector. Loda’s diversification of weak
anomaly detectors relies on sparse random projections, which can be viewed as a random
sub-space sampling. It is shown that this type of diversification gives the ensemble capability
to explain why a scrutinized sample is anomalous and to be robust against missing values.
A thorough evaluation showed that detectors employing only features explaining anomalies
have equal or better performance than detectors using all features, which shows that features
explaining anomalies were selected correctly (on average 25% of features explained the
anomaly). The similar evaluation showed that the ensemble keeps on most problems its
detection performance even if more than 10% of features are missing.

To conclude, this paper has shown that there is no single detector excelling on all type
of problems, as different detectors are suitable for different types of problems. The biggest
advantage of the proposed Loda with respect to others is its overall good performance and
very good speed to detection performance ratio, as it is order of magnitude faster than prior
art on big problems while its detection performance is comparable to them. Besides, it can
explain causes of anomalies and it is robust to missing variables in data.

Appendix: On-line histogram

The on-line histogram from Ben-Haim and Tom-Tov (2010) approximates the distribution of
data by using a set of pairs H = {(z1, m1), . . . , (zb, mb)}, where zi ∈ R and mi ∈ N, where
b is an upper bound on the number of histogram bins. It is assumed that every point zi is
surrounded bymi points, of which half is to the left and half is to the right to zi . Consequently,
the number of points in the interval [zi , zi+1] is equal to mi +mi+1

2 , and the probability of point
z ∈ (zi , zi+1) is estimated as a weighted average.

The construction of the set H is described in Algorithm 3. It starts with H = {} being an
empty set. Upon receiving a sample, z = xTw, it looks if there is a pair (zi , mi ) in H such
that z is equal to zi . If so, the corresponding count mi is increased by one. If not, a new pair
(z, 1) is added to H. If the size of H exceeds the maximal number of bins b, the algorithm
finds the two closest pairs (zi , mi ), (zi+1, mi+1), and replaces them with an interpolated pair(

zi mi +zi+1mi+1
mi +mi+1

, mi + mi+1

)
. Keeping zi sorted makes all the above operations efficient.

The estimation of the probability density in point z = xTw is described in Algorithm 4.
Assuming the pairs in H are sorted according to zi , the algorithm starts by finding i such
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Algorithm 3: Algorithm constructing approximation of the probability distribution of
the data {xi ∈ R

d}n
i=1 projected on the vector w ∈ R

d .

Input: sample x ∈ R
d , w ∈ R

d ;
Output: set of pairs H = {(z1, m1), . . . , (zb, mb)},
initialize H = {}, zmin = +∞, zmax = −∞. ;

for j ← 1 to n do
z = xTj w;

zmin = min{zmin, z};
zmax = min{zmax, z};
if ∃(zi == z) then

mi = mi + 1;
continue

else
H = H ∪ {z, 1}

end
if |H| > b then

Sort pairs in H such that z1 < z2 < . . . < zb+1;
Find i minimizing zi+1 − zi ;
Replace pairs (zi , mi ), (zi+1, mi+1), by the pair

(
zi mi + zi+1mi+1

mi + mi+1
, mi + mi+1

)

end
H = H ∪ {(zmin, 0), (zmax, 0)};
Sort pairs in H such that zmin < z1 < z2 < . . . < zmax;

Algorithm 4: Algorithm returning approximate of probability density in point x pro-
jected on the vector w.

Input: sample x ∈ R
d , w ∈ R

d , set of pairs H = {(z1, m1), . . . , (zb, mb)} ;
Output: return estimate of the probability density p(x).;

H = H ∪ {(zmin, 0), (zmax, 0)};
Sort pairs in H such that zmin < z1 < z2 < . . . < zmax;

z = xTw;
if ∃(i |zi < z ≤ zi+1) then

return p(x) = zi mi +zi+1mi+1
2M(zi+1−zi )

;

else
return invalid;

end

that zi < z ≤ zi+1. If such i exists, then the density in z is estimated as zi mi +zi+1mi+1
2M(zi+1−zi )

, where

M = ∑b
i=1 mi . Otherwise it is assumed that z is outside the estimated region.

Construction of datasets

Benchmark problems for the evaluation of batch anomaly detectors were constructed fol-
lowing the process in Emmott et al. (2013). It advocates the creation of anomaly detection
benchmarks from real data, since artificial problems can be too far from realistic problems.
36 source datasets from which all benchmark problems have been created were downloaded
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from Frank and Asuncion (2010) from a category of classification problems with numeri-
cal attributes and without missing variables. The list of downloaded datasets together with
informations about the number of normal / anomalous samples is in Table 5

If the source dataset was a binary problem, the larger class was used as a normal class
and the smaller as the anomaly class. Multi-class datasets were converted to binary ones as
follows:

1. Train a random forest classifier to solve the multi-class problem in the original source
dataset using all samples.

2. Estimate the confusion matrix C with Ck, j = P( j |xi , k), where the conditional proba-
bility is the probability returned by random forest that the sample xi belongs to the class
j when k is true.

