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Abstract The increasingly popular use of Crowdsourcing as a resource to obtain labeled
data has been contributing to the wide awareness of the machine learning community to
the problem of supervised learning from multiple annotators. Several approaches have been
proposed to deal with this issue, but they disregard sequence labeling problems. However,
these are very common, for example, among the Natural Language Processing and Bioin-
formatics communities. In this paper, we present a probabilistic approach for sequence
labeling using Conditional Random Fields (CRF) for situations where label sequences from
multiple annotators are available but there is no actual ground truth. The approach uses the
Expectation-Maximization algorithm to jointly learn the CRF model parameters, the relia-
bility of the annotators and the estimated ground truth. When it comes to performance, the
proposed method (CRF-MA) significantly outperforms typical approaches such as majority
voting.
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1 Introduction

The increasing awareness of the importance of Crowdsourcing (Howe 2008) as a means
of obtaining labeled data is promoting a shift in machine learning towards models that are
annotator-aware. A good example is that of online platforms such as Amazon’s Mechanical
Turk (AMT).1 These platforms provide an accessible and inexpensive resource to obtain
labeled data, whose quality, in many situations, competes directly with the one of “experts”
(Snow et al. 2008; Novotney and Callison-Burch 2010). Also, by distributing a labeling task
by multiple annotators it can be completed in a considerably smaller amount of time. For
such reasons, these online work-recruiting platforms are rapidly changing the way datasets
are built.

Furthermore, the social web promotes an implicit form of Crowdsourcing, as multiple
web users interact and share contents (e.g., document tags, product ratings, opinions, user
clicks, etc.). As the social web expands, so does the need for annotator-aware models.

On another perspective, there are tasks for which ground truth labels are simply very hard
to obtain. Consider for instance the tasks of Sentiment Analysis, Movie Rating or Keyphrase
Extraction. These tasks are subjective in nature and hence the definition of ground truth
requires very strict guidelines, which can be very hard to achieve and follow. Even in well
studied tasks like Named Entity Recognition linguists argue what should and should not
be considered a named entity and consensus is not easily obtained. In cases where the task
is inherently subjective an attainable goal is to build a model that captures the wisdom of
the crowds (Surowiecki 2004) as good as possible while paying less attention to dissonant
views.

Another example can be found in the field of medical diagnosis, where obtaining ground
truth can mean expensive or invasive medical procedures like biopsies. On the other hand,
it is much simpler for a physician to consult his colleagues for an opinion, resulting in a
multiple “experts” scenario.

Sequence labeling refers to the supervised learning task of assigning a label to each
element of a sequence. Typical examples are Part-of-Speech tagging, Named Entity Recog-
nition and Gene Prediction (Allen et al. 2004; Allen and Salzberg 2005). In such tasks, the
individual labels cannot be considered as detached from the context (i.e. the preceding and
succeeding elements of the sequence and their corresponding labels). Two of the most pop-
ular sequence models are hidden Markov models (HMM) (Rabiner 1989) and Conditional
Random Fields (CRF) (Lafferty et al. 2001). Due to the usually high dimensional feature
spaces (specially considering CRFs), these models frequently require large amounts of la-
beled data to be properly trained, which hinders the construction and release of datasets and
makes it almost prohibitive to do with a single annotator. Although in some domains, the use
of unlabeled data can help in making this problem less severe (Bellare and Mccallum 2007),
a more natural solution is to rely on multiple annotators. For example, for many tasks, AMT
can be used to label large amounts of data (Callison-Burch and Dredze 2010). However, the
large numbers needed to compensate for the heterogeneity of annotators expertise rapidly
raise its actual cost beyond acceptable values. A parsimonious solution needs to be designed
that is able to deal with such real world constraints and heterogeneity.

In the past few years many approaches have been proposed that deal with the problem
of supervised learning from multiple annotators in different paradigms (classification, re-
gression, ranking, etc.), however the particular problem of sequence labeling from multiple

1http://www.mturk.com.

http://www.mturk.com


Mach Learn (2014) 95:165–181 167

annotators was practically left untouched, and most of the applications typically rely on ma-
jority voting (e.g. Laws et al. 2011). Given its importance in such fields as Natural Language
Processing, Bioinformatics, Computer Vision, Speech and Ubiquitous Computing, sequence
labeling from multiple annotators is a very important problem. Unfortunately, due to its na-
ture, typical approaches proposed for binary or categorical classification cannot be directly
applied for sequences.

In this paper we propose a probabilistic approach using the Expectation-Maximization
algorithm (EM) for sequence labeling using CRFs for the scenario where we have multiple
annotators providing labels with different levels of “reliability” but no actual ground truth.
The proposed method is able to jointly learn the CRF model parameters, the reliabilities of
the annotators and the estimated ground truth label sequences. It is empirically shown that
this method outperforms the baselines even in situations of high levels of noise in the labels
of the annotators and when the less “trustworthy” annotators dominate. The proposed ap-
proach also has the advantage of not requiring repeated labeling of the same input sequences
by the different annotators. Finally, this approach can be easily modified to work with other
sequence labeling models like HMMs.

2 Related work

The first works that relate to the problem of learning from multiple annotators go back to
1979 when Dawid and Skene proposed an approach for estimating the error rates of multiple
patients (annotators) given their responses (labels) to multiple medical questions. Although
this work just focused on estimating the hidden ground truth labels, it inspired other works
where there is an explicit attempt to learn a classifier. For example, Smyth et al. (1995)
propose a similar approach to solve the problem of volcano detection and classification in
Venus imagery with data labelled by multiple experts. Like in previous works, their approach
relies on a latent variable model, where they treat the ground truth labels as latent variables.
The main difference is that the authors use the estimated (probabilistic) ground truth to
explicitly learn a classifier.

More recently, Snow et al. (2008) demonstrated that learning from labels provided by
multiple non-expert annotators can be as good as learning from the labels of one expert.
Such kind of findings inspired the development of new approaches that, unlike previous ones
(Smyth et al. 1995; Donmez and Carbonell 2008; Sheng et al. 2008), do not rely on repeated
labeling, i.e. having the same annotators labeling the same set of instances. In Raykar et al.
(2009, 2010) an approach is proposed where the classifier and the annotators reliabilities are
learnt jointly. Later works then relaxed the assumption that the annotators’ reliabilities do
not depend on the instances they are labeling (Yan et al. 2010), and extended the proposed
methodology to an active learning scenario (Yan et al. 2011). All these approaches shared a
few key aspects: (1) they use a latent variable model where the ground truth labels are treated
as latent variables; (2) they rely on the EM algorithm (Dempster et al. 1977) to find max-
imum likelihood estimates for the model parameters; and (3) they deal mostly with binary
classification problems (although some suggest extensions to handle categorical, ordinal and
even continuous data).

The acclaimed importance of supervised learning from multiple annotators lead to many
interesting alternative approaches and variations/extensions of previous works in the past
couple of years. In Donmez et al. (2010) the authors propose the use of a particle filter to
model the time-varying accuracies of the different annotators. Groot et al. (2011) propose
a annotator-aware methodology for the regression problems using Gaussian processes, and
Wu et al. (2011) present a solution for ranking problems with multiple annotators.
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Despite the variety of approaches presented for different learning paradigms, the problem
of sequence labeling from multiple annotators was left practically untouched, with the only
relevant work being the work by Dredze et al. (2009). In this work the authors propose a
method for learning structured predictors, namely CRFs, from instances with multiple labels
in the presence of noise. This is achieved by modifying the CRF objective function used for
training through the inclusion of a per-label prior, thereby restricting the model from straying
too far from the provided priors. The per-label priors are then re-estimated by making use
of their likelihoods under the whole dataset. In this way, the model is capable of using
knowledge from other parts of the dataset to prefer certain labels over others. By iterating
between the computation of the expected values of the label priors and the estimation of
the model parameters in an EM-like style, the model is expected to give preference to the
less noisy labels. Hence, we can view this process as self-training, a process whereby the
model is trained iteratively on its own output. Although this approach makes the model
computationally tractable, their experimental results indicate that the method only improves
performance in scenarios where there is a small amount of training data (low quantity) and
when the labels are noisy (low quality).

It is important to stress that, contrarily to the model proposed in this paper, the model by
Dredze et al. (2009) is a multi-label model, and not a multi-annotator model, in the sense
that the knowledge about who provided the multiple label sequences is completely dis-
carded. The obvious solution for including this knowledge would be to use a latent ground
truth model similar to the one proposed by Raykar et al. (2009, 2010), thus extending this
work to sequence labeling tasks. However, treating the ground truth label sequences as latent
variables and using the EM algorithm to estimate the model parameters would be problem-
atic, since the number of possible label sequences grows exponentially with the length of
the sequence, making the marginalization over the latent variables intractable. In contrast
to this, the approach presented in this paper avoids this problem by treating the annotators
reliabilities as latent variables, making the marginalization over the latent variables tractable
(see Sect. 3).

In the field of Bioinformatics a similar problem has been attracting attention, in which
multiple sources of evidence are combined for gene prediction (e.g. Allen et al. 2004;
Allen and Salzberg 2005). In these approaches the outputs of multiple predictors (e.g.
HMMs) are usually combined using a voting of the labels predicted, weighted by the confi-
dence (posteriors) of the various sources in their predictions (Allen et al. 2004). Non-linear
decision schemes also exist, for example using Decision Trees (Allen and Salzberg 2005),
but similarly to the linearly weighted voting schemes, the confidence weights are estimated
once and never corrected. This contrasts with the approaches discussed in this paper, where
the goal is to build a single predictor (CRF) from the knowledge of multiple annotators
(sources), and where the confidence of each source is iteratively re-estimated.

3 Approach

3.1 Measuring the reliability of the annotators

Let yr be a sequence of labels assigned by the rth annotator to some observed input se-
quence x. If we were told the actual (unobserved) sequence of true labels y for that same
input sequence x, we could evaluate the quality (or reliability) of the rth annotator in a
dataset by measuring its precision and recall. Furthermore, we could combine precision and
recall in a single measure by using the traditional F1-measure, and use this combined mea-
sure to evaluate how “good” or “reliable” a given annotator is according to some ground
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truth. In practice any appropriate loss function can be used to evaluate the quality of the
annotators. The choice of one metric over others is purely problem-specific. The F-measure
was used here due to its wide applicability in sequence labeling problems and, particularly,
in the tasks used in the experiments (Sect. 4).