3. Create a complete graph with vertices being classes from the datasets and edges having
weights from confusion matrix as Ck, j + C j,k .

4. Compute the maximum weight spanning tree of the graph to identify “most-confusable”
pairs of classes.

5. Two-color the maximum spanning tree such that no adjacent vertices has the same color.
Each color determines set of classes that make the normal and anomalous class.

Notice that the above construction aims to maximize the difficulty (confusion) between
normal and anomalous class.

Anomalous samples were divided into four groups according to the probability that a
sample from the anomaly class is assigned to an anomaly class estimated the by the kernel
logistic regression with a Gaussian kernel (Zhu and Hastie 2005). Based on this score, all
anomalous pointswere assigned a difficulty category as: easy ([0.84, 1),medium ([0.7, 0.84),
hard ([0.5, 0.7), very hard (0, 0.5].

A concrete benchmark problem with a given fraction of anomalies (experiments used
fractions 0.005, 0.01, 0.05, 0.1) and difficulty (easy, medium, hard, very hard) was created
as follows:

1. Randomly divide samples into training a testing set allowingmaximum of 10000 samples
in each set.

2. If anomalies should be clustered, select randomly a pivot and find sufficient number of
nearest points in chosen difficulty category such that the final training and testing sets
have the desired number of anomalous samples. If anomalies are not clustered, select
anomalous samples randomly.

3. Divide the selected anomaly samples into training a testing set and mix with normal
samples.

The final benchmark problem is attached a clusteredness category according to a fraction of
sample variance of normal samples to the sample variance of anomalous samples as: high
scatter (0, 0.25), medium scatter [0.25, 0.5), low scatter [0.5, 1), low clusteredness [1, 2),
medium clusteredness [2, 4), and high clusteredness [4,∞).

Created benchmark problems have three basic properties (rate of anomalies within data,
difficulty of anomalies, and clusteredness) according to which they can be divided.

Experimental results

See Fig. 10.
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Table 5 Datasets used to create benchmarking problems

Dataset Dimension Number of samples

Normal Easy Medium Hard Very hard

Abalone 10 2153 7 44 955 1018

Blood-transfusion 4 384 7 9 49 84

Breast-cancer-wisconsin 30 357 188 18 5 –

Breast-tissue 9 66 17 5 3 15

Cardiotocography 27 1831 143 86 48 18

Ecoli 7 205 81 27 9 14

Gisette 4971 3500 – 1471 2029 –

Glass 10 114 75 20 3 2

Haberman 3 225 4 11 19 47

Ionosphere 33 225 36 86 3 –

Iris 4 100 44 2 2 2

Isolet 617 4497 40 3260 – –

Letter-recognition 617 4197 35 3565 – –

Libras 90 216 115 28 – –

Madelon 500 1300 – 1300 – –

Magic-telescope 10 12, 332 2808 1074 1079 1727

Miniboone 50 93,565 17,744 6179 5703 6873

Multiple-features 649 1200 63 737 – –

Musk-2 166 5581 604 212 105 96

Page-blocks 10 4913 315 69 77 99

Parkinsons 22 147 31 13 4 –

Pendigits 16 5539 5286 99 36 32

Pima-indians 8 500 101 76 45 46

Sonar 60 111 55 42 – –

Spect-heart 44 212 7 46 2 –

Statlog-satimage 36 3594 2520 111 84 126

Statlog-segment 18 1320 866 73 30 21

Statlog-shuttle 8 57,769 10 19 26 176

Statlog-vehicle 18 629 46 86 65 20

Synthetic-control-chart 60 400 197 3 – –

Vertebral-column 6 410 – – 68 142

Wall-following-robot 24 2923 1841 380 170 142

Waveform-1 21 3304 1204 279 147 66

Waveform-2 21 3304 1203 269 150 74

Wine 13 107 65 6 – –

Yeast 8 752 177 214 211 130

The number of samples is after the dataset has been converted to a two-class problem as described in Appen-
dix “Construction of datasets”. Columns captioned easy, medium, hard, very-hard shows the number of
anomalous samples with a given level of difficulty. Column captioned normal shows the number of normal
samples
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Fig. 10 The figure shows average rank of Loda and detector based on an ensemble of histograms modeling
individual features on different rates of anomalies within data. The small number in parentheses shows the
number of datasets used to create benchmarking problems. Notice that only 22 datasets had enough normal
samples such that the problemswith rate of anomalies 0.005 can be created.Wilcoxon signed rank test assessing
that both detectors delivers the same performance on each rate of anomalies separately accepted hypothesis
with p values 0.053, 0.44, 0.11, 0.16, and 0.31 in order of increasing rate of anomalies. The same test on results
from all experiments rejected the hypothesis with a p value 0.028, which means that Loda’s performance is
statistically better
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