3.2 Sequence labeling

If for a dataset of N input sequences X = {xi}N
i=1 we knew the actual ground truth label

sequences Y = {yi}N
i=1, we could model the probabilities of the label sequences Y given the

input sequences X using a linear-chain Conditional Random Field (CRF) (Lafferty et al.
2001).

In a linear-chain CRF the conditional probability of a sequence of labels y given a se-
quence of observations x is given by

pcrf (y|x,λ) = 1

Ψ (x)

T∏

t=1

exp

{
K∑

k=1

λkfk(yt−1, yt ,x, t)

}
(1)

where Ψ (x) is a normalization constant that makes the sum of the probability of all label
sequences equal to one, fk(yt−1, yt ,x, t) is a feature function (often binary-valued, but that
can also be real-valued) and λk is a learned weight associated with feature fk . The feature
functions can capture any aspect of the state transitions yt−1 → yt and of the whole input
sequence x, which in fact, can be used to understand the relationship between labels and the
characteristics of the whole input sequence x at a given moment t .

According to the model defined in Eq. (1), the most probable labeling sequence for an
input sequence x is given by y∗ = arg maxy pcrf (y|x,λ), which can be efficiently determined
through dynamic programming using the Viterbi algorithm.

The parameters λ of the CRF model are typically estimated from an i.i.d. dataset by max-
imum likelihood using limited-memory BFGS (Liu and Nocedal 1989). The loglikelihood
for a dataset {xi ,yi}N

i=1 is given by
∑N

i=1 lnpcrf (yi |xi ,λ).

3.3 Maximum likelihood estimator

Since we do not know the set of actual ground truth label sequences Y for the set of input
sequences X , we must find a way to estimate it using the sets of label sequences provided
by the R different annotators {Y1, . . . ,YR}, and learn a CRF model along the way.

Let the observed data {y1
i , . . . ,yR

i ,xi}N
i=1 be denoted by D. Given this data, and assuming

the instances are i.i.d., the likelihood function, for some parameters θ (their definition can
be ignored for now) can be factored as

p(D|θ) =
N∏

i=1

p
(
y1

i , . . . ,yR
i |xi , θ

)
. (2)

We now introduce a random vector z that represents the reliability of the annota-
tors. We can define z to be an R-dimensional vector with values {z1, . . . , zR}, so that
z ∼ Multinomial(π1, . . . , πR) with probability

p(z|π) =
R∏

r=1

(πr)
zr

(3)
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Fig. 1 Plate representation of
proposed model

where we made the parameters of the multinomial (π ) explicit. If we define zr to be the
F1-measure of the rth annotator, the parameters π of the multinomial are then defined as

πr = p
(
zr = 1

) = F1-measurer∑R

j=1 F1-measurej

(4)

thus ensuring the constraints πr ≥ 0 (since the F1-measure is always non-negative) and∑
r πr = 1.2 The expectation of this multinomial random variable, E{zr} = p(zr = 1), can

be interpreted as the probability picking the label sequences provided by the rth annotator as
the correct ones (i.e. for which F1-measurer = 1) and using those for training. An analogy
for this model would be a student picking a book to learn about some subject. The student is
provided by the University’s library with a set of books that cover that subject but differ only
in the correctness of the content. The student then has to pick one of the books from which to
learn about that subject. Transferring this analogy back to our multiple annotator setting, the
random vector z can be viewed as picking the best annotator from which to learn from, thus
enforcing competition among the annotators. The correct annotator is assumed to provide
label sequences according to pcrf (yr

i |xi , λ). The others are assumed to provide incorrect
labels which we assume to come from a random model prand(yr

i |xi )). The generative process
can then be summarized as follows:

1. draw z ∼ Multinomial(π1, . . . , πR)

2. for each instance xi :
(a) for each annotator r :

(i) if zr = 1, draw yr
i from pcrf (yr

i |xi ,λ)

(ii) if zr = 0, draw yr
i from prand(yr

i |xi )

Figure 1 shows a plate representation of the proposed model.
For the sake of simplicity, we assume the random model prand(yr

i |xi ) to be uniformly
distributed, hence

prand

(
yr

i |xi

) =
T∏

t=1

1

C
(5)

where T denotes the length of the sequence and C is the number of possible classes/labels
for a sequence element.

Although it might seem too restrictive to assume that only one annotator provides the
correct label sequences, it is important to note that the model can still capture the uncertainty

2These constraints are required for the Jensen’s inequality to apply and for the EM algorithm presented in
Sect. 3.4 to be valid.
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in who the correct annotator should be. In alternative to this approach, one could replace
the multinomial random variable with multiple Bernoullis (one for each annotator). From
a generative perspective, this would allow for multiple annotators to be correct. However,
this places too much emphasis on the form of prand(yr

i |xi ), since it would be crucial for
deciding whether the annotator is likely to be correct. One the other hand, as we shall see
later, by using a multinomial, the probabilities prand(yr

i |xi ) cancel out from the updates of
the annotators reliabilities, thus forcing the annotators to “compete” with each other for the
best label sequences.

Following the generative process described above, we can now define

p
(
y1

i , . . . ,yR
i |xi , z,λ

) =
R∏

r=1

{
pcrf

(
yr

i |xi ,λ
)}(zr ){

prand

(
yr

i |xi

)}(1−zr )
(6)

where we made use of the assumption that the annotators make their decisions independently
of each other.

Including the vector z in our model as observed would yield the following expression for
the likelihood

p(D, z|θ) = p(z|π)

N∏

i=1

p
(
y1

i , . . . ,yR
i |xi , z,λ

)
(7)

where θ = {π,λ} are the model parameters.
Since we do not actually observe z, we must treat it as latent and marginalize over it by

summing over all its possible values. The likelihood of our model then becomes

p(D|θ) =
∑

z

p(z|π)

N∏

i=1

p
(
y1

i , . . . ,yR
i |xi , z,λ

)
. (8)

The choice of explicitly including the reliability of the annotators (which we represent
through the vector z) as latent variables and marginalizing over it, contrasts with typical ap-
proaches in learning from multiple annotators (e.g. Raykar et al. 2009, 2010; Dredze et al.
2009; Yan et al. 2011), where the unobserved ground truth labels are treated as latent vari-
ables. Since these variables are not observed (i.e. latent), they must be marginalized over.
For sequence labeling problems, this marginalization can be problematic due to the com-
binatorial explosion of possible label sequences over which we would have to marginalize.
Instead, by explicitly handling the annotators reliabilities as latent variables this problem
can be completely avoided.

Making use of Eqs. (3) and (6), the likelihood can be further simplified giving

p(D|θ) =
R∑

r=1

πr

N∏

i=1

{
pcrf

(
yr

i |xi ,λ
) R∏

j=1
j �=r

prand

(
yj

i |xi

)
}

. (9)

The maximum likelihood estimator is then found by determining the parameters θMLE

that maximize

θMLE = arg max
θ

ln
R∑

r=1

πr

N∏

i=1

{
pcrf

(
yr

i |xi ,λ
) R∏

j=1
j �=r

prand

(
yj

i |xi

)
}

. (10)
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3.4 EM algorithm

As with other latent variable models, we rely on the Expectation-Maximization algorithm
(Dempster et al. 1977) to find a maximum likelihood parameters of the proposed model.

If we observed the complete dataset {D, z} then the loglikelihood function would simply
take the form lnp(D, z|θ). Since we only have the “incomplete” dataset D, our state of
the knowledge of the values of the latent variable z (the reliabilities of the annotators) can
be given by the posterior distribution p(z|D, θ). Therefore, instead of the complete-data
loglikelihood, we consider its expected value under the posterior distribution of the latent
variable p(z|D, θ), which corresponds to the E-step of the EM algorithm. Hence, in the E-
step we use the current parameter values θold to find the posterior distribution of the latent
variable z. We then use this posterior distribution to find the expectation of the complete-
data loglikelihood evaluated for some general parameter values θ . This expectation is given
by

Ep(z|D,θold )

{
lnp(D, z|θ)

} =
∑

z

p
(
z|D, θold

)
lnp(D, z|θ)

=
∑

z

p
(
z|D, θold

)
ln

{
p(z|π)

N∏

i=1

p
(
y1

i , . . . ,yR
i |xi , z,λ

)
}

. (11)

The posterior distribution of the latent variable z can be estimated using the Bayes theo-
rem, giving

γ
(
zr

) = p
(
zr = 1|D, θold

)

= p(zr = 1|πold ) p(Y1, . . . ,YR|X , zr = 1,λold )
∑R

j=1 p(zj = 1|πold ) p(Y1, . . . ,YR|X , zj = 1,λold )

=
πold

r

∏N

i=1{pcrf (yr
i |xi ,λ

old )
∏R

k=1
k �=r

prand(yk
i |xi )}

∑R

j=1 πold
j

∏N

i=1{pcrf (y
j

i |xi ,λ
old )

∏R
k=1
k �=j

prand(yk
i |xi )}

. (12)

As long as we are assuming a uniform model for prand(yr
i |xi ), this expression can be further

simplified, giving

γ
(
zr

) = πold
r

∏N

i=1 pcrf (yr
i |xi ,λ

old )
∑R

j=1 πold
j

∏N

i=1 pcrf (y
j

i |xi ,λ
old )

. (13)

Making use of Eqs. (3), (6) and (11) the expected value of the complete-data loglikeli-
hood becomes

Ep(z|D,θold )

{
lnp(D, z|θ)

}

=
R∑

r=1

γ
(
zr

)
{

lnπr +
N∑

i=1

lnpcrf

(
yr

i |xi ,λ
) +

R∑

j=1
j �=r

lnprand

(
yj

i |xi

)
}

. (14)

In the M-step of the EM algorithm we maximize this expectation with respect to the
model parameters θ , obtaining new parameter values θnew .

The EM algorithm can then be summarized as follows:
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E-step Evaluate

γ
(
zr

) ∝ πold
r

N∏

i=1

pcrf

(
yr

i |xi ,λ
old

)
. (15)

M-step Estimate the new ground truth labels sequences Ŷnew and the new parameters
θnew = {πnew,λnew} given by

λnew = arg max
λ

N∑

i=1

R∑

r=1

γ
(
zr

){
lnpcrf

(
yr

i |xi ,λ
)}

(16)

Ŷnew = arg max
Ŷ

pcrf

(
Ŷ|X ,λnew

)
(17)

πnew
r = F1-measurer∑R

j=1 F1-measurej

(18)

where in Eq. (17) the new ground truth estimate is efficiently determined using the Viterbi al-
gorithm,3 and in Eq. (16) the new CRF model parameters λnew are determined using limited-
memory BFGS similarly to normal CRF training (Sutton and McCallum 2006). However,
the loglikelihood function now includes a weighting factor: γ (zr). From this perspective,
when learning from the label sequences of the different annotators, the proposed approach
is weighting the latter by how much we expect them to be right, considering also how likely
the other annotators are to be correct. If, for example, there are only two “good” annotators
among a group of five, they will share the responsibility in “teaching” the CRF model.

The initialization of the EM algorithm can be simply done by assigning random values
to the annotators reliabilities or by estimating the ground truth label sequences Ŷ using
majority voting. The algorithm stops when the expectation in equation 11 converges or when
the updates to the annotators reliabilities fall below a given threshold.

3.5 Maximum-a-posteriori

Sometimes we know a priori that some annotators are better or more trustworthy than oth-
ers. This knowledge can be incorporated in the model by imposing a Dirichlet prior with
parameters {α1, . . . , αR} over the annotators reliabilities z. Similarly, it is also useful to add
a zero-mean Gaussian prior with σ 2 variance over the CRF parameters λ to enforce regular-
ization (Sutton and McCallum 2006). The maximum-a-posteriori (MAP) estimator is found
by determining

θMAP = arg max
θ

{
lnp(D|θ) + lnp(θ)

}
. (19)

An EM algorithm can then be derived in a similar fashion.
When no prior knowledge about the annotators reliabilities is given, the Dirichlet prior

can also be used as non-informative prior with all parameters αr equal. This prior would act
as a regularization term preventing the model to overfit the data provided by a few annota-
tors. The strength of the regularization would depend on the parameter α.

3Note that the ground truth estimate is required to compute the F1-scores of the annotators and estimate the
multinomial parameters π .
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Table 1 Summary of CRF
features Features

Word identity features

Capitalization patterns

Numeric patterns

Other morphologic features (e.g. prefixes

and suffixes)

Part-of-Speech tags

Bi-gram and tri-gram features

Window features (window size = 3)

4 Experiments

The proposed approach is evaluated in the field of Natural Language Processing (NLP) for
the particular tasks of Named Entity Recognition (NER) and Noun Phrase (NP) chunk-
ing. NER refers to the Information Retrieval subtask of identifying and classifying atomic
elements in text into predefined categories such as the names of persons, organizations,
locations and others, while NP chunking consists of recognizing chunks of sentences that
correspond to noun phrases. Because of their many applications these tasks are considered
very important in the field of NLP and other related areas.

We make our experiments using two types of data: artificial data generated by simulating
multiple annotators, and real data obtained using Amazon’s Mechanical Turk (AMT). In
both cases, the label sequences are represented using the traditional BIO (Begin, Inside,
Outside) scheme as introduced by Ramshaw and Marcus (1995).

The proposed approach (henceforward referred to as “CRF-MA”)4 is compared with four
baselines:

– MVseq: majority voting at sequence level (i.e., the label sequence with more votes wins);
– MVtoken: majority voting at token level (i.e., the BIO label with more votes for a given

token wins);
– MVseg: this corresponds to a two-step majority voting performed over the BIO labels of

the tokens. First, a majority voting is used for the segmentation process (i.e. to decide
whether the token should be considered as part of a segment—a named entity for exam-
ple), then a second majority voting is used to decide the labels of the segments identified
(e.g. what type of named entity it is).

– CRF-CONC: a CRF using all the data from all annotators concatenated for training.

The proposed model is also compared with the two variants of multi-label model pro-
posed in Dredze et al. (2009): MultiCRF and MultiCRF-MAX. The latter differs from the
former by training the CRF on the most likely (maximum) label instead of training on the
(fuzzy) probabilistic labels (kindly see Dredze et al. (2009) for the details).

As an upper-bound, we also show the results of a CRF trained on ground truth (gold)
data. We refer to this as “CRF-GOLD”.

For all the experiments a simple set of features that is typical in NLP tasks was used. The
features used are summarized in Table 1. In CRF-MA, the EM algorithm was initialized with

4Datasets available at: http://amilab.dei.uc.pt/fmpr/crf-ma-datasets.tar.gz. Source code available at: http://
amilab.dei.uc.pt/fmpr/ma-crf.tar.gz.

http://amilab.dei.uc.pt/fmpr/crf-ma-datasets.tar.gz
http://amilab.dei.uc.pt/fmpr/ma-crf.tar.gz
http://amilab.dei.uc.pt/fmpr/ma-crf.tar.gz
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token-level majority voting (MVtoken). The MultiCRF model was initialized with uniform
label priors. All the results are reported using (strict) phrase-level F1-score.

During our experiments we found that using the square of the F1-measure when comput-
ing πr gives the best results. This has the effect of emphasizing the differences between the
reliabilities of the different annotators, and consequently their respective importances when
learning the CRF model from the data. Hence, we use this version in all our experiments.

4.1 Artificial data

4.1.1 Named entity recognition

There are a few publicly available “golden” datasets for NER such as the 2003 CONLL
English NER task dataset (Sang and Meulder 2003), which is a common benchmark for
sequence labeling tasks in the NLP community. Using the 2003 CONLL English NER data
we obtained a train set and a test set of 14987 and 3466 sentences respectively.

Since the 2003 CONLL shared NER dataset does not contain labels from multiple anno-
tators, these are simulated for different reliabilities using the following method. First a CRF
is trained for the complete training set. Then, random Gaussian noise (with zero mean and
σ 2 variance) is applied to the CRF parameters and the modified CRF model is used to de-
termine new sequences of labels for the training set texts. These label sequences differ more
or less from the ground truth depending on σ 2. By repeating this procedure many times we
can simulate multiple annotators with different levels of reliability.

An alternative approach would take the ground truth dataset and randomly flip the labels
of each token with uniform probability p. However, this would result in simulated anno-
tators that are inconsistent throughout the dataset, by labeling the data with a certain level
of randomness. We believe that the scenario where the annotators are consistent but might
not be as good as an “expert” is more realistic and challenging, and thus more interesting
to investigate. Therefore we give preference to the CRF-based method in most of our ex-
periments with artificial data. Nonetheless, we also make experiments using this alternative
method of label-flipping to simulate annotators for the NP chunking task.

Using the CRF-based method described above, we simulated 5 artificial annotators with
σ 2 = [0.005,0.05,0.05,0.1,0.1]. This choice of values intends to reproduce a scenario
where there is a “good”, two “bad” and two “average” annotators. The proposed approach
(CRF-MA) and the four baselines were then evaluated against the test set. This process was
repeated 30 times and the average results are presented in Table 2. We also report the re-
sults obtained on the training set. Note that, unlike for “typical” supervised learning tasks,
in our case the F1 of the training set is important because it represents the estimation of the
“unobserved” ground truth from the opinions of multiple annotators with different levels of
expertise.

The results in Table 2 indicate that CRF-MA outperforms the four proposed baselines
in both the train set and test set. In order to assess the statistical significance of this result,
a paired t-test was used to compare the mean F1-score of CRF-MA in the test set against
the MVseq, MVtoken, MVseg and CRF-CONC baselines. The obtained p-values were 4 ×
10−25, 7 × 10−10, 4 × 2−8 and 1 × 10−14 respectively, which indicates that the differences
are all highly significant.

Regarding the MultiCRF model, we can see that, at best, it performs almost as good
as MVtoken. Not surprisingly, the “MAX” version of MultiCRF performs better than the
standard version. This behavior is expected since the “hard” labels obtained from majority
voting also perform better than the “soft” label effect obtained in CRF-CONC. Nonetheless,
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Table 2 Results for the NER task with 5 simulated annotators (with σ 2 = [0.005,0.05,0.05,0.1,0.1]) with
repeated labeling

Method Train set Test set

Precision Recall F1 Precision Recall F1

MVseq 24.1 % 50.5 % 32.6 ± 2.0 % 47.3 % 30.9 % 37.3 ± 3.1 %

MVtoken 56.0 % 69.1 % 61.8 ± 4.1 % 62.4 % 62.3 % 62.3 ± 3.4 %

MVseg 52.5 % 65.0 % 58.0 ± 6.9 % 60.6 % 57.1 % 58.7 ± 7.1 %

CRF-CONC 47.9 % 49.6 % 48.4 ± 8.8 % 47.8 % 47.1 % 47.1 ± 8.1 %

MultiCRF 39.8 % 22.6 % 28.7 ± 3.8 % 40.0 % 15.4 % 22.1 ± 5.0 %

MultiCRF-MAX 55.0 % 66.7 % 60.2 ± 4.1 % 63.2 % 58.4 % 60.5 ± 3.6 %

CRF-MA 72.9 % 81.7 % 77.0 ± 3.9 % 72.5 % 67.7 % 70.1 ± 2.5 %

CRF-GOLD 99.7 % 99.9 % 99.8 % 86.2 % 87.8 % 87.0 %

Table 3 Results for the NER task with 5 simulated annotators (with σ 2 = [0.005,0.05,0.05,0.1,0.1]) with-
out repeated labeling

Method Train set Test set

Precision Recall F1 Precision Recall F1

CRF-CONC 52.1 % 56.5 % 54.0 ± 7.3 % 53.9 % 51.7 % 52.6 ± 6.4 %

CRF-MA 63.8 % 71.1 % 67.2 ± 1.7 % 65.7 % 62.7 % 64.2 ± 1.6 %

CRF-GOLD 99.7 % 99.9 % 99.8 % 86.2 % 87.8 % 87.0 %

neither version of MultiCRF performs as well as MA-CRF (test set p-values are 1 × 10−26

and 1 × 10−11 for the MultiCRF and MultiCRF-MAX respectively).
In order to empirically show that the proposed approach does not rely on repeated la-

beling (i.e., multiple annotators labeling the same data instances), the same “golden” NER
dataset was split into 5 subsets, and for each subset an annotator was simulated with a
different level of reliability σ 2 (namely σ 2 = [0.005,0.05,0.05,0.1,0.1]) according to the
CRF-based procedure described above. This process was repeated 30 times and the average
results for the provided test set can be found in Table 3. Since there was no repeated labeling,
the majority voting baselines, as well as the multi-label models (MultiCRF and MultiCRF-
MAX), did not apply. The obtained results indicate that, in a scenario without any repeated
labeling, the proposed approach (CRF-MA) still outperforms the CRF-CONC baseline. The
statistical significance of the difference between the F1-scores of the two methods in the test
set was evaluated using a paired t-test, indicating that the difference of the means is highly
significant (p-value = 1.47 × 10−11).

The comparison of both experiments (i.e. with and without repeated labeling) indicates
that, in this setting, having less repeated labeling hurts the performance of CRF-MA. Since
this model differentiates between annotators with different levels of expertise, its perfor-
mance is best when the more reliable ones have annotated more sequences, which is more
likely to happen with more repeated labeling. Naturally, the opposite occurs with CRF-
CONC. Since in this setting the less reliable annotators dominate, more repeated labeling
translates in even more predominance of lower quality annotations, which affects the per-
formance of CRF-CONC.
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Table 4 Results for the NP chunking task with 5 simulated annotators (with p = [0.01,0.1,0.3,0.5,0.7])
with repeated labeling

Method Train set Test set

Precision Recall F1 Precision Recall F1

MVseq 50.6 % 55.6 % 53.0 ± 0.4 % 66.1 % 63.1 % 64.6 ± 2.4 %

MVtoken 83.6 % 76.1 % 79.7 ± 0.2 % 83.3 % 86.9 % 85.0 ± 0.7 %

CRF-CONC 84.3 % 84.7 % 84.5 ± 1.8 % 83.8 % 82.9 % 83.3 ± 1.9 %

MultiCRF 76.6 % 65.6 % 70.7 ± 0.4 % 75.6 % 64.9 % 69.8 ± 0.4 %

MultiCRF-MAX 83.6 % 81.3 % 82.5 ± 1.0 % 81.2 % 79.0 % 80.1 ± 1.0 %

CRF-MA 92.0 % 91.8 % 91.9 ± 1.9 % 89.7 % 89.7 % 89.7 ± 0.8 %

CRF-GOLD 99.9 % 99.9 % 99.9 % 95.9 % 91.1 % 91.0 %

4.1.2 Noun phrase chunking

For the NP chunking task, the 2003 CONLL English NER dataset was also used. Besides
named entities, this dataset also provides part-of-speech tags and syntactic tags (i.e. noun
phrases, verbal phrases, prepositional phrases, etc.). The latter were used to generate a train
and a test set for NP chunking with the same sizes of the corresponding NER datasets.

In order to simulate multiple annotators in the NP chunking data, the alternative method
of randomly flipping the label of each token with uniform probability p was used. Since for
this task there are only two possible labels for each token (part of a noun phrase or not part
of a noun phrase)5 it is trivial to simulate multiple annotators by randomly flipping labels.
This annotator simulation process reproduces situations where there is noise in the labels
of the annotators. Using this method we simulated 5 annotators with label flip probabilities
p = [0.01,0.1,0.3,0.5,0.7]. This process was repeated 30 times and the average results
are presented in Table 4. Differently to NER, NP chunking is only a segmentation task,
therefore the results for the MVseg baseline would be equal to the results for MVtoken.
The experimental evidence shows that the proposed approach (CRF-MA) achieves a higher
F1-score than the MVseq, MVtoken and CRF-CONC baselines. The statistical significance
of the difference between the test set F1-scores of CRF-MA and all these three baselines
(MVseq, MVtoken and CRF-CONC) was evaluated using a paired t-test, yielding p-values
of 2 × 10−30, 7 × 10−22 and 2 × 10−16 respectively. As with the NER task, the CRF-MA
model also outperforms the MultiCRF and MultiCRF-MAX approaches (test set p-values
are 6 × 10−32 and 2 × 10−21 respectively).

4.2 Real data

The use of Crowdsourcing platforms to annotate sequences is currently a very active re-
search topic (Laws et al. 2011), with many different solutions being proposed to improve
both the annotation and the learning processes at various levels like, for example, by evalu-
ating annotators through the use of an expert (Voyer et al. 2010), by using a better annotation
interface (Lawson et al. 2010), or by learning from partially annotated sequences thus re-
ducing annotation costs (Fernandes and Brefeld 2011).

5In fact, since a BIO decomposition is being used, there are three possible labels: B-NP, I-NP and O, and
these labels are the ones that were used in the random flipping process.
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Fig. 2 Boxplots for (a) the number of answers per AMT worker, (b) the number of answers per news article,
and (c) the F1-scores of the annotators

With the purpose of obtaining real data from multiple annotators, we put 400 news arti-
cles from the 2003 CONLL shared NER task (for which we had ground truth) on Amazon’s
Mechanical Turk for workers to label. In this experiment, the workers were then required
to identify the named entities in the sentence and classify them as persons, locations, or-
ganizations or miscellaneous. Together with the named entity definition and the categories
description, the workers were also provided with two exemplifying sentences. Workers with
just a couple of answers were considered uninterested in the task and their answers were
discarded, giving a total of 47 valid annotators. The average number of annotators per news
article was 4.93, and each annotator labelled an average of 42 news articles (see Figs. 2a and
2b). In order to assess the “quality” of the annotators, we measured their F1-scores against
the ground truth. Figure 2c shows a boxplot of the F1-scores obtained. It is interesting to
notice that the quality of the AMT workers really varies enormously, with the lowest F1-
score being 17.60 % (a very unreliable annotator), while the highest F1-score is 89.11 %
(arguably almost an expert).

As with the experiments with simulated annotators, the different approaches are evalu-
ated in the provided test set, as well as in the ground truth labels for those 400 news articles.
The obtained results are presented in Table 5. These results indicate that the proposed ap-
proach is better at uncovering the ground truth than all the other approaches tested. This
in turn results in a better performance on the test set. Furthermore, the RMSE obtained be-
tween the true F1-scores of the annotators (measured against the actual ground truth) and
their estimated F1-scores according to the CRF-MA approach (measured against the es-
timated ground truth) was 8.61 %, meaning that the reliability of the annotators is being
approximated quite well. These results also indicate that crowdsourcing presents an inter-
esting alternative solution for obtaining labeled data that could be used for training a NER
system.

In order to evaluate the impact of repeated labeling, a random subsampling of the AMT
data was performed. This experiment will allow us to reproduce a situation where each ar-
ticle is only labeled by one annotator, thus representing the minimum cost attainable with
AMT (with the same price per task). For each of the 400 news articles, a single annota-
tor was picked at random from the set of workers who labeled that article. This process
was repeated 30 times to produce 30 subsampled datasets. The average precision, recall and



Mach Learn (2014) 95:165–181 179

Table 5 Results for the NER task using real data obtained from Amazon’s Mechanical Turk

Method Train set Test set

Precision Recall F1 Precision Recall F1

MVseq 79.0 % 55.2 % 65.0 % 44.3 % 81.0 % 57.3 %

MVtoken 79.0 % 54.2 % 64.3 % 45.5 % 80.9 % 58.2 %

MVseg 83.7 % 51.9 % 64.1 % 46.3 % 82.9 % 59.4 %

CRF-CONC 86.8 % 58.4 % 69.8 % 40.2 % 86.0 % 54.8 %

MultiCRF 67.8 % 15.4 % 25.1 % 74.8 % 3.7 % 7.0 %

MultiCRF-MAX 79.5 % 51.9 % 62.8 % 84.1 % 37.1 % 51.5 %

CRF-MA 86.0 % 65.6 % 74.4 % 49.4 % 85.6 % 62.6 %

CRF-GOLD 99.2 % 99.4 % 99.3 % 79.1 % 80.4 % 74.8 %

Table 6 Results for the NER task using data from Amazon’s Mechanical Turk without repeated labelling
(subsampled data from the original dataset)

Method Train set Test set

Precision Recall F1 Precision Recall F1

CRF-CONC 71.1 % 42.8 % 53.1 ± 10.5 % 35.9 % 70.1 % 47.2 ± 8.7 %

CRF-MA 76.2 % 54.2 % 63.3 ± 1.6 % 46.0 % 78.2 % 57.9 ± 1.8 %

CRF-GOLD 99.2 % 99.4 % 99.3 % 79.1 % 80.4 % 74.8 %

F1-scores of the different methods are shown in Table 6. Notice that, since there is no re-
peated labeling, both the majority voting baselines and the multi-label models (MultiCRF
and MultiCRF-MAX) do not apply. The obtained results show that CRF-MA also outper-
forms CRF-CONC in this setting (p-value = 3.56 × 10−7). Interestingly, when compared to
the results in Table 5, this experiment also shows how much could be gained by repeated
labeling, thus providing a perspective on the trade-off between repeated labeling and cost.

5 Conclusion

This paper presented a probabilistic approach for sequence labeling using CRFs with data
from multiple annotators which relies on a latent variable model where the reliability of the
annotators are handled as latent variables. The EM algorithm is then used to find maximum
likelihood estimates for the CRF model parameters, the reliability of the annotators and the
ground truth label sequences. The proposed approach is empirically shown to significantly
outperform traditional approaches, such as majority voting and using the labeled data from
all the annotators concatenated for training, even in situations of high levels of noise in the
labels of the annotators and when the less “trustworthy” annotators dominate. This approach
also has the advantage of not requiring the repeated labeling of the same input sequences
by the different annotators (unlike majority voting, for example). Although we presented a
formulation using CRFs, it could be easily modified to work with other sequence labeling
models such as HMMs.

Future work intends to explore dependencies of the reliabilities of the annotators on the
input sequences they are labeling, which can be challenging due to the high dimensionality
of the feature space, and the inclusion of a Dirichlet prior over the qualities of the annotators.



180 Mach Learn (2014) 95:165–181

Furthermore, the extension of the proposed model to an active learning setting will also be
considered. Since the annotators reliabilities are being estimated by the EM algorithm, this
information can be used to, for example, decide who are the most trustworthy annotators.
Requesting new labels from those annotators will eventually improve the models perfor-
mance and reduce annotation cost.
